Technical Program
08:00 Breakfast
08:45 Opening Remarks
09:00 - 10:00 Keynote
![]() |
10:00 - 10:20 Break
10:20 - 11:00 Session 1
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices
Moustafa Alzantot, Yingnan Wang, Zhengshuang Ren, Mani Srivastava (UCLA) |
On-device Deep Reinforcement Learning for Embedded and Mobile Devices
Rui Lowe (University College London), Sourav Bhattacharya (Nokia Bell Labs), David Nunes (University College London and University of Coimbra – Portugal), Akhil Mathur (Nokia Bell Labs), Nicholas Lane (University College London and Nokia Bell Labs) |
11:00 - 12:00 Keynote
![]() |
12:00 - 13:10 Lunch
13:10 - 13:50 Session 2
MobiRNN: Efficient Recurrent Neural Network Execution on Mobile GPU
Qingqing Cao, Niranjan Balasubramanian, Aruna Balasubramanian (Stony Brook University) |
Pruning Filters and Classes: Towards On-Device Customization of Convolutional Neural Networks
Jia Guo, Miodrag Potkonjak (UCLA) |
13:50 - 14:50 Keynote
![]() |
14:50 - 15:10 Coffee
15:10 - 15:50 Session 3
Practical Processing of Mobile Sensor Data for Continual Deep Learning Predictions
Kleomenis Katevas (Queen Mary University of London), Ilias Leontiadis, Martin Pielot, Joan Serra (Telefonica Research) |
Design and Implementation of the Vehicular Camera System using Deep Neural Network Compression
Beomjun Kim, Yongsu Jeon, Heejin Park, Dongheon Han, Yunju Baek (South Korea Pusan National University) |
15:50 - 16:50 Panel
"The Road Ahead for Embedded and Mobile Deep Learning"
|
16:50 - 17:00 Closing Remarks