
1

Z24: Packet Scheduling
and Enhanced Quality of
Service

Mark Handley

Traditional queuing behaviour in routers

 Data transfer:

datagrams: individual packets

no recognition of flows

connectionless: no signalling

 Forwarding:

based on per-datagram, forwarding table look-ups

no examination of “type” of traffic – no priority traffic

2

Packet Scheduling

Scheduling

 A server receives a stream of requests.

 which request to service first?

 Scheduler:

 decides service order (based on policy/algorithm)

 manages queues for service.

 Router (network packet handling server):

 service: packet forwarding

 scheduled resource: output queues

 service requests: packets arriving on input lines

3

Scheduling

Simple router schematic
 Input lines:

 no input buffering
 Packet classifier:

 policy-based classification
 Correct output queue:

 forwarding/routing tables
 switching fabric
 output buffer (queue)

 Scheduler:
 which output queue

serviced next

switching
fabric

forwarding
/ routing

tables

output buffer(s)

packe t c la ssifi er(s)

forwarding
/ routing
policy

scheduler

First come, first served (FCFS) scheduling

 Null packet classifier
 Packets queued to outputs in order they arrive
 No packet differentiation
 No notion of flows of packets
 Anytime a packet arrives, it is serviced as soon as possible:

 FCFS is a work-conserving scheduler (not idle if packets waiting)
 Reducing the delay of one flow, implies increasing the delay

of one or more others.
 We can not give all flows a lower delay than they would get

under FCFS

4

Non-work-conserving schedulers

Non-work conserving disciplines
can be idle even if packets are
waiting.
 This allows “smoothing” of

packet flows.
 Do not serve packet as

soon as it arrives - wait until
packet is eligible for
transmission.

 Less jitter

 Makes downstream traffic more
predictable and less bursty.

 Less buffer space:

 router: output queues

 end-system: de-jitter buffers

 Higher end-to-end delay

 Complex in practice.

Simple priority queuing

K queues:
1 ≤ k ≤ K
queue k + 1 has greater priority than queue k
higher priority queues serviced first.

 Very simple to implement
 Low processing overhead
 Relative priority:

no deterministic performance bounds
 Fairness and protection:

starvation of low priority queues

5

Fair Queuing

 Allocate each flow to a separate queue.

 What is a flow? Policy issue.

 Max-min fair share:

 Allocate bandwidth equally between flows.

 If a flow can’t use its bandwidth (because of constraints
elsewhere), the excess is divided equally amongst the other
unconstrained flows.

 True fair queuing (aka Generalized Processor Sharing) is not
implementable in practice.

 Assumes bit-by-bit forwarding.

Weighted round-robin (WRR)

 Simplest attempt at GPS
 Queues visited round-robin in proportion to weights assigned
 Different mean packet sizes:

 weight divided by mean packet size for each queue
 Mean packets size unpredictable:

 may cause unfairness
 Service is fair over long timescales:

 must have more than one visit to each flow/queue
 short-lived flows?
 small weights?
 large number of flows?

6

Weighted Fair Queuing

 Based on GPS:
GPS emulation to produce finish-numbers for packets in

queue
Simplification: GPS emulation serves packets bit-by-bit

round-robin
 Finish-number:

 the time packet would have completed service under
(bit-by-bit) GPS

packets tagged with finish-number
smallest finish-number across queues served first

Weighted Fair Queuing

2
5
8

1
3
4
7

6

3 flows A, B, C
Weights:

A: 1
B: 2
C: 3

Assume same packet sizes.

A B C

Tx Schedule: C B C C B A C B …

7

Weighted Fair Queuing

 Buffer drop policy:
packet arrives at full queue
drop packets already in queued, in order of decreasing

finish-number.
 Can be used for:

best-effort queuing
providing guaranteed data rate and deterministic end-to-

end delay
 WFQ used in “real world”

Cisco implementation: hash flows across 256 queues.

Fair Queuing: Pragmatic Issues

 Per-flow (src, dest, sport, dport, proto) fair queuing:

 Technically feasible.

 Lots of state in the fast path.

 Very fast memory is expensive.

 Probably not needed in high-speed routers!

 At the edges, would be a big benefit.

 Warning: DoS attacks imminent.
 An attacker may be able to spoof a lot of different low-rate flows

and cause the legitimate flows to go very slowly.

8

Enhanced Quality of Service

Questions

 Can we do better than best-effort?

 What support do real-time flows need in the network?

 What support can we provide in the network?

 QoS for many-to-many communication?

 Application-level interfaces?

 Signalling

9

Better Service

 RSVP/Intserv

 Diffserv

 where's it going???

Isn't Best Effort Service Sufficient?

In theory, yes.
 If there's sufficient capacity to accommodate all the real-time

flows (as there is in the phone network) then best effort is
sufficient.
 Queues do not build
 No packet loss occurs

 If there's not sufficient capacity to accommodate them, calls will
either block if we have reservations or give degraded service if
we don't.
 Neither of these is acceptable.
 Thus there must be sufficient capacity.

10

Isn't Best Effort Service Sufficient?

 In practice, probably not.

When demand grows exponentially, ISPs trail the
demand curve at least some of the time.

TCP traffic expands to fill available bandwidth and
produces loss in doing so.

 Simple prioritization of real-time traffic leads to falsely
described traffic.

 Getting from here to there is difficult - someone has to
pay for the infrastructure.

The Goal

 The trick is to deploy mechanisms that are:

not required to obtain service, but which can be used to
obtain better service if best-effort isn't adequate,

 require minimal network state so we can build fast
routers,

can be charged for to improve the network for everyone,

 require billing arrangements that are feasible.

11

RSVP and Intserv

RSVP: Details

S
A

B
Path
Resv

12

RSVP: Reservation Styles

Several styles of reservation are supported:

 Fixed Filter
 separate reservations for each listed sender.
 E.g.: several video streams.

 Shared Explicit
 one reservation shared between several listed senders.
 E.g.: video with floor control

 Wildcard
 one reservation for any senders.
 E.g.: audio with silence detection in a large group

Token bucket
 Three parameters:

 b: bucket size [B]

 r: bucket rate [B/s]

 p: peak rate [B/s]

 Bucket fills with tokens at
rate r, starts full

 Tokens allow transmission

 Burst allowed at rate p:

 data sent < rt + b

Packet arrivals

Bucket
Size

Tokens

Conforming
Traffic

13

Intserv: Integrated Services

Two Intserv service models were standardized:

 Controlled Load Service

This is the one you want.

 If you want Intserv at all.

 Guaranteed Service

Practically no-one needs this.

Controlled Load Service

 The goal is to make it look like the network is unloaded.
 It does not guarantee jitter bounds or no loss
 both are very low though.

 Traffic is policed at the network edges and split/merge points.
 If it exceeds the reservation, it is treated as best effort.
 A token-bucket is used for policing and specified in reservation

requests.
 Admission control ensures that reservations do not exceed the

available bandwidth.
 Controlled Load packets get priority over Best Effort

 Best Effort packets are not pre-empted, so some jitter is seen.
 Cumulative jitter can lead to small, temporary queues.

14

Guaranteed Service

 Both bandwidth and delay bounds are guaranteed.
 Traffic is policed at the network edges and split/merge points.
 If it exceeds the reservation, it is treated as best effort.
 A token-bucket is used for policing and specified in reservation requests.

 Admission control ensures that reservations do not exceed the
available bandwidth.
 In addition, buffer slots are scheduled.
 Guaranteed Service packets get priority over Controlled Load.
 If a packet arrives before it's buffer slot, it is delayed until that slot. In this way

jitter does not accumulate, so no temporary GS queues form (other than for
shaping).

 Delay is normally longer than with Controlled Load, but there's no
distribution tail.

Why isn't everyone doing it?

The protocols and mechanisms work OK.
It solves the problem people thought they wanted solved.

 Some minor issues:
 Extra traffic due to soft-state refreshes
 Route changes & router failure:

 QoS degrades to best-effort, need to re-negotiate QoS

 Two Serious Problems:
 Charging/authentication
 Router State

15

RSVP/Intserv Charging

 A reservation goes hop-by-hop across many ISPs.

Why should I reserve bandwidth for some receiver I've
never heard of?

 Need negative feedback to discourage reservations or
everything gets reserved.

Essentially this means charging.

Vanilla RSVP needs n2 billing arrangements between n
ISPs.

Router State

 Backbone routers currently handle O(1,000,000)
simultaneous connections.

 We don't want a significant proportion of these to have
reservation state:
Fast router memory is very expensive.
CPU Cycles to check the flow spec are in very short

supply.
 Bandwidth is growing faster than Moore's Law
 In the future we'll have less cycles per packet than

we have now.

16

Router State: Solutions?

 Only police/install state at the edges.

Most of the congestion is at the edges.

Do something different (or nothing at all) in the
backbone.

