
Appendix A

The Initial Miranda Environment

This appendix provides information on three topics:

1. What names are allowable as identifiers.

2. Those names that are reserved and predefined.

3. The use of functions and type constructors in infix form.

A.1 Identifiers

An Identifier is a sequence of alphanumeric characters: including letters (A–Z, a–
z), digits (0–9), underscores () or single quotes (’) but starting with a letter. If the
starting letter is lower case then the Identifier is used to name constants, functions
and types (and is known as an identifier). If the starting letter is Upper case then
the Identifier can only name a constructor (and is known as an IDENTIFIER).

A.2 Reserved and predefined names

Reserved names

The following names are reserved for use by the Miranda system and cannot be
used as identifiers. They cannot be the names of formal parameters and they
cannot be redefined within where blocks.

abstype div if mod otherwise

readvals show type where with

265

266 The Initial Miranda Environment

Predefined names

The following identifiers are predefined, and thus always in scope. They are avail-
able at the start of all Miranda sessions and constitute the standard environment of
Miranda (release 2). For details of their functionality and possible implementation
the reader is referred to the Miranda On-line Manual (Research Software, 1990).

In contrast to reserved names, these identifiers may be the names of formal
parameters and may be redefined within where blocks. However, this practice is
not recommended.

Predefined typenames

bool char num sys message

Predefined constructors

False, True :: bool

Appendfile, Closefile, Exit,

Stderr, Stdout, System, Tofile :: sys message

The undefined value

undef names the completely undefined value. Any attempt to access it results in
an error message. Note that undef belongs to every type. It may be defined as:

undef :: *

undef = error "undefined"

Predefined functions

abs and arctan cjustify code concat const converse cos decode

digit drop dropwhile e entier error exp filemode filter foldl

foldl1 foldr foldr1 force fst getenv hd hugenum id index init

integer iterate last lay layn letter limit lines ljustify log

log10 map map2 max max2 member merge min min2 mkset neg numval

or pi postfix product read rep repeat reverse rjustify scan

seq showfloat shownum showscaled sin snd sort spaces sqrt

subtract sum system take takewhile tinynum tl transpose until

zip2 zip3 zip4 zip5 zip6 zip

A.3 Functions as operators

The Miranda $ token is the complement of the Miranda section facility, in that it is
possible to use functions or algebraic type constructors in an infix manner. For ex-
ample, given the prefix function implies, which corresponds to logical implication,
then it may be used as an infix operator by preceding it with a $:

Functions as operators 267

implies :: bool -> bool -> bool

implies True False = False

implies any1 any2 = True

Miranda False $implies False = False

True

Notice that it is not possible to use the $ token to create an infix function or
constructor:

not infix implies = $implies

Miranda True not_infix_implies False

type error in expression

cannot apply bool to bool->bool->bool

