
Chapter 9

Programming in the Large

This chapter introduces three mechanisms that extend the principles of modular-
ity and abstraction discussed in previous chapters to facilitate large-scale program
development. The first of these mechanisms is the (%include) directive, which
allows a number of definitions to be grouped together in a script file as a single
program block and then to be incorporated into another script file—thereby en-
couraging the reuse of existing software components. The second mechanism, the
(%export) directive gives the programmer the option of making visible only those
definitions that may be useful to other program blocks, and so hiding those defi-
nitions that are used solely within that particular block. It will be seen that this
builds on Miranda’s where facility by allowing an auxiliary function to be bound
to many specified functions. Finally the (%free) directive enables the general-
ization of script files into program templates. Here, the full definition of certain
identifiers is left unbound within the template and only completed when the tem-
plate is included in another file. This has the major advantage of allowing different
specializations of the template to cope with different problems.

9.1 The %include directive

A simple %include directive has the format:

%include ”filename”

This will make available (that is, put into scope) the definitions that appear in
the file filename, as long as all the definitions within filename are both correct and
closed—that is, there are no unbound identifiers.1

1By convention, filename should have the suffix .m; otherwise Miranda will create an equivalent

.m anyway. Note that, within the UNIX context, files can be included from the current directory,

a named pathway or the default Miranda system directory. The reader is referred to Section 27

of the On-line Manual for further details.

239

240 Programming in the Large

This facility means that the various components of a large program can be
developed separately (perhaps by different programmers) as separate scripts. These
separate scripts can then be linked as and when necessary, rather than having one
monolithic program. Furthermore, identifiable “libraries” of related objects (for
example, a graphics-handling suite) can be developed and made available to other
programmers.

%include usage

A number of points about %include usage are worth noting:

1. A script file can contain any number of %include directives; they can appear
anywhere in the file, but a good policy is to place them at the start of the
file.

2. %include directives cannot appear within where constructs; they are top-
level objects, like type declarations.

3. Nested %include directives are permitted to a reasonable depth of nesting.
In other words, an included file can include other %include directives, which
themselves may include others and so on—as long as no inclusion circularity
exists.

4. The definitions of an included file are restricted in scope to the file that
directly includes them. They are not inherited by a file that includes the
includer. Hence, if file1 is included by file2 which is, in turn, included by
file3 then the definitions of file1 are visible to file2 but not to file3. This has
the advantage of allowing the whole of file1’s definitions to be local to file2,
without causing name clashes within file3.

9.1.1 Avoiding name clashes

Miranda allows two qualifications to the %include directive in order to avoid
potential name clashes between the included file and the including file (or indeed
any other included file).

Firstly, an alias can be used to rename an included identifier (which can be a
type name or a constructor). The general format is:

%include ”filename” newname1/oldname1 newname2/oldname2 ...

Thus, the identifier oldname1 within the file filename is renamed newname1. If
a constructor is aliased and the associated show function for its type is included,
then the definition of the show function will automatically be modified to work
with the new alias for the constructor name.

The %export directive 241

Secondly, it is possible to drop any unwanted definition from the include file, the
general format is:

%include ”filename” -dropped1 -dropped2 ...

This guarantees that the definitions within filename for dropped1 and dropped2
etc., are not included within the current script file and hence they can have al-
ternative definitions. Note that, although it is permitted to alias type names and
constructors (see above), they cannot be dropped.

Incorporating the Standard Environment

The Standard Environment is included into every script file, and it is currently not

possible to include it explicitly, nor to rename or drop any of its components.

9.2 The %export directive

By default, a %include directive will incorporate all the top-level contents of the
included file. The %export directive can be used in the included file to modify
this default to specify which components are made visible to the including file.

A script file may have just one %export directive, which may take a number of
optional qualifiers:

1. To export all definitions.
2. To export selected definitions.
3. To export included files.
4. To not export specified objects.

Exporting all definitions

For any script file, the default is that all of its top-level definitions will be visible
to an including file. This can be made explicit by the following directive:

%export +

Exporting selected definitions

In order to restrict the scope of auxiliary definitions (that are only relevant within
the exporting file), if the %export directive is followed by an export list of iden-
tifiers (which may be type names and constructor names) then only these will be
visible within the including file.

242 Programming in the Large

The general format for the %export directive is:

%export function1 function2 type1 ...

All other definitions within the exporting file become local to that file. This facility
has the advantage over the where construct, in that a function or identifier can
be made local to several other functions rather than just one.

Exporting included files

In order to override the safeguard that definitions from a %include file are only
visible within the file that has included them, it is possible to export that included
file. The following extract shows the advantages of this facility to combine existing
modules into a new module:

%include "graphicslib"

%include "matrixlib"

%export "graphicslib" "matrixlib"

|| etc

Not exporting specific objects

Sometimes it may be more elegant to exclude certain functions from being exported,
rather than provide an export list. The following program extract first directs that
all the definitions within the current file and otherfile be exported, and then directs
that f1 and f2 should not be exported. Note that the excluded identifiers could
be from the current file and/or otherfile.

%export + "otherfile" -f1 -f2

9.2.1 Exporting types

The following subsection, provides a brief outline of the safeguards that Miranda
provides for exporting types; the reader is referred to Section 27 of the On-line
Manual for further details.

Type abstraction

Exporting an algebraic type name will automatically export all of its constructors.
There is no way to override this mechanism; it is necessary to use the abstype
mechanism (described in Chapter 7) in the exporting file to achieve the equivalent
of data hiding.

The %export directive 243

Type orphans

It is illegal to export an identifier to a place where its type, or any part of its type,
is unknown; this prevents “type orphans”. Thus, if a script file tree.m provides
definitions for an algebraic type tree * and a function flatten tree :: tree * -> [char]
then tree * must be exported if flatten tree is exported.

Figure 9.1 An illegal inclusion produces a type orphan.

If a function is exported without its type then the unbound type expression is
known as a “type orphan”. Figure 9.1 illustrates an illegal inclusion which causes
Miranda to issue the following error message:

Miranda /f main

compiling main.m

checking types in main.m

MISSING TYPENAME

the following type is needed but has no name in this scope:

’tree’ of file "tree.m", needed by: flatten;

typecheck cannot proceed - compilation abandoned

Miranda

244 Programming in the Large

Re-adoption of type orphans

If there are several levels of inclusion (recall that %include works transitively),
then it would be possible for the above type tree * to be included into the main
script from a different file to that which exported flatten tree. Thus, the main
script can “re-adopt” type orphans that would otherwise be without a parent from
the most immediately included file. However, the file which exported the function
flatten tree must have had the type definition for tree * in scope: and both the main

script file and the file which exported the function must derive the type definition

from the same source file. Miranda always recognizes when the same file has been
included, however indirectly. Figure 9.2 illustrates a re-adoption of the type tree.m,
thus solving the type orphan problem seen in Figure 9.1.

Figure 9.2 Re-adoption of a type orphan.

The %export directive 245

Type clashes

Two types with identical textual definitions but different source files will always
be considered as different types and so give rise to a type clash. Furthermore, it
is illegal for the same original type to be included twice into the same scope, even
under different aliases.

9.2.2 Example: text justification

The example in the rest of this section discusses the design of a formatting module
justify, to perform text justification. This module may be exported to become part
of a text editor, and itself will include a number of tried and tested general-purpose
functions that have already been collected into a library file.

Specification

The justify program will take a string of characters and a desired line width and
transform it into a left and right justified text with lines of the desired line width.
The last line will not be right justified. It is assumed that the selected line width
is long enough to hold the longest word in the input string.

Target signature requirements

The first stage in the design of justify is to choose which objects will be shown
to the outside world; this is simply the justify function itself; no other functions
should be in scope outside of justify’s script file. This is achieved by the following
directive:

%export justify

Now there will be no accidental name clashes or confusion with the other top-level
functions within the including file.

Program design overview

The program follows a divide and conquer principle. The input text is consid-
ered as an unformatted paragraph with possible multiple spaces, blank lines (two
consecutive newline characters) and lines of different width from the desired line
width. The final output will have a fixed line width and regular spacing between
each word.

246 Programming in the Large

The first step is to compress the “white space” characters (this has already been
discussed in Section 5.2). Subsequently the text is split into lines, which are then
split into words, which are output with at least one space between them.

Extra spaces must be added if a word straddles a line divide. In this situation,
the word is shunted to the next line and the current line must be padded out with
extra spaces to fill the gap. The program will evenly distribute extra spaces from
the left; this is perhaps simplistic but the design makes a more elegant distribution
quite easy to implement later.

Implementation

The script file (justify.m) for the justify program is now presented—it makes use
of several functions to manipulate lists which are assumed to be contained within
a general-purpose list manipulation library listtools.m. To avoid potential name
clashes, the definitions within the justify.m file will be explicitly dropped from
listtools.m.

The file listtools.m: contains functions which have not been given elsewhere
in this text; these functions are now presented, followed by the main script file
justify.m:

>|| Literate Script: part of listtools.m

Contains: a library of list manipulation functions

> isspace c = c = ’ ’

> occurs [] x = False

> occurs (front : rest) front = True

> occurs (front : rest) x = occurs rest x

> replicate n x = take n (repeat x)

note: replicate is the equivalent

of the built-in function ‘‘rep’’

> takeafter f [] = []

> takeafter f (front : rest)

> = rest, if (f front)

> = takeafter f rest, otherwise

etc

The %export directive 247

>|| justify.m (Page 1 of 2)

> %export justify

> %include "listtools.m"

> -justify -compress -justifytext

> -justifyline -splittext -splitline

>

> string == [char]

>

> justify :: num -> string -> string

> justify width text = justifytext width (compress text)

Warning: it is assumed that each word in the text

is not greater than the specified width

Reduce multiple white space to a single space

and delete all leading and trailing white space

> compress :: string -> string

> compress line

> = (notrailing . xcompress . noleading) line

> where

> xcompress [] = []

> xcompress (front : rest)

> = ’ ’ : (xcompress (dropwhile isspace rest)),

> if isspace front

> = front : (xcompress rest), otherwise

> notrailing = reverse . (dropwhile isspace) . reverse

> noleading = dropwhile isspace

Split text and justify a line at a time, it passes

the number of gaps between words and the number of

leftover spaces

> justifytext :: num -> string -> string

> justifytext width text

> = text ++ "\n", if (# text) <= width

> || last line in paragraph

> = (justifyline line gaps leftover)

> ++ (justifytext width restoftext), otherwise

> where

> (line, leftover, restoftext) = splittext width text

> gaps = occurs line ’ ’

248 Programming in the Large

justify.m continued (Page 2)

No extra padding needed if no more words or extra spaces

at least 1 space between words, otherwise

> justifyline :: string -> num -> num -> string

> justifyline line gaps 0 = line ++ "\n"

> justifyline line 0 leftover = line ++ "\n"

> justifyline line gaps leftover

> = word ++ (replicate (extraspaces + 1) ’ ’) ++

> justifyline rest (gaps - 1) (leftover - extraspaces)

> where

> (word, extraspaces, rest)

> = splitline line gaps leftover

Split the text and calculate the number of left over spaces

necessary to pad out line

> splittext :: num -> string -> (string,num,string)

> splittext width text

> = (line, leftover, restoftext)

> where

> revline = reverse (take (width + 1) text)

> leftover = # (takewhile ((~) . isspace) revline)

> line = take (width - leftover) text

> restoftext = drop (width - leftover + 1) text

Split line and calculate extra spaces between words

> splitline :: string -> num -> num -> (string,num,string)

> splitline line gaps leftover

> = (word, extraspaces, restofline)

> where

> word = takewhile ((~) . isspace) line

> restofline = takeafter isspace line

> extraspaces = leftover div gaps,

> if leftover mod gaps = 0

> = (leftover div gaps) + 1, otherwise

The %free directive 249

9.2.3 Constraining include files

In the above program, justify.m dropped definitions from the included listtools.m
file in order to avoid potential name clashes. An alternative approach is to set up
an intermediate “header file” header.m which includes all of listtools.m and only
exports those definitions needed by justify.m. The entire contents of header.m
would be:

%include "listtools.m"

%export takeafter isspace replicate occurs

The directives at the top of justify.m would now read:

%include "header.m"

%export justify

Although this approach is slightly more complex, it has two major benefits:

1. The programmer only needs to know as much about the contents of the
original included file as is required for their own program.

2. If the original included file is later modified to incorporate further definitions
then there is no danger of any name clashes between these additions and the
current program.

9.3 The %free directive

A Miranda script file may contain one %free directive to be used in conjunction
with an %export directive (and an extended %include directive), which gives the
programmer the opportunity to write a “template” containing incomplete defini-
tions to be completed by an including file. This can be thought of as parameterizing
the exporting file.

The general format used within the exporting file is:

%free signature

where signature is a sequence of specifications for identifiers which will be fully
defined within an including file. In other words, these identifiers are “free” or
unbound within the exporting file. For example:2

2Notice that the syntax of the free type declarations is the same as that of placeholder types,

and indeed the two concepts are similar, in that they allow the program designer to defer imple-

mentation decisions. For placeholder types, Miranda expects just one final type definition: for

free types, Miranda will accept different files with different definitions as long as they meet the

free type template.

250 Programming in the Large

|| File: queue.m

%free {
queue * :: type

qmax :: num

}
|| etc

The general format for the including file is:

%include ”filename” bindings

where bindings is a semicolon-delimited sequence of definitions for the free identi-
fiers in the included file. It may contain definitions for the free types using the type
synonym mechanism (==), and definitions for other identifiers, using the token =.

Hence, the above queue.m file, could have a corresponding including file with
directives such as:

|| File: receiver.m

%include "queue.m" {queue * == [num]; qmax = thismax;}

|| etc

thismax = 100

Here the free objects in queue.m are bound by the receiver.m file. In this case,
the free type queue obtains a binding as a number list, and the identifier qmax is
bound to thismax.

The important advantage of a script which has been parameterized by a %free
directive is that different bindings may be given for its free identifiers on different
occasions. Thus a program, using the file another receiver, might need queue to
be a polytype and the value of qmax within queue.m to be the same as the value
of qmax within another receiver:

|| File: another receiver.m

%include "queue.m" {queue * == [*]; qmax = qmax;}

|| etc

qmax = 9000

The benefits of this approach are more fully apparent in Section 9.4, which presents
an expanded version of the grep program, modularized into five files. The use of
the %free directive and its associated %include directive will be seen in the two
files grep.m and main.m. The program is then modified to deal with different meta-
characters but, because of the parameterization, it is only necessary to modify the
main file and the file dealing with these different meta-characters.

Reusable software—grep revisited 251

Rules for %free directives

The following rules hold when using %free directives:

1. All free types and identifiers must be exported; either explicitly in a %export
directive or as the default behaviour of any included file.

2. The identifiers declared within a %free directive may denote types as well as
values. When the file is included by another, bindings must be provided for
all free identifiers. The bindings are given in braces following the pathname
in the %include directive (before the aliases, if any), and each binding must
be terminated by a semicolon.

3. The bindings for a parameterized script’s free identifiers must be explicitly

stated, even if the new name being bound is the same as the name formally
defined to be “free” in the included file, as shown above with qmax. Another
example of this explicit binding is given in Section 9.4.5, where the free type
regexplist in the included file is bound to the type regexplist, which is
in scope in the including file.

4. When a parameterized script exports a locally created type (other than a
synonym type), each instantiation of the script by a %include is deemed to
create a new type. This is relevant when deciding whether two types are the
same for the purpose of re-adopting a type orphan.

9.4 Reusable software—grep revisited

The grep utility presented throughout the text is now extended as a comprehensive
example of program construction using template files. The sublist and lex ac-
tivities are separated and the primary grep function is parameterized on them. In
addition to giving the program greater modularity, it has the advantage of making
the sublist code reusable. It is now possible to change the “lexical analyser” so
that it will recognize different representations of the meta-characters (for example,
to deal with the UNIX Bourne Shell file-generation codes) without changing the
sublist code.

The rest of this section continues the design shown in Chapter 3 to incorporate
the other grep meta-characters. The inclusion of Range meta-characters leads to
a slight revision in the way that regular expressions are represented and how any
particular regular expression element is compared with its corresponding searched
line character. However, the original search strategy remains essentially unaltered.

9.4.1 Program structure

The overall structure of this grep program is that of five interconnected files, as
illustrated in Figure 9.3. These files communicate with each other as follows:

252 Programming in the Large

1. The file types.m exports definitions for common types and exports definitions
for the functions equal and notequal.

2. The file sublist.m exports a definition for the function sublist but keeps the
function startswith private.

3. The file stdlex.m exports a definition for the function lex but keeps many
other functions private.

4. The file grep.m exports the function xgrep, which relies on the definitions of
sublist and lex.

5. The file main.m is used to combine all the other files, to create the function
grep.

Figure 9.3 A large program divided into five files.

9.4.2 Incorporating “End of Line” and “Start of Line”

As shown in Section 3.9.2, the regular expression can be expressed as a list of
pairs; the first component representing the type of match (zero or more, or one

Reusable software—grep revisited 253

only) and the second component the actual value to be matched. This principle
can be extended to cater for the meta-characters to anchor a search to the start of
a line (^) or to the end of a line ($). To anchor a match from the start of the line
means that the sublist function is only applied once (that is, it does not recurse).
Matching the end of the line can only succeed if the searched line is empty when
the end of line meta-character is encountered (as the last element) in the regular
expression list. These considerations give rise to an extended mtype algebraic type,
with SOL for start of line and EOL for end of line:

mtype ::= ZERO MORE | ONCE | SOL | EOL

The existing grep program must be changed in three places:

1. lex: to recognize the new meta-characters.

2. sublist: to anchor the regular expression match to the start of the search
line.

3. startswith: to succeed in a match, if the search line is empty when EOL is
met in the regular expression.

The actual code is presented in Section 9.4.5, after discussion of the other meta-
characters.

9.4.3 Incorporating “Any” and “Range”

The final stage of the initial design is to incorporate the meta-characters for any and
a range of characters. An initial case analysis shows all the possible combinations:3

Number of occurrences Object affected
One Only a given single character
Zero or More a given single character
One Only any single character
Zero or More any single character
One Only any single character from the range [...]
Zero or More any single character from the range [...]
One Only any single character not in the range [...]
Zero or More any single character not in the range [...]

3Notice that “Zero or More of any single character in a range” does not constrain the pattern to

be a number of occurrences of the same character from the range; rather, for each new occurrence,

a different character may be chosen from the range.

254 Programming in the Large

Such an inspection reveals that the matching requirements of the new meta-
characters are in fact quite similar to that of matching a single character.

Ranges

One method of treating a ranged regular expression element is to expand it into a
list of valid characters, then check whether the current line position matches any of
the characters in the list by using the function member (introduced in Chapter 3).
For example the range "[b-e]" can be expanded into the range list "bcde" and
"[a-d 1-3]" can be expanded to "abcd 123".

With this approach, a single actual value has the same representation as a single
item range, for example "a" and "[a]" will both be represented as "a".

Negative ranges

Negative ranged regular expression elements such as "[^a-d]" (which imply that
a single character should be chosen which may be any character except those in
the range) can be treated in one of two ways:

1. A range list could be generated with all the values that are not in [a-d], that
is [’e’,’f’,...], and member can be used as a test for equality.

2. The range list [a-d] could be expanded to "abcd" and the truth value returned
by member subsequently inverted.

Both options are equally valid. The first option probably requires extra initial
work to construct the range list. The latter requires either additional match types
NOT ONCE and NOT ZERO MORE or an additional component to the regular expression
tuple that indicates what to do with the result of member. The design followed here
is the second option (using an additional tuple element) for reasons now discussed.

Any

On inspection it can be seen that the "." meta-character is really a convenient
shorthand for the range "[\0 - \127]", which could be expanded accordingly.
An alternative approach is to consider it in terms of “not matching nothing”, that
is given member returns False for the empty list ([]) then "." really corresponds
to the test ((~) . (member [])).

Reusable software—grep revisited 255

Type requirements

The latter method using member implies that a consistent treatment of all the
wild cards and actual values can be achieved by representing a regular expression
element as the triple (mtype, eqfun, range) with the predefinitions:

mtype ::= ZERO MORE | ONCE | SOL | EOL

range == [char]

eqfun == range -> char -> bool

The equality functional type eqfun will either be equal or notequal, based on a
membership function that maps a range and a char to a Boolean value. If range
is a [char] then the built-in member function will suffice:

equal::eqfun

equal = member

notequal :: eqfun

notequal r = ((~) . (member r))

9.4.4 The program libraries

Figure 9.3 illustrates the division of the grep program into separate files. One of
these files (main.m) combines the other files to form the program; the others are
called “library” files.

The structure presented in Figure 9.3 demonstrates that the overall program need
only export the grep function; this function will take a string (of type [char])
representing the raw regular expression and another string to be searched and
returns a list of strings (of type [[char]]) that have been matched. Hence the file
main.m need only export the following:

%export grep

The file grep.m holds the definitions of xgrep and xgrep pred; only the former is
exported to main.m. The code in grep.m requires definitions for lex and sublist

and for the type regexp; these are defined in other files and must therefore be
declared free in grep.m. Bindings for these names are given in main.m as part of
the %include directive for grep.m.

The file sublist.m exports the function sublist and must include the file types.m,
so that it may know details of the regexplist type, including:

1. The underlying mtype enumeration to enable meta-character pattern match-
ing.

2. The eqfun datatype to deconstruct the embedded membership function.

The file stdlex.m similarly must include types.m and exports the function stdlex.
The implementation of each of the five files is presented in the following section.

256 Programming in the Large

9.4.5 Implementation of the grep program

The grep program consists of four library files and one main file which combines
the exported definitions from the library files and provides appropriate bindings.
The implementation of these files is now presented.

The file types.m

>|| types.m: contains type definitions for grep

> %export regexp regexplist mtype range eqfun equal notequal

A regular expression is held as a list of regexp triples

with an enumeration type for meta-character pattern matching

and range types a list of characters

> regexp == (mtype, eqfun, range)

> regexplist == [regexp]

> mtype ::= ZERO MORE | ONCE | SOL | EOL

> range == [char]

Equality functions are derived from

the built-in member function:

> eqfun ::= Eqfun (range -> char -> bool)

> equal :: eqfun

> equal = Eqfun member

> notequal :: eqfun

> notequal = Eqfun f

> where

> f r = ((~) . (member r))

The file sublist.m

The new versions of startswith and sublist are both held in the file sublist.m.
The actual code is remarkably similar to the previous version (shown in Chapter 3)
because the basic search strategy has not been altered:

Reusable software—grep revisited 257

>|| sublist.m

Contains: definitions for sublist and startswith

> %include "types"

> %export sublist

Sublist determines whether a regular expression occurs

within a given text line. It uses startswith.

> sublist :: regexplist -> [char] -> bool

> sublist ((SOL, x, y) : rest) line

> = (startswith rest line)

> sublist expr line

> = (startswith expr line) \/ xsublist line

> where

> xsublist [] = False

> xsublist (x : lrest)

> = (startswith expr lrest) \/

> (xsublist lrest)

Startswith determines whether a regular expression

occurs at the beginning of a given line of text:

> startswith :: regexplist -> [char] -> bool

> startswith [] line = True

> startswith ((ZERO MORE, x , y) : regrest) []

> = startswith regrest []

> startswith [(EOL, x , y)] line = (line = [])

> startswith rexp [] = False

> startswith ((ZERO MORE,

> (Eqfun ismatch), chrange) : regrest)

> (lfront : lrest)

> = startswith regrest (lfront : lrest) \/

> (ismatch chrange lfront &

> startswith ((ZERO MORE,

> (Eqfun ismatch), chrange) : regrest)

> lrest

>)

> startswith ((x, (Eqfun ismatch), chrange) : regrest)

> (lfront : lrest)

> = ismatch chrange lfront &

> startswith regrest lrest

258 Programming in the Large

The file grep.m

>|| grep.m

Contains: definition for xgrep

> %free { regexplist :: type

> sublist :: regexplist -> [char] -> bool

> lex :: [char] -> regexplist

> }

> %export xgrep

The grep function returns those lines from text

which contain a match for the given regular expression:

> xgrep :: [char] -> [[char]] -> [[char]]

> xgrep x text = filter (sublist (lex x)) text

The file stdlex.m

The code for the extended lexical analyser is a straightforward matter of listing
which patterns have special meanings for grep and converting them to the appropri-
ate format for the matching algorithms to manipulate. In problems of this nature,
the technique of case analysis (discussed in Chapter 3) is of particular importance:

>|| stdlex.m (Page 1 of 3)

Contains: definitions for stdlex, xlex, lexrange & expand

> %include "types.m"

> %export stdlex

This is the "standard" lexical analyser for grep.

The top-level function stdlex first checks

for the start-of-line pattern and then applies xlex:

> stdlex :: [char] -> regexplist

> stdlex (’^’ : rest) = (SOL, equal, []) : xlex rest

> stdlex p = xlex p

Reusable software—grep revisited 259

stdlex.m continued (Page 2 of 3)

xlex does most of the conversion from the meta-patterns

to their underlying representation based on

(mtype, eqfun, range) triples:

> xlex :: [char] -> regexplist

> xlex []

> = []

> xlex (’\\’ : ch : ’*’ : rest)

> = (ZERO MORE, equal, [ch]) : xlex rest

> xlex (’\\’ : ch : rest)

> = (ONCE, equal, [ch]) : xlex rest

> xlex (’\\’ : [])

> = [(ONCE, equal, [’\\’])]

> xlex (’.’ : ’*’ : rest)

> = (ZERO MORE, notequal, []) : xlex rest

>

> xlex (’[’ : ’^’ : rest)

> = rangepart : (xlex exprest)

> where

> (rangepart, exprest)

> = lexrange (notequal, []) rest

>

> xlex (’[’ : rest)

> = rangepart : (xlex exprest)

> where

> (rangepart, exprest)

> = lexrange (equal, []) rest

>

> xlex (’.’ : rest)

> = (ONCE, notequal, []) : xlex rest

> xlex (ch : ’*’ : rest)

> = (ZERO MORE, equal, [ch]) : xlex rest

> xlex (’$’ : [])

> = [(EOL, equal, [])]

> xlex (ch : rest)

> = (ONCE, equal, [ch]) : xlex rest

260 Programming in the Large

stdlex.m continued (Page 3)

lexrange is called by xlex when a range pattern

(in square brackets) must be deciphered.

It evaluates to the underlying representation

for the deciphered range, plus the rest of the input

which is then scanned in a recursive application of xlex:

> lexrange :: (eqfun,range) -> [char] -> (regexp,[char])

>

> lexrange (x,y) []

> = error "lexrange error"

> lexrange (mfunc, chrange) (’\\’ : ch : rest)

> = lexrange (mfunc, ch : chrange) rest

> lexrange (x, []) (’]’ : rest)

> = error "empty range"

> lexrange (mfunc, chrange) (’]’ : ’*’ : rest)

> = ((ZERO MORE, mfunc, chrange), rest)

> lexrange (mfunc, chrange) (’]’ : rest)

> = ((ONCE, mfunc, chrange), rest)

>

> lexrange (mfunc, chrange) (start : ’-’ : stop : rest)

> = error "bad range",

> if (start > stop)

> = lexrange (mfunc,(expand chrange start stop)) rest,

> otherwise

>

> lexrange (mfunc, chrange) (ch : rest)

> = lexrange (mfunc, ch : chrange) rest

expand is used by lexrange in order to create

all the characters in a range:

>expand :: range -> char -> char -> [char]

>

>expand chrange start stop

> = chrange ++ (map decode [(code start)..(code stop)])

Reusable software—grep revisited 261

The file main.m

A usable instance of grep program can now be created by including both the
sublist.m file and the stdlex.m file into an application file called main.m:

>|| main.m

Contains: definition for grep

> %include "types"

> %include "sublist"

> %include "stdlex"

> %include "grep" {regexplist == regexplist;

> lex = stdlex; sublist = sublist;}

> %export grep

> grep :: [char] -> [[char]] -> [[char]]

> grep = xgrep

Notice that the above binding regexplist == regexplist is obligatory. It is not
redundant, nor is it cyclic; the regexplist on the left of the == refers to the current
file and that on the right to the definition within the file that has been included.

The following session illustrates how the grep function might be used (the output
line has been broken for clarity):

Miranda grep "[a-d]c*h" (lines (read "/etc/passwd"))

["bsmith::1033:30::/usr/users/bsmith:/bin/csh"]

9.4.6 Using a different lexical analyser

The UNIX Bourne Shell4 has a number of meta-characters for file name expansion
that are similar but not identical to the grep meta-characters. The following table
can be compared to Table 3.9 for their differences. For example, it can be seen
that the wild card for a single character is different and there is no point in looking
for a file name anchored at the start of a line. Otherwise the ZERO MORE, ONCE and
RANGE requirements are semantically the same, and so the sublist and startswith

functions can work equally well for a program that meets the Bourne Shell parsing
requirements as for the grep requirements.

4This is a job control language which provides an interface between the user and the UNIX

Operating System.

262 Programming in the Large

Table 9.1 Options for the UNIX Bourne shell

Character Meaning

c any non-special character c matches itself
\c turn off any special meaning of character c
? any single character
[...] any one of characters in ...

(e.g. 1-9 covers all ASCII values between 1 and 9)
[!...] any one of characters not in ...

matches any string (including the empty string)

New line is not matched by anything

The above meta-characters can be emulated simply by writing another lexical anal-
yser (called bournelex.m) and changing the %include directive and the bindings
in main.m.

The new file bournelex.m

>|| bournelex.m: (Page 1 of 2)

Contains: bournelex, xlex, lexrange and expand

> %include "types.m"

> %export bournelex

This is the "Bourne" lexical analyser for grep.

It uses a meta-level syntax that is similar to

the filename generation syntax of the UNIX Bourne shell.

The top-level function bournelex just applies xlex

> bournelex :: [char] -> regexplist

> bournelex p = xlex p

The functions xlex and lexrange behave similarly

to their grep equivalents, expand is identical

Reusable software—grep revisited 263

bournelex.m (Page 2)

> xlex :: [char] -> regexplist

> xlex [] = []

> xlex (’\\’ : ch : rest)

> = (ONCE, equal, [ch]) : xlex rest

> xlex (’\\’ : [])

> = [(ONCE, equal, [’\\’])]

> xlex (’*’ : rest)

> = (ZERO MORE, notequal, []) : xlex rest

> xlex (’[’ : ’!’ : rest)

> = rangepart : (xlex exprest)

> where

> (rangepart, exprest) = lexrange (notequal, []) rest

> xlex (’[’ : rest)

> = rangepart : (xlex exprest)

> where

> (rangepart, exprest) = lexrange (equal, []) rest

> xlex (’?’ : rest)

> = (ONCE, notequal, []) : xlex rest

> xlex (ch : rest)

> = (ONCE, equal, [ch]) : xlex rest

> lexrange :: (eqfun,range) -> [char] -> (regexp,[char])

> lexrange (x,y) [] = error "lexrange error"

> lexrange (mfunc, chrange) (’\\’ : ch : rest)

> = lexrange (mfunc, ch : chrange) rest

> lexrange (x, []) (’]’ : rest)

> = error "empty range"

> lexrange (mfunc, chrange) (’]’ : rest)

> = ((ONCE, mfunc, chrange), rest)

> lexrange (mfunc, chrange) (start : ’-’ : stop : rest)

> = error "bad range", if (start > stop)

> = lexrange (mfunc, (expand chrange start stop))

> rest, otherwise

> lexrange (mfunc, chrange) (ch : rest)

> = lexrange (mfunc, ch : chrange) rest

> expand :: range -> char -> char -> [char]

> expand chrange start stop

> = chrange ++ (map decode [(code start)..(code stop)])

264 Programming in the Large

The new file main.m

>|| main.m: Contains definition for grep

> %include "types"

> %include "sublist"

> %include "bournelex"

> %include "grep" {regexplist == regexplist;

> lex = bournelex; sublist = sublist;}

> %export grep

> grep :: [char] -> [[char]] -> [[char]]

> grep = xgrep

The new grep program now interprets the meta-level patterns in a different way:

Miranda grep "[a-d]c*h" (lines (read "/etc/passwd"))

["adm:*:5:3:SGI Accounting Files Owner:/usr/adm:/bin/sh",

"don:1h/87cnH8JbxH:16:10::/usr/users/don:/bin/csh",

"SGIguest::998:998:SGI Guest account:/usr/people/guest:/bin/csh",

"clack:3H/BFyMrLgGxM:1021:500::/usr/users/clack:/bin/csh",

"macstuff:2J%Gh9xHnvBMh:1025:500::/usr/users/macstuff:/bin/csh"]

9.5 Summary

When “programming in the large”, it is normally desirable to break the problem
into manageable sub-problems, which themselves may be split further. This di-
vision should be reflected by encapsulating each sub-solution into its own script
file. The communication between the files can be co-ordinated, using the features
introduced into this chapter:

1. %include—to control the interface between files.
2. %export—to control the visibility of identifiers.
3. %free—to provide program templates.

By adopting this approach, large programs will be easier to code, test and modify,
as shown in the development of the justify and grep programs. Furthermore,
libraries of general purpose software components can be developed separately and
then confidently reused as part of many other programs. This was demonstrated
in the reuse of components from grep program to develop a Bourne shell filename
expansion program.

