
Chapter 6

User-defined Types

Chapter 1 introduced the idea of categorizing program data into various types
and the importance of a strong type system has been emphasized throughout this
book. However, the available built-in types are somewhat limited, in that they
do not always directly model the complex relationships inherent in “real-world”
data. This chapter presents a mechanism by which a programmer can create new
types. This allows the creation of data structures which are better able to model
“real-world” relationships and it encourages the use of the type system to provide
built-in validation of data.

6.1 The need for new types

A type may be defined with precision by listing the collection of values which
belong to the type (that is, the values which exist in the type domain). For
example, the type bool is precisely defined by listing the two values in its domain:
True and False.1 This section discusses the need for new types through several
abstract examples, concentrating on the collection of values which define a type.
This approach is utilized in Section 6.2, where Miranda’s actual mechanism for
creating new types will be presented.

New types

Miranda provides a small number of useful built-in types. However, the choice of
built-in types is a matter for the language designer and it is likely that some other
useful types have not been provided. For example, other programming languages do
not have a built-in Boolean type. If the type bool did not already exist in Miranda,
it could be created by specifying the permitted values as { True or False }.

1As explained in Chapter 1, we shall ignore the undefined, or error, value in the type domain.
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If the type num did not already exist, an attempt could be made to create it in
a similar way: { 1 or 2 or 3 or 4 or 5 or ... }. However, this type presents some
difficulty because of the very large number of alternative values (in practice limited
by the computer architecture). The solution to the problem of a large number of
values is to describe the values recursively, as will be seen later in this chapter
(Section 6.4).

Special versions of types

Although the type bool is a built-in type for Miranda, it is possible that a pro-
grammer might wish to create several special versions of the type and make use
of the fact that the type system will ensure that they are used consistently in the
program and will not be mixed. For example, { Windows true or Windows false }
could be used to indicate whether the program is connected to a display which
supports a windowing environment, whilst { Multi user true or Multi user false }
could be used to indicate whether the program is available to a single user or to
many users.

This facility for specialization is not limited to Boolean values. For instance,
dice-playing games require special meaning to be given to the numbers from one to
six, so { Dice one or Dice two or Dice three or Dice four or Dice five or Dice six }
could be used to indicate the full range of values for a new type called dice.

By using these new types, not only can a program be made more readable but
there is the considerable advantage that the type system can be used to provide
built-in validation (so that Windows true and True can never be confused).

Structured types and constructors

In the pursuit of well-structured data, it is desirable to be able to specify new types
in terms of previously defined types. In particular, it should be possible to build
upon existing types (including previously specified user-defined types) in order to
produce a new type which is able to represent the structured data which occurs in
many applications.

A convenient mechanism to achieve this aim is to allow each value of a user-
defined type possibly to be followed by a type name to indicate a further sub-level
of values. This leads to a hierarchical specification of the values which are valid
for a given type. For example, it is possible to define a single type which contains
information about whether multiple simultaneous users are allowed, with each of
the two values having a further underlying value to indicate whether a windowing
system is being used: { Multi user bool or Single user bool }. In this example, the
domain for the new type is fully defined by the values Multi user False, Multi user
True, Single user False and Single user True. However, the underlying types need
not have finite domains, as shown by the following example: { Discrete num or
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Continuous [num] }.

In the above example, the constant values Discrete and Continuous provide a
unique way to determine the structure of a particular value in the domain of this
type; for this reason they are often referred to as constructors. Notice that there
need not be any underlying type to be “constructed”; True and False are both
simple data values and are also known as constructors. Furthermore, the differ-
ent constructors for a type can have mixed structure—some may have a complex
underlying type, whereas others may have no underlying type at all.

Mixed types

A programmer might wish to create a new type, whose values could be drawn from
any one of a mixture of built-in types. For example, a company might describe a
customer using a string (that is, type [char]) if the customer is an individual, by
a num or [num] if the customer is an internal department or group of departments,
or by a ([char],num) or ([char],[num]) pair if the customer is a department or
group of departments of an external company. In this example, the programmer
may wish to encapsulate these options into a new type with the alternatives: { In-
dividual [char] or Department num or Group [num] or Ext dept ([char],[num]) or
Ext group ([char], [num]) }. Examples of values of this new type are Individual
”Winston”, Department 45 and Group [1,3,67]; thus the domain for this new type
contains all the values of the [char] domain together with all the values of the num
domain together with all the values of the [num] domain and so on.

Towards type abstraction

A programmer might wish to specify which values of an existing type are legal
for a particular task; for example a twenty-four hour clock type should only allow
numbers in the range 0 to 23. If the number of alternative values is small then
a new type can be generated such as { Clock zero or Clock one or Clock two or
Clock three or ... or Clock twenty three }.

An alternative would be to create a new type which uses all the values of an
underlying type (such as num). However, in this case it would be necessary to
define a set of operations for the new type, so that values outside of the range 0 to
24 are considered illegal and so that inappropriate operations (such as multiplying
together values which represent the hours of the day) are not allowed. Chapter 7
will present the abstract type mechanism which allows a programmer to package
a new type, together with the operations which are appropriate for that type.

The next section will present the full Miranda syntax for creating new types,
which is based on a general mechanism for describing and creating types by means
of defining the permitted values of the type.
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6.2 Algebraic types

In Miranda, a user-defined type is known as an algebraic type and is created by
a general-purpose mechanism based on the idea of constructors, which were first
discussed in Section 3.2.1. The fundamental principle is that each permitted value
of an algebraic type is distinguished from permitted values of other types by means
of a special tag, known as a constructor. This gives a unique and unambiguous

representation for every value of an algebraic type, in exactly the same way that
the built-in constructors : and [] give a unique and unambiguous representation of
any list. A general template for an algebraic type definition is:

new type name ::= Value1
| Value2
...
| ValueN

A new type must have at least one value; alternatives2 are denoted by the vertical
bar | and each value may either be nullary or may be constructed from an under-
lying type. A nullary value is a constant value, such as True or False, and is also
known as a nullary constructor (sometimes known as a “constant constructor” for
self-evident reasons). A value therefore has one of two formats:

Nullary constructor name

or

Constructor name underlying type

The underlying type may be simple or aggregate, built-in or another algebraic type
previously defined in the program.

Algebraic types are characterized by two important features:

1. They are not type synonyms. A type synonym is merely a shorthand denota-
tion for an already existing type, whereas an algebraic type is a totally new
type; a type synonym may be mixed with its actual type, whereas algebraic
types may not be mixed with other types. Thus, in the definition:

positive ::= Positive num

the new type name is positive and the constructor name is Positive. The
value (Positive 3) may not be substituted for the value 3 because they are
of different types.

2. The existing properties of any underlying types are not inherited; equality
and inequality are the only operations which may be legal upon two instances
of an algebraic type. For example, although the operator & is defined for the
built-in type bool, it is not defined for the type windows ::= Windows bool

2Note that alignment of alternatives follows the offside rule detailed in Chapter 2.
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and therefore the expression (Windows False) & (Windows True) is mean-
ingless.
Equality and relational tests provide an arbitrary but reproducible ordering.
Because the order is not defined, this behaviour should not be relied upon
in programs. However, Miranda defines equality to be True if both the
constructor names are equal (and any existing underlying values are also
equal). Hence, the expression Constructor1 < Constructor2 will return
True if Constructor1 comes before Constructor2 in the original definition
of the algebraic type, or if they are the same constructor and their underlying
values return True when tested by (<).

Further examples:

switch ::= On | Off

colour ::= Rgb (num,num,num) || Red, Green, Blue

| Hsl (num,num,num) || Hue, Saturation, Luminance

radius ::= Radius num

sphere ::= Sphere radius colour

customer ::= Individual [char]

| Department num

| Group [num]

| Company ([char],num)

The rest of this section discusses the various kinds of algebraic types that can be
defined, including algebraic types with just one constructor and one underlying
type, algebraic types with many constructors with different underlying types, and
algebraic types which do not have an underlying type.

6.2.1 Simple algebraic type definition and usage

Algebraic type definition

A simple example of algebraic type definition is:

coords ::= Coords (num,num,num)

This definition serves two related purposes:

1. To create new algebraic type named coords.

2. To create a new prefix constructor Coords



Algebraic types 169

This new constructor takes a number triple and converts it to the new algebraic
type; as such, a constructor might be considered as a special form of function
without a function body, as can be seen from Miranda’s responses:

Miranda Coords

<function>

Miranda Coords ::

(num,num,num) -> coords

However, there are certain differences between constructors and functions. The
differences between functions and constructors are explored in more depth in Sec-
tion 6.3.

Algebraic type naming

Algebraic type names must be legal identifiers and conform to the rules for Mi-
randa identifiers described in Chapter 1. Constructors must also be legal Miranda
identifiers: except their initial character must be an Upper case character. There
are no further restrictions and constructor names may look just like any other
identifier.

For example, legal Miranda identifiers cannot start with a digit. Thus, in par-
ticular, it is not possible to model the integers with the definition:

wrong dice ::= 1 | 2 | 3 | 4 | 5 | 6

It is equally wrong to use characters or strings as constructors, since a character
or string is not a legal Miranda identifier:

wrong dice ::= "One" | "Two" | "Three"

| "Four" | "Five" | "Six"

A legal definition would be:

legal dice ::= One | Two | Three

| Four | Five | Six

As with value identifiers and function identifiers, it is not possible to reuse a con-
structor name within a program.

Algebraic type instantiation

New instances of coords may be created by supplying the Coords constructor with
its expected argument:
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point origin = Coords (0.0, 0.0, 0.0)

point max = Coords (1000.0, 1000.0, 1000.0)

The Coords constructor is used in the same manner as the built-in list constructor :.
This is illustrated by comparing its use with that of the prefix version of the latter:

Miranda (:) 1 [2,3]

[1,2,3]

Miranda Coords (3.0, 4.0, 5.0)

Coords (3.0,4.0,5.0)

Algebraic type usage

Using algebraic types in functions is just as easy as using existing types and con-
structors. If there is a requirement to write a function to find the midpoint of two
coords then they may be deconstructed to their underlying type using pattern
matching:

midpoint :: coords -> coords -> coords

midpoint (Coords (x1,y1,z1)) (Coords (x2,y2,z2))

= Coords ((x1 + x2)/2, (y1 + y2)/2, (z1 + z2)/2)

In the application of the function midpoint to the two parameters point origin

and point max:

Miranda midpoint point_origin point_max

Coords (500.0,500.0,500.0)

the formal parameters Coords (x1,y1,z1) and Coords (x2,y2,z2) will be sub-
stituted with the actual values: Coords (0.0, 0.0, 0.0) and Coords (1000.0,

1000.0, 1000.0), respectively, and so will be successfully matched.
It can be seen that constructors are used in function patterns in order to decon-

struct an algebraic type and that they are used in function bodies to construct a
value of an algebraic type. Thus, for deconstruction purposes there is no practical
difference between the extraction of the head of a list front from the constructed
list (front : rest) and the extraction of the numbers x1, y1 and z1 from the
constructed Coords (x1,y1,z1). Similarly, for construction purposes there is no
practical difference between the creation of a new list (front : rest) from the
item front and the list rest and the creation of a new coords instance by means
of the application Coords (x1,y1,z1).

Note that, just as with patterns involving the list constructor :, it is necessary
to bracket the Coords constructor with its argument otherwise a syntax error
will occur. This is because a constructor pattern must always be complete (see
Section 6.3.1).
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Exercise 6.1

Write a function to calculate the distance between a pair of coords.

Algebraic types are strongly typed

It must be emphasized that using the keyword ::= creates a new type which
conforms to the Miranda strong typing philosophy. This has the considerable
advantage that the system will perform data validation and automatically catch
any accidental attempts to use an algebraic type in an illegal manner. In the above
example, it is assumed that the programmer wishes to express the relationship
between three numbers as a new type and does not wish to mix a number triple
with a value drawn from this type. Hence, a value that has been defined as a
number triple cannot be legally tested against an instance of a coords for equality:

Miranda point origin = (0.0, 0.0, 0.0)

type error in expression

cannot unify coords with (num,num,num)

In a similar manner, any function defined over a tuple of type (num,num,num)

(even if given a name using the == type synonym mechanism) cannot be applied
to coords arguments.

6.2.2 Algebraic types with multiple constructors

An algebraic type may also have more than one constructor. This is shown in the
following two examples, the first of which shows an algebraic type with more than
one constructor over the same underlying type; the second shows the benefit of
having constructors with different underlying types.

Multiple constructors over the same type

A new type fluid is now defined to express the fact that fluid measurements are dif-
ferent in different countries. The subsequent definition of the function addFluids is
designed to eliminate the possibility of a programmer attempting to mix operations
on fluid measures of differing kinds:
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fluid ::= USgallons num

| UKgallons num

| Litres num

addFluids :: fluid -> fluid -> fluid

addFluids (USgallons x) (USgallons y)

= USgallons (x + y)

addFluids (UKgallons x) (UKgallons y)

= UKgallons (x + y)

addFluids (Litres x) (Litres y)

= Litres (x + y)

addFluids x y

= error "addFluids: illegal constructor"

It is now guaranteed that inappropriate operations such as adding amounts of
different measurements or attempting to multiply two fluid measurements are not
performed accidentally. Thus, the following applications will fail:

Miranda addFluids (USgallons 3.0) (Litres 54.0)

program error: addFluids: illegal constructor

Miranda (USgallons 3.0) * (USgallons 54.0)

type error in expression

cannot unify fluid with num

Miranda (USgallons 3.0) * (Litres 54.0)

type error in expression

cannot unify fluid with num

The last two applications fail because the standard arithmetic and relational oper-
ators are not overloaded for algebraic types. Once again, programmers are obliged
to think carefully about their intentions and are helped to avoid mistakes by the
type checker.

Multiple constructors over different types

It is also possible to have an algebraic type with different underlying types, as is
now demonstrated with the following declaration, where an identification code can
be either a number or a string:

idcode ::= Ncode num | Scode [char]

It is now necessary to define a new function to allow comparison between the two
types of idcodes:
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idless :: idcode -> idcode -> bool

idless (Ncode x) (Ncode y) = x < y

idless (Scode x) (Scode y) = x < y

idless (Ncode x) (Scode y)

= (int to string x) < y

idless (Scode x) (Ncode y)

= x < (int to string y)

|| where int to string is as defined in Section 2.10

This new comparison function can now be used as any other function, for instance
to construct a new sorting function, shown in Section 4.4.1:

idsort :: [idcode] -> [idcode]

idsort = foldr (insert idless) []

Of course, it is still necessary to state explicitly the intended constructor for each
new idcode and Miranda will always respond by echoing the constructor as well
as the actual values:

Miranda idsort [Ncode 30, Scode "12", Ncode 1, Scode "10"]

[Ncode 1, Scode "10", Scode "12", Ncode 30]

6.2.3 Underlying types for algebraic types

There is no restriction on the underlying types for constructors; they can be simple
types, aggregate types, polymorphic types, functions or previously user-defined
types. This section shows some of these possibilities.

Polymorphic algebraic types

The algebraic type facility parallels the == facility in that it is also legal (and often
very useful) to have polymorphic algebraic types. For example:

samepair * ::= SamePair (*,*)

pair to list :: samepair * -> [*]

pair to list (SamePair (a,b)) = [a,b]

As with type synonyms, it is necessary to follow the algebraic type name with a
declaration of the names of the polytypes involved in the right-hand side of the
definition. If there are many different polymorphic types then the algebraic type
name must be followed by all of the relevant polytypes:
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mixedpair * ** ::= MixedPair (*,**)

mixedfst :: mixedpair * ** -> *

mixedfst (MixedPair (a,b)) = a

New algebraic types from old

So far, all the examples of constructors have had built-in underlying types; how-
ever, it is often useful to build upon user-defined algebraic types to create more
complex types that better represent the real-world data. The following example
uses the algebraic type coords to create a new, curried, algebraic type line which
represents a straight line in three-dimensional space:

line ::= Line (coords) (coords)

The following example using line shows both:

1. A name definition using the constructor coords inside the constructor Line.

2. A function definition line midpoint, where the function pattern only needs
to deconstruct the outer layer and therefore only uses the constructor Line:

line ::= Line coords coords

aline = Line (Coords(0,0,0)) (Coords (10.0,10.0,10.0))

midpoint :: coords -> coords -> coords

midpoint (Coords (x1,y1,z1)) (Coords (x2,y2,z2))

= Coords ((x1 + x2)/2, (y1 + y2)/2, (z1 + z2)/2)

line midpoint :: line -> coords

line midpoint (Line x y) = midpoint x y

Functional algebraic types

Just as functions have been considered as values that may appear as the compo-
nents of lists or tuples, it is possible for them to provide the underlying type for
algebraic types, which is often useful when trying to model a dynamic relation-
ship between objects. This is demonstrated in the following example, where a new
type is created to hold both a list of components, together with a function which
operates on their price to cater for accounting details such as calculating profit
margins:
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component == (num,[char],num)

complist == [component]

|| the type synonym component represents a list of

|| key, description and price

|| sample component list

net stock list

= [(1,"yoghurt",0.84), (2,"peas",1.3),

(3,"icecream", 2.5)]

stock ::= Stock complist (complist -> complist)

|| a stock item represents a component list

|| together with a function to change the value

|| of each item in the list

New instances of stock can be created as follows:

gross stock list = Stock net stock list addTAX

where addTAX is defined, for example, in terms of the general-purpose function
adjust:

adjust :: num -> complist -> complist

adjust factor cl = [(key,description,newprice)

| (key,description,price) <- cl

; newprice <- [price * factor]]

addTAX = adjust 1.175

The following function will now generate the information details of a particular
stock instance:

stockdetails :: stock -> complist

stockdetails (Stock slist acc fn) = acc fn slist

The advantage of this approach is that each instance of a stock can have a different
accounting function, as long as it is of the correct type. Thus, it is possible to
associate different taxation ratings or retail prices to a particular list of components.
For example:

taxrate = stockdetails gross stock list

6.2.4 Enumerated algebraic types

The keyword ::= can also be used to create enumerated (or extensional) types,
which provide a set of names representing the full range of values for the type.3 This

3This is very similar to enumeration in imperative programming languages.
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facility has already been seen with the built-in names True and False which are
the only values for the bool type. In fact, they are instances of nullary construc-
tors; that is, constructors which have no parameters. By contrast, constructors
which take a single or tuple argument are known as unary constructors. Simi-
larly, Miranda allows constructors to have a higher arity with two or more curried
arguments.

Enumerated algebraic type definition

The following example introduces an algebraic type representing the possible states
of a set of traffic lights. In the UK a set of traffic lights has three colours (red,
amber and green) and cycles between four states; the two primary states green
(go) and red (stop), plus two intermediate states amber and (red + amber).4 The
sequence of states is green, amber, red, (red + amber).

traffic light ::= Green | Amber

| Red | Red amber

Green, Amber, Red and Red amber are actually constructors for traffic light;
though in this new sort of construction the constructors construct nothing but
themselves!

Enumerated algebraic type usage

The following session shows that enumerated algebraic types may be used in the
same manner as any other type:

next state :: traffic light -> traffic light

next state Green = Amber

next state Amber = Red

next state Red = Red amber

next state Red amber = Green

Miranda map next_state [Green, Amber, Red, Red_amber]

[Amber,Red,Red_amber,Green]

It must also be noted that pattern matching on enumerated algebraic types follows
the same rules as for all other types, in that every possible enumeration should be
matched. For example, the following definition of traffic light does not match
the constructor Red:

4The combination of two colours for one of the intermediate states makes it possible to predict
the next state in the sequence without the expense of adding a fourth coloured light. Although
four states could be represented by only two coloured lights, there would be an ambiguity between
one of the states and a power failure!
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prior state :: traffic light -> traffic light

prior state Green = Red amber

prior state Amber = Green

prior state Red amber = Red

This will compile successfully but generate a run-time error if applied to Red:

program error: missing case in definition of prior_state

Exercise 6.2

Given the algebraic type

action ::= Stop | No change | Start

| Slow down | Prepare to start

write a function to take the appropriate action at each possible change in state for
traffic light.
Exercise 6.3

A Bochvar three-state logic has constants to indicate whether an expression is true,
false or meaningless. Provide an algebraic type definition for this logic together with
functions to perform the equivalent three-state versions of &, \/ and logical implication.
Note that if any part of an expression is meaningless then the entire expression should
be considered meaningless.

Grep revisited

Enumeration can be used to improve the grep program by representing the "ONCE"
and "ZERO MORE" match types as follows:

mtype ::= ZERO MORE | ONCE

This is a more elegant solution than using strings to represent the match types. It
is also safer and guarantees consistency across functions because Miranda will only
allow pattern matching with the two constructors. Otherwise, using the approach
shown in Chapter 3, it would be possible accidentally to enter a meaningless string,
such as "ZER0 MORE" (where the digit 0 is mistakenly used instead of the character
O) in one of the function patterns for startswith. This is a legal string—but it will
never be matched. Enumeration ensures that only legal options are considered.

6.3 Constructors and functions

This section summarizes how constructors differ from functions in their use in
function patterns and how they are similar for other purposes. Finally, there is
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a discussion of the consequences of having too many constructors in an algebraic
type.

6.3.1 Pattern matching with constructors

There are three kinds of object that can appear in a valid pattern:

1. Constants, such as numbers and strings.

2. Constructors, either nullary or of any arity. However, a constructor pattern
must be complete; that is, a non-nullary constructor pattern must contain a
valid pattern for its parameter(s).

3. Formal parameter names, which cannot be constants or constructors

It must be emphasized that although the application of a constructor to its argu-
ment may appear as a pattern, the application of a function is not a legal pattern.

The above constraints mean that the following two definitions are incorrect; the
first because Measure1 is not defined as a constructor; the second because Litres

does not have its parameter:

wrong litre convert (Measure1 x)

= Litres (x * 3.7852), if Measure1 = USgallons

...., otherwise

wrong general convert (USgallons x, Litres)

= Litres (x * 3.78532)

....

6.3.2 Constructors as functions

Constructors are similar to functions in that:

1. They translate values from one type to another.

2. Equality is only defined upon an algebraic type value. This means that two
nullary constructors can be compared because they each represent a legal
value of the type, but two non-nullary constructors cannot be compared
because they do not represent any value until they are given the value of
their underlying type. Thus True = Meaningless is a legal comparison, but
USgallons = UKgallons is illegal. Comparisons of the form USgallons x

= UKgallons y are legitimate, but will only return True if both constructors
are the same and both underlying values are the same.

3. The constructor name can be composed or passed as a parameter to other
functions, for instance:
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Miranda map Litres [1.0,2.0,3.0]

[Litres 1.0, Litres 2.0, Litres 3.0]

If a constructor takes two or more underlying parameters then it may be
partially applied in just the same way as a curried function may be partially
applied. A partially applied constructor has function type, emphasizing the
role of the constructor in converting from one type to another (just as a
function translates values of one type to values of another type):

Miranda map Sphere [Radius 1, Radius 2, Radius 3]

[<function>,<function>,<function>]

Miranda hd (map Sphere [Radius 1, Radius 2]) (Rgb (3,2,3))

Sphere (Radius 1) (Rgb (3,2,3))

Constructors differ from functions in that they have a sense of order. Though
intrinsically meaningless, it is possible to evaluate expressions such as:

Green < Red

The ordering is left to right from the point of definition. However, because it is not
sensible to treat constructor names as representing some underlying ordinal type,
it is not recommended to rely on this language feature.

6.3.3 The dangers of too many constructors

There is sometimes a temptation when programming with algebraic types to define
a new type which represents too many things; that is, it has too many constructors.
Consider the problem of providing a mechanism for the fluid algebraic types to
enable values of any one of the three constructors to be converted to values of
any one of the other constructors. The sledgehammer approach is to define a
function for each conversion, giving rise to six functions: UStoUK, UStoLitre,
UKtoUS, etc. The more elegant approach is to provide one general-purpose function;
now the problem is how best to parameterize the conversion function to indicate
the target constructor. One tempting approach has already been discounted—that
of wrong general convert, shown in Section 6.3.1:

wrong general convert (USgallons x, Litres)

= Litres (x * 3.78532)

...

The approach was correct in attempting to represent the target as a constructor
name, but was syntactically illegal because constructor patterns must be com-
plete. A variation on this approach is to represent the target constructor as an
enumeration, as is now shown:
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fluid ::= USgallons num

| UKgallons num

| Litres num

| Fluid USGALLONS

| Fluid UKGALLONS

| Fluid LITRES

convert :: fluid -> fluid -> fluid

convert (USgallons x) Fluid UKGALLONS

= UKgallons (x * 0.8327)

convert (USgallons x) Fluid LITRES

= Litres (x * 3.78532)

...

This solves the problem, but is rather unwieldy. What has happened is that the
pattern matching requirements having been extended from three constructors to
six for every function. Yet for this function not every permutation is necessary,
and for many other functions the enumerations are not at all necessary. In brief,
fluid has been “semantically overloaded”.5

In the above example, it is probably more natural to have types that are less
tightly linked, with some appropriate comment:

fluid ::= Fluid (fluid name, num)

|| requires the definition of fluid name

fluid name ::= Fluid USGALLONS

| Fluid UKGALLONS

| Fluid LITRES

6.4 Recursive algebraic types

This section extends the principle of creating algebraic types that are closer models
of the real world, to show how recursive algebraic types may be defined. Recur-
sive types provide a mechanism to define new types with very many (potentially
infinitely many) values. The first example shows how the built-in aggregate list

type could be implemented; the second example shows the tree type, which is a
more complex data structure.

6.4.1 Simple recursive algebraic types

The built-in list type has already been semi-formally specified in Section 3.1 as:

5Having too many constructors often interacts badly with an inductive style of program de-
velopment, because of the cumbersome number of base cases to consider.
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1. empty

2. or an element of a given type together with a list of that given type.

This type is defined recursively and there is no restriction on the number of items
in a list (other than the amount of memory available in the computer). The spec-
ification meets the structural induction requirements of having a terminating case
(the empty list) and a general case (the non-empty list). The built-in constructor
for the empty list is [] and the built-in constructor for the non-empty list is :
which, considered as a prefix operator, takes an item and a list, and constructs a
new list from it.

This built-in recursive type may be denoted using the general mechanism de-
scribed for algebraic type definition; all that is required is to use the name of the
new type being defined as the underlying type for one of the constructors. Thus, in
order to provide a user-defined type called list which mimics the built-in polymor-
phic [*] type, all that is necessary is to translate the above specification directly
into the following Miranda definition:

list * ::= Nil | Cons * (list *)

Instances of lists constructed in this manner are displayed,6 with their construction
made explicit:

alist = Nil

blist = Cons 1 alist

clist = Cons 2 blist

Miranda blist ::

list num

Miranda clist

Cons 2 (Cons 1 Nil)

6.4.2 Tree recursive algebraic types

A more general data structure that is not a Miranda built-in type is the tree. Of
the numerous variations on the tree concept, the following informal specification
introduces one of the definitions of a binary tree (Standish, 1980).

6Note that it is not possible to simulate Miranda’s alternative square bracket notation. How-
ever, for all other purposes Miranda lists and user-defined lists are exactly the same.
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A binary tree is either:

1. empty
2. or a node which contains a value, together with a left and a right binary

subtree.

This definition differs from the list, which is essentially a linear structure where
each element may follow the next in only one way. With a binary tree, there are two
branches at each node and therefore a choice has to be made at each node which
branch to follow. The consequence is that tree creation, traversal and manipulation
are more complex than their equivalent list operations.

The main advantage of the binary tree structure is for searching; the average
number of inspections to extract a given element from a linear list is half the
length of the list. However, the average number of inspections to find a member of
a averagely balanced sorted binary tree is significantly less,7 as can be seen from
Figure 6.1. The worst case involves four comparisons (that is, half the number of
items in the tree) and the average number of comparisons is three.

Figure 6.1 A sample tree.

Tree definition

The following translates the informal specification of a tree directly into a Miranda
definition of a polymorphic tree, the ordering of which has not yet been determined:

tree * ::= Tnil | Tree (tree *, *, tree *)

7For a fully balanced tree (that is, where the items are equally divided between subtrees of
the same length) it is actually log2N where N is the number of items in the tree.
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There are a number of possibilities as to how this kind of tree can be organized;
the most common organization is a sorted tree. The tree presented in Figure 6.1
meets the recursive specification that all the elements of a node’s left subtree have
a value that is less than the node value itself. Similarly all the elements of a node’s
right subtree must have a value that is not less than the node’s value. The base
case of such a tree is the empty tree Tnil which is defined to be sorted.

Growing a tree

The process of making a new (sorted) tree is very similar to making a sorted
list using insertion sort, first described in Section 3.7.3. There, starting from an
empty (sorted) list, elements are inserted one at a time to create an increasingly
larger sorted list. Hence, to create a sorted tree, it is first necessary to create an
empty (sorted) tree and then provide a function that takes any already sorted tree
together with a new item, and returns a new sorted tree.8

The only real difference between tree insertion sort and list insertion sort is that
the structure of a tree does not require that the existing tree is reordered when a
new element is added. All that is necessary is to traverse the tree (according to
its ordering specification) until an appropriate empty subtree is encountered and
then add the new element. Naturally, for a polymorphic tree, it is also necessary
to provide an ordering function as a parameter (as with isort, in Section 4.4.1).

The following two definitions show how an empty tree may be defined and how
an item may be inserted into an already sorted tree. Note that the insertleaf

function is drawn directly from the definition of the tree. It has the terminating
condition of an empty tree and the choice at each non-empty tree as to whether to
inspect the left or right subtree. To make this choice requires that tree be decon-
structed to obtain the node value. Afterwards a new tree must be reconstructed
using the item, the node and the rest of the tree.

ordering * == (* -> * -> bool)

insertleaf :: ordering * -> tree * -> * -> tree *

insertleaf order Tnil item

= Tree (Tnil, item, Tnil)

insertleaf order (Tree (ltree, node, rtree)) item

= Tree (put ltree item, node, rtree),

if order item node

= Tree (ltree, node, put rtree item), otherwise

where put = insertleaf order

8It should, of course, be stressed that tree insertion is a figurative term; the original tree is
not actually altered, but a fresh copy is generated for each additional element.
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From list to tree

Just as with the function isort in Chapter 4, it is possible to make use of a higher
order function to grow a tree from a list without explicit recursion:

list to tree :: ordering * -> [*] -> tree *

list to tree order itemlist

= foldl (insertleaf order) Tnil itemlist

Or, more concisely:

list to tree :: ordering * -> [*] -> tree *

list to tree order

= foldl (insertleaf order) Tnil

From tree to list

The complementary function tree to list also follows directly from the tree

definition. In effect, the constructor Tree has been replaced by the function
tree to list and the tuple notation has been replaced by the append operator ++:

tree to list :: tree * -> [*]

tree to list Tnil = []

tree to list (Tree (ltree, node, rtree))

= tree to list ltree ++ [node] ++ tree to list rtree

Because the tree’s branching nature has been eliminated, this function is often
known as flatten.

Exercise 6.4

Explain why it is not sensible to attempt to mirror the tree data structure using nested
lists.
Exercise 6.5

A number of useful tree manipulation functions follow naturally from the specification
of a binary tree. Write functions to parallel the list manipulation functions map and #

(in terms of the number of nodes in the tree).
Exercise 6.6

What would have been the consequence of writing the function list to tree as:

list_to_tree order

= reduce (insertleaf order) Tnil

Exercise 6.7

Write a function to remove an element from a sorted tree and return a tree that is still

sorted.
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6.5 Placeholder types

This section introduces placeholder types, which are used to allow programmers to
defer decisions concerning the type a function or set of functions should have. This
may be useful, in that, at different stages in program development, the programmer
deals with different problems or different levels of abstraction. Thus, at one stage,
the programmer may be concerned with process design rather than data structure
design.

For example, early in the design process, it may be decided that a function needs
to process data of a given type, perhaps returning a count of the number of items
in a aggregate type. At this level of abstraction it is more important that the type
is aggregate than its actual representation, which could be a string, a user-defined
set, ordered tree or whatever. The choice of aggregate type can better be made
after more detailed consideration of the rest of the program.

As a temporary measure, the designer could select any arbitrary type that does
not give an error, but then they will have to remember to change the type if
the detailed specification requires it. Alternatively, the designer could choose a
polymorphic representation, but this may also prove to be inappropriate or to be
too general for the eventual specification. In this case, it is better to defer the
decision by declaring a new type, using a placeholder and to define the type later
(either by reusing an existing type or using constructors to create an entirely new
type). Placeholder types are similar to type synonyms, except that :

1. The symbol :: is used rather than ==.
2. The actual type representation has not yet been decided and instead the

word type is used.

The above situation can now be represented using placeholders:

items :: type

number of items :: items -> num

main function:: items -> num

main function x = (number of items x) + 5

This code can now be processed by Miranda to check for type consistency. If all is
well, Miranda will report that functions such as number of items are SPECIFIED

BUT NOT DEFINED but there will be no actual type errors.
Notice that, unlike a type synonym, Miranda treats items as a new type:

Miranda number_of_items ::

items->num

At a later stage in the program development, the actual type will be determined
and the code completed:
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items == [char]

number of items :: items -> num

number of items x = # x

main function :: items -> num

main function x = (number of items x) + 5

Miranda has now been given a type synonym; hence the actual type of the function
which accesses the data becomes clear:

Miranda number_of_items ::

[char]->num

Placeholder types are not particularly useful for small programs, but can be useful
to check the type consistency within larger programs—without the need to make
a full implementation decision.

6.6 Summary

The strong type system, as presented in Chapter 1, provides a means for enforcing
correct usage of Miranda’s base, aggregate and function types. The strengths of
such a type system are that it promotes good programming style and detects many
errors early in the software design cycle. The weakness of such a simple type system
is that it imposes strict limitations on what may be expressed.

The first important step towards providing more expressive power was the abil-
ity to define functions with polymorphic types, discussed in Chapter 2. In this
chapter, the type system was further expanded, using algebraic types, so that the
programmer is no longer restricted to the basic Miranda types, but may build new
types from the old ones and may expect the type system to apply the same rigour
to the new types as to the old.

Finally, this chapter introduced placeholder types, which let the programmer
defer the choice of a function’s type whilst the program is still in the design stage.


