

Computational Photography and Capture

Gabriel Brostow & Tim Weyrich TA: Frederic Besse

Today's schedule

- Introduction to *Computational Photography*
- Course facts
- Syllabus
- Capture + More Examples

What is computational photography

- Convergence of image processing, vision, graphics, learning, and photography
- Digital photography:
 - Simply replaces traditional sensors and recording by digital technology
 - Involves only simple image processing
- Computational photography
 - More elaborate image manipulation, more computation, interaction
 - New types of media (panorama, 3D, etc.)
 - Camera designs that take computation into account

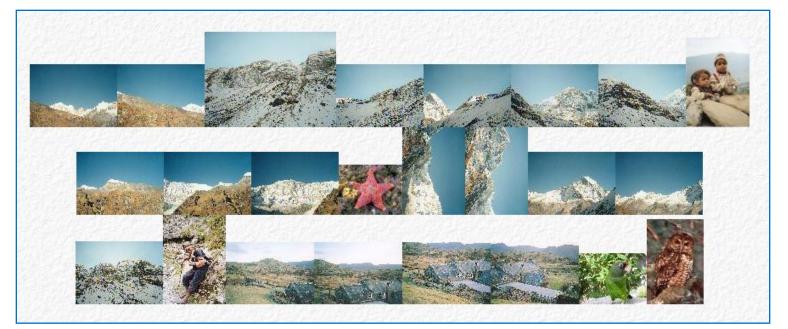
(many slides inspired/borrowed from similar classes elsewhere)

Tone mapping

Durand and Dorsey. Siggraph'02

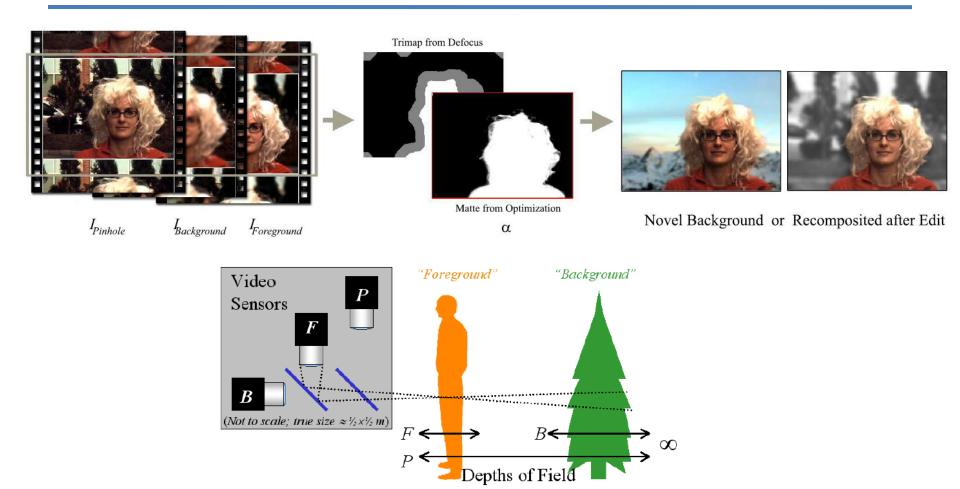
Flash/No-Flash

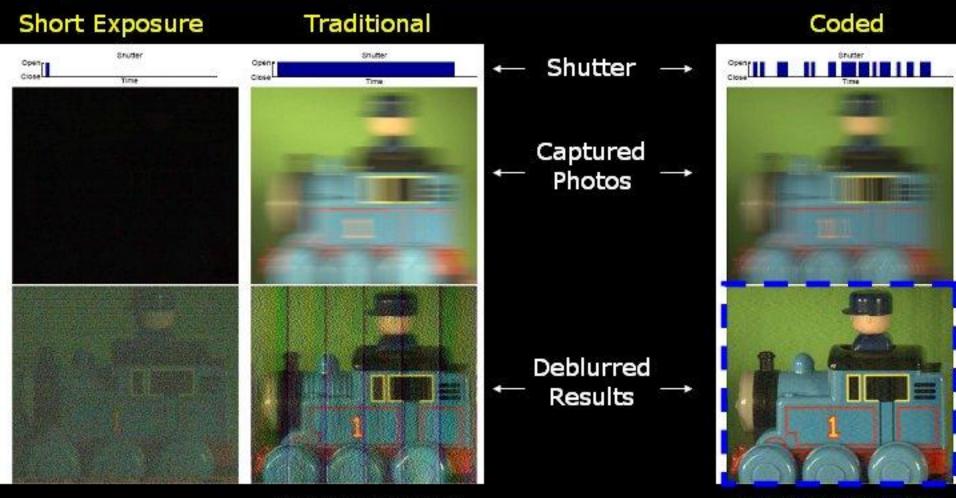
Petschnigg et al. Siggraph'04


Photomontage

Agarwala et al. Siggraph'04

Panoramic images




Brown and Lowe ICCV03

Defocus matting

McGuire et al. Siggraph'05

Coded Exposure Photography: Assisting Motion Deblurring using Fluttered Shutter Raskar, Agrawal, Tumblin (Siggraph2006)

Decoded image is as good as image of a static scene

Result has Banding Artifacts and some spatial frequencies are lost

Image is dark and noisy

Video Textures

Schoedl et al. Siggraph'00

Motion Magnification

Liu et al. Siggraph'05

Today's schedule

- Introduction of *Computational Photography*
- Course facts
- Syllabus
- Capture + More Examples

Logistics

- Staff
 - Dr. Tim Weyrich
 - Dr. Gabriel Brostow
 - Frederic Besse
- Time and location:
 - Lectures: Tuesdays 12-13 in MPEB 1.03
 - Thursdays 9-11 in MPEB 1.03
 - Labs: Tuesdays 16-18 in MPEB 1.05/1.21

(except 17–19 on 18th Jan., 1st Feb., and 8th March only)

 Webpage: <u>http://www.cs.ucl.ac.uk/teaching/3085/</u>

Mailing List

To join, sign up on Moodle:

 "COMP[3085|GV15|M085]: Computational Photography and Capture"

Course Organization

- Lectures
- Labs
 - Most assignments ungraded
 - 2 graded assignments depend on other labs

- Individual work
 - Exceptions only by explicit agreement
 - Honor system

Grading policy

• 70% final exam

• 30% homeworks (GV15 need 50% of 30 = 15%)

- Late policy:
 - Late < 1 day: 100% becomes 95%</p>
 - Late < 2 days: 100% becomes 80%</p>
 - Late > 2 days: 100% becomes 0%
 - "day" == working days

Textbook

- No textbook required
- Slides available on course webpage
 - Many more resources online
- Interesting references:

Computational Photography: Mastering New Techniques for Lenses, Lighting, and Sensors. Raskar and Tumblin, (soon)

- See new conference: <u>ICCP</u>
- See also: Multiple View Geometry
 - by Hartley & Zisserman
- See also: Pattern Recognition and Machine Learning

 by Chris Bishop

Computational Photography Mastering New Techniques for Lenses, Lighting, and Sensors

Tools / Languages

- Linear algebra (good ref: Strang's Linear Algebra lectures)
- Matlab

- with .mex

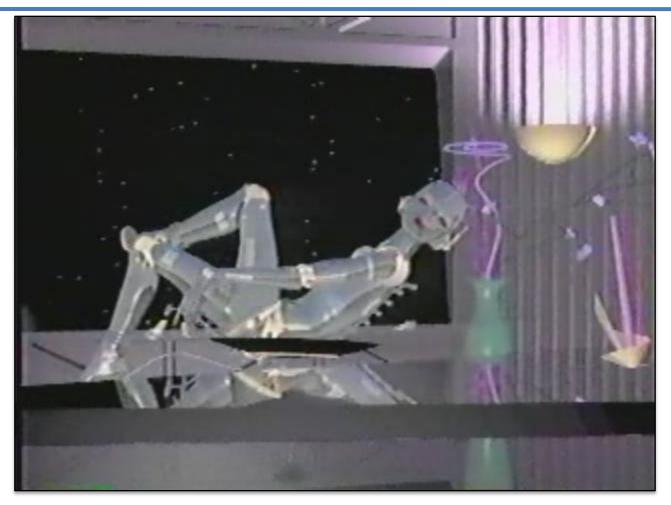
- Nuke
- Useful beyond this class / good to know:
 - C++
 - Maya / 3DS Max
 - QT
 - Python

Today's schedule

- Introduction of *Computational Photography*
- Course facts
- Syllabus
- Capture + More Examples

Today's schedule

- Introduction of *Computational Photography*
- Course facts
- Syllabus
- Capture + More Examples



Visual Modeling for Archaeology

Visual modeling with a hand-held camera, Pollefeys et al. 2004

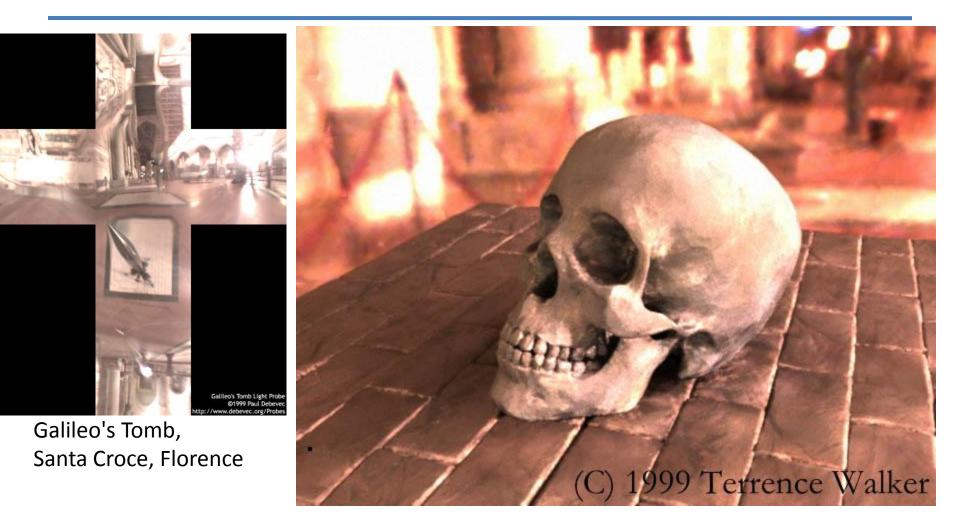
Motion Capture

"Brilliance" by Abel and Associates, 1985

Motion Capture

Michael Jackson - Ghost

Environment Maps



Funston Beach, at Sunset

Paul Debevec, Light Probes (examples by Terrence Walker)

Environment Maps

Paul Debevec, Light Probes (examples by Terrence Walker)

Photometric Stereo: Pixels → Normals (using 3 colored lights)

Brostow et al. PAMI 2011