
Summary of presentation at 6th UKMAC, 15 Dec 2014, M. Giles, P. Kelly, S. McIntosh-Smith, G. Pullan, F. Spiga and D. Thomas, Cambridge.

Improved CUDA 3D Medical Image Registration
W. B. Langdon,

Department of Computer Science, University College London Gower Street, London WC1E 6BT, UK

Abstract— A combination of manual and genetic improvement
(GI) can optimise a critical component of NiftyReg healthcare
industry software across a diverse range of six nVidia graphics
processing units (GPUs). The improved K20c kernel gives a speed
up > 2000 fold compared to released code on a 3GHz CPU.

I. INTRODUCTION

Genetic programming (GP) and other search based software
engineering techniques can automatically optimise the current
rate limiting CUDA parallel function in the Nifty Reg open
source C++ project used to align or register high resolution
nuclear magnetic resonance NMRI and other diagnostic NIfTI
images.

Future Neurosurgery techniques will require hardware ac-
celeration, such as GPGPU, to enable real time comparison
of three dimensional in theatre images with earlier patient
images and reference data. With millimetre resolution brain
scan measurements comprising more than ten million voxels
the modified kernel can process in excess of 3 billion active
voxels per second (see Figure 1). To be used in theatre, the
system must be real time [1], [2], ruling out cloud and other
off-site solutions. And yet even a simple task of superimposing
today’s data with pre-surgery data is computationally heavy.

II. NIFTY REG KERNEL

The released reg spline getDeformationField3D
CUDA kernel which, even though running in parallel, typically
dominates run time since it can be run ≈ 105 times. It takes the

 1

 10

 100

 1000

K20cGTX 580C2050T10GTX 295NVS 290CPU

M
ill

io
ns

 o
f a

ct
iv

eV
ox

el
 p

er
 s

ec
on

d

CPU 3.07 GHz
Released (2013) NiftyReg

Optimised NiftyReg

Fig. 1. Performance of modified reg spline getDeformation
Field3D CUDA kernel after optimisation by GP, bloat removal and with
optimal block size and -arch. On a K20c Tesla the original kernel (×) was
93 times faster than its host CPU. The new kernel is 2 243 times faster. Note
log vertical scale.

current deformation, expressed as a δx, δy, δz vector at regu-
larly spaced grid control points, and returns the corresponding
deformation for every active voxel in the image. For a typical
2173 (10 218 313 voxel) image there are 473 = 103 823 grid
control points. Each individual deformation vector is given by
a cubic spline calculation involving 4 control points in each of
the three dimensions (a total of 4× 4× 4 = 64 neighbouring
control points).

The released code was modified by hand to enforce a fixed
grid spacing allowing spline co-efficients to be precalculated
and the data access pattern changed to increase texture cache
locality. The new kernel was then machine optimised, allowing
both tuning key CUDA parameters (e.g. block size) and further
coding changes.

As an efficiency measure, instead of each integer referring
to a single voxel it now represents a 1 × 5 × 5 volume of
25 voxels, with y,z corners lying at grid control points and
thus having the same 64 neighbouring control points. Thus
an individual warp (32 threads) now calculates 25 voxels in
parallel. Despite discarding 7 threads of every 32, considerable
performance gain is made as all the data for the 25 voxels is
read once, rather than being read individually 25 times.

Each of the twenty five active voxels needs data from the
same 64 control points. In fact since they share the same
x-location, these reduce to just 16 values. These are calculated
in parallel by 16 (of 32) threads and stored in on-chip fast
shared memory.

III. VALIDATION

The speeds quoted are given by running the CPU and kernels
on 16 816 875 test cases not used during optimisation. In all
cases the optimised kernel had an error of 0.000107 or less.

IV. AN EXAMPLE OF CODE OPTIMISATION

The original condition (threadIdx.x & 31) < 16 was
designed to use 16 threads to calculate 16 values and store
them in on-chip shared memory. But if it is removed all threads
run (avoiding divergence) and calculate the 16 values twice.
When the 32 threads all try to write to 16 shared locations, it
is defined that only 16 will succeed. But 16 threads will write
the correct values to the 16 shared locations. (The writes from
the other 16 threads will simply be discarded.) I.e., GP has
removed an operation ((threadIdx.x & 31) < 16) and
also made the following 23 lines of code more efficient.

REFERENCES

[1] Youquan Liu and De Suvranu, “CUDA-based real time surgery simula-
tion,” Stud Health Technol Inform, vol. 132, pp. 260–262, 2008.

[2] W. B. Langdon, et al., “Improving 3D medical image registration CUDA
software with genetic programming,” in GECCO ’14, pp. 951–958, ACM.

1

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://sourceforge.net/projects/niftyreg/
http://nifti.nimh.nih.gov/nifti-1/
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html

	Introduction
	Nifty Reg Kernel
	Validation
	An Example of Code Optimisation
	References

