
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2000;30:1661–1676

BOX: Browsing objects in XML

Christian Nentwich1, Wolfgang Emmerich1,∗,†,
Anthony Finkelstein1 and Andrea Zisman2

1Department of Computer Science, University College London, Gower Street, London WC1E 6BT, U.K.
2Department of Computing, City University, Northampton Square, London EC1V 0HB, U.K.

SUMMARY

The latest Internet markup languages support the representation of structured information and vector
graphics. In this paper we describe how these languages can be used to publish software engineering
diagrams on the Internet. We introduce BOX, a portable, distributed and interoperable approach to
browsing UML models with off-the-shelf technology. Our approach to browsing UML models leverages
XML and related specifications, such as the Document Object Model (DOM), the XML Metadata
Interchange (XMI) and the Vector Markup Language (VML). BOX translates a UML model that is
represented in XMI into VML. VML can be directly displayed in Internet browsers, such as Microsoft’s
Internet Explorer 5. BOX enables software engineers to access and review UML models without the need to
purchase licenses of tools that produced the models. BOX has been successfully evaluated in two industrial
case studies. The case studies used BOX to make extensive domain and enterprise object models available
to a large number of stakeholders over corporate intranets and the Internet. We show how XML and the
BOX architecture can be applied to other software engineering notations. We also argue that the approach
taken in BOX can be applied to other domains that have already started to adopt XML and have a need
for graphic representation of XML information. These include browsing gene sequences, chemical molecule
structures and conceptual knowledge representations. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: CASE tools; Unified Modeling Language; Extensible Markup Language

INTRODUCTION

The size and complexity of current software-intensive systems necessitates distributed development.
It is important to support collaboration and coordination of physically distributed teams of people
during system development. Such collaboration often demands that developers access documents that
other developers have produced. The wide-spread development and use of the Internet, the World Wide
Web and related technologies can foster such collaboration. Software engineering documents can be
published on web servers so that developers can search for and browse documents with web browsers.

∗Correspondence to: Wolfgang Emmerich, Department of Computer Science, University College London, Gower Street, London
WC1E 6BT, U.K.
†E-mail: w.emmerich@cs.ucl.ac.uk

Copyright 2000 John Wiley & Sons, Ltd.
Received 13 October 1999

Revised 12 May 2000
Accepted 1 August 2000

1662 C. NENTWICHET AL.

Semantically related document parts can be connected by hyperlinks so that they can be traversed in
order to help the developer to understand the document better.

The Unified Modeling Language (UML) has gained widespread acceptance for the development of
software systems. UML is used to visualize, specify, construct and document a software system from
multiple perspectives. In a distributed development scenario it is important to enable software engineers
and customers to exchange, access, review, query and browse UML models.

Until recently HTML was the language that was used to publish information on the Internet. HTML,
however, had no mechanisms to represent graphics directly. To represent UML or any other graphical
software engineering notation in HTML pages, these pages have to refer to images in GIF, TIF or
JPEG format. These image formats have the disadvantage that they cannot easily be hyperlinked and
can become rather big to download. Moreover, they do not scale well when printed on high-resolution
printers. Another approach would be to publish the documents in the format of the CASE tool that
was used to support them. Downloading the engineering documents in the storage representation of the
CASE tool, however, necessitates the availability of the tool on the developer’s workstation—which
incurs substantial installation, training and licensing costs in large-scale deployments.

These limitations are resolved by the approach we describe in this paper. We discuss a portable,
distributed and interoperable mechanism to browse software engineering documents using standard off-
the-shelf browser technology. We exemplify the approach by discussing BOX. BOX supports access to
graphic UML models with Internet-scale distribution. The approach is built on top of existing Internet
technologies such as eXtensible Markup Language (XML) the Document Object Model (DOM),
XML Metadata Interchange (XMI), and Vector Graphic Markup Language (VML). Box translates
XMI representations of UML models into VML so that they can be directly viewed using the latest
generation of Internet browsers, such as Microsoft’s Internet Explorer 5.

XML AND RELATED TECHNOLOGIES

In this section we provide a succinct account of XML and the related technologies that constitute the
major part of the infrastructure on which we build. We introduce XML itself and discuss how the
Object Management Group (OMG) XML Metadata Interchange (XMI) specification utilizes XML to
define an open interchange format for UML models. We then give a very brief account of DOM, which
we use to traverse the XMI representation and discuss VML, the output format that we use to generate
the graphic representation. It must be appreciated that this is a necessarily brief review of a complex set
of technologies. In each case the base technologies are pre-standard, or only just beginning to harden
as standards, and hence are subject to continuing change.

XML

XML [1] is a data description language, which has been standardized by the World Wide Web
Consortium (W3C). XML is a subset of the Standard Generalized Markup Language (SGML). XML is
designed to bring structured information to the Web; it facilitates the definition of markup tags relating
to the content of documents and thus delivers both extensibility and the potential for validation. XML is
a major move away from the fixed markup tags embedded in HTML. XML provides a data standard that
can encode the content, semantics and schemata for a wide variety of cases—whether as a wire format

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

BOX: BROWSING OBJECTS IN XML 1663

<Foundation.Core.Class xmi.id = ’S.10028’>
<Foundation.Core.ModelElement.name> SampleClass
</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value = ’private’/>
<Foundation.Core.ModelElement.stereotype>
<Foundation.Extension_Mechanisms.Stereotype xmi.idref = ’G.40’/>
</Foundation.Core.ModelElement.stereotype>
</Foundation.Core.Class>

Figure 1. An XML representation of a class using the XMI DTD.

for sending data between client and server, a transfer format for sharing data between applications or a
persistent storage format on disk.

XML provides a general method for describing data. It allows identification, exchange and
processing of distributed data in a manner that is mutually understood. Programmers can build simple
parsers to read XML files, making it a good format for interchanging data. It is designed to be
straightforwardly usable over the Internet and support a wide variety of applications. XML maintains
the separation of presentation details from structured data and, therefore, it allows the integration of
data from diverse sources. XML seeks to achieve a compromise between flexibility, simplicity and
readability by both humans and machines.

XML provides a set of element types, which serve to define types of documents and are referred to
as Document Type Definitions (DTDs). A DTD contains a set of rules to control how documents and
tags are structured, which elements are presented and the structural relationship between the elements
for documents of a particular type. A DTD contains the definition of the syntax of an XML document,
i.e. DTDs are schemas for documents. A range of XML DTDs are emerging in particular domains, for
example MathML (the mathematical markup language).

Figure1 shows a document containing a UML class with a fragment of the associated mark up in
XMI [2], using a DTD for mark up of UML (see below).

The XML specification refers to two components: the XML processor and the XML application. The
XML processor is the parser with the task of loading the XML and any related files, checking to make
sure that a XML document follows all the necessary rules and building a tree-like document structure
that can be passed on to the application. The XML application acts upon the structure and processes
the data it contains.

XMI

XMI [2] has been standardized by the OMG to enable easy interchange of metadata between modeling
tools, based on the OMG UML, and metadata repositories, based on the OMG Meta Object Facility
(MOF) [3]. XMI eases the problem of tool interoperability by providing a flexible information
interchange format. It can be used by tool vendors to save and load UML models in a common format,
i.e. XMI format, thus allowing teams of developers working with object technology and using different
tools to exchange information over the Internet. With XMI, data are interchanged as streams or files
with a standard format based on XML.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

1664 C. NENTWICHET AL.

Figure 2. Part of the UML Core package and the respective XMI UML DTD.

The XMI specification contains a complete specification for syntax and encoding needed to export
and import models, with complete DTDs for UML and MOF. Figure2 shows part of the UML
metamodel related to the Core package and its respective XMI DTD specification.

The XMI DTD follows the UML description in the UML Semantics specification [4]. Each class,
attribute and association in the UML metamodel is represented in the XMI DTD as an XML element.
The classes, attributes and associations are referred to by their fully qualified name, i.e. the package
name, followed by the subpackage name, if any, followed by the class name, followed by either the
attribute name or the association name, when appropriate.

In XMI, XML representations can also be defined for software engineering notations other than
the UML. It is rather straightforward to define a mapping between Case Data Interchange Format
(CDIF) [5] and XML in such a way that any CDIF definition can be translated into an equivalent XML
document type. We therefore assume that the content of software engineering documents is represented
in XML.

DOM

Associated with XML is the DOM [6]. The DOM is an application programming interface (API) for
HTML and XML documents. It defines the logical structure of documents and how to access and
manipulate a document. DOM allows programmers to build documents, navigate their structures and
add, modify or delete elements and content. In DOM, the documents have a logical structure that is
similar to a tree. However, DOM is a logical model that may be implemented in any convenient manner,
not necessarily as a tree.

The nameDocument Object Modelreflects the modeling of documents using objects, and the model
encompasses the structure of a document and its behavior. The DOM identifies (a) the interfaces used
to represent and manipulate a document, (b) the semantics of these interfaces and (c) the relationships
and collaborations among these interfaces. The DOM interfaces are designed in UML and their detailed
interface definition is given in a programming-language independent way using the OMG Interface
Definition Language (IDL). IDL programming language bindings then define how the DOM is made
available in particular programming languages.

The DOM consists of two parts: DOM Core and DOM HTML. The DOM Core contains interfaces
for accessing and manipulating XML documents and serves as the basis for DOM HTML. The DOM
HTML contains interfaces for accessing and manipulating HTML contents.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

BOX: BROWSING OBJECTS IN XML 1665

VML: <v:rect style=’top:20; left:50; width:80; height:150’/>
<v:line from="20 50" to="100 200"/>

SVG: <g:rect x="20" y="50" width="80" height="150"/>
<g:line x1="20" y1="50" x2="100" y2="200"/>

PGML: <rectangle x="20" y="50" width="80" height="150"/>
<path>

<moveto x="20" y="50"/>
<lineto x="100" y="200"/>

</path>

Figure 3. Drawing a rectangle and line in VML, PGML and SVG.

Vector graphic markup languages

Vector graphic markup languages are set to become standard components in the next generation of
browsers. Transmitting graphics in a vectorized form brings with it a host of advantages for web design
and web programming. For example, a parsed vector graphics markup file will be incorporated into the
DOM tree and can thus be manipulated, the remote user can select different output representations
without having to regenerate the whole image, it is possible to search the contents for information,
etc. None of these would be very easy to realize using bitmap images. In addition, as vector graphics
gain maturity and modification of their content using inline HTML scripting becomes feasible, features
like client side zooming can be added. The implications of this for software engineering, which makes
much use of complex diagrams, are significant.

Scalable Vector Graphics (SVG) [7], which is being specified by a W3C working group, has emerged
as the predominant candidate for a standard vector graphics language. The lineup of key industry
players supporting SVG is more than impressive, and the language looks set to become a major open
standard in the near future.

The SVG standardization effort followed a call for proposals for a new vector graphics language by
the W3C. The two major proposals were the Vector Markup Language (VML) [8], mainly proposed by
Microsoft, and the Precision Graphics Markup Language (PGML) [9], mainly proposed by Adobe. At
the time of writing no standard web browser supports SVG yet. Microsoft, however, have implemented
a VML renderer in Internet Explorer 5.

For the purpose of diagram layout, only the most basic features of any of the available markup
languages are required: rectangles, lines and text. We currently use VML due to its implementation in
a browser, but it will be easy to adapt our prototype to SVG because of the similarity of the languages,
as demonstrated in Figure3.

APPROACH

In this section we describe our approach to converting XML representations of software engineering
diagrams into displayable web pages that use the VML. We exemplify the discussion by showing how
we translate XMI representations of UML models into VML. We describe the methods used to visualize

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

1666 C. NENTWICHET AL.

Figure 4. Overview of the prototype architecture.

UML diagram elements and a user interface to facilitate manipulation and browsing of a UML model.
We give a general overview of how to store the geometric information necessary for diagram transfer
inside XMI files and outline the architecture of our prototype.

Architecture

Figure 4 gives a general overview of the architecture of our prototype system. The architecture is
applicable for every software engineering notation that has a representation in XML.

The process starts with a CASE tool that allows the creation of a model in a particular software
engineering notation. In the case of BOX, this notation is the UML and we use Rational Rose [10]
because of its current market leadership in graphical UML modeling software. After creating the
software engineering document, we export it into a standard XML representation. In the case of
Rational Rose, this export creates an XMI file. In the general case this translation process demands
an understanding of the proprietary CASE tool format and the generation of the XML equivalent. For
the UML and Rational Rose, we were able to utilize an off-the-shelf exporter from Unisys Corporation,
which uses the Rose extension capabilities to traverse the internal Rose model and generate the
XMI representation. The exporter appends geometric information at the end of the file, inside an
XMI extension tag that has been designed to allow arbitrary, user-defined content. This geometric
information is also taken from the internal model of Rational Rose.

In the next step, BOX is invoked with the name of the XML input file as a parameter. BOX uses
a standard XML parser [11] which conforms to the Simple API for XML (SAX) [12] to construct a
DOM tree-like representation of the XML document in memory.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

BOX: BROWSING OBJECTS IN XML 1667

The DOM structure now contains all elements found in the XML file and can be traversed in order
to select relevant elements. The information stored in the tree allows an internal model to be built that
is suitable for the software engineering notation at hand. In the case of the UML, we have chosen a
representation that is in accordance with the UML semantic specification [4]. At this stage, BOX has
reconstructed the whole UML model from the XMI file and generated the necessary ViewElement
objects to display the model.

The information generated can now be exported in a variety of ways. In our toolkit, we take
advantage of the fact that most software engineering notations are hierarchically arranged. Processes
in dataflow diagrams are refined by child dataflow diagrams, transitions in Petri nets may be refined
by another complete Petri net and so on. In the case of the UML, packages contain a set of diagrams,
model elements and nested packages. This refinement relationship forms a tree. The first pass of our
tool creates an HTML document containing a view of this tree that is displayed in a frame of the
browser. The second pass exports a VML representation of each diagram. After the converter has
exited, the output directory contains a number of HTML files together with one index file, which can
now be viewed in a browser.

An alternative to our architecture would be to write a plug-in for Rational Rose that directly produces
the HTML and VML code to be published on the web. In that way, the overhead of writing the XMI
file, parsing it and reconstructing the models could be avoided. However, the plug-in would be specific
to Rational Rose and the tool independence that BOX gains from using the open XMI standard would
be lost.

The back-end of BOX is by no means limited to exporting graphical information. When the internal
UML model has been reconstructed, user-defined classes are free to traverse it for any information
they require. In order to validate its usefulness, we have added a class to BOX that does not generate
VML diagrams but instead generates a DTD from an XMI file. In this way, we can use Rational Rose
to model DTDs in UML. In these models classes represent elements and composition associations
represent the containment rules, similar to the way XMI is defined itself. It took about four person
hours to write this back-end from scratch.

Visualization of XML

The appendix of the XMI specification [2] provides a DTD that can be used to store UML models
in XML. However, both the UML standard and XMI do not clearly specify how to handle geometric
information and this section attempts to briefly explain the problems this presents.

The UML describes a metamodel for system modeling. In this metamodel, there are a variety of
metaclasses available that allow a software engineer to describe a complete system in different ways.
It is important to maintain a distinction between a UML model and the visual representation of that
model.

The UML specification is composed of two parts, UML semantics [4] and UML notation [13]. The
former defines the metaclasses (e.g. Class, Association,. . .) that can be used to model the system. The
latter defines how each of the metaclasses can be displayed graphically. What remains is the question
of how to tie a model element in a UML model to its graphical representation.

The UML semantic specification stops short of specifying how the graphical information of a model
is supposed to be handled. In the specification, a meta-class calledModelElementis defined as a (meta)-
superclass for almost every other meta-class in the model. Each ModelElement has a many-to-many

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

1668 C. NENTWICHET AL.

Figure 5. The basic web interface.

mapping to another meta-class calledViewElement. However, while there is a complete hierarchy of
model elements, the descendants of the ViewElement metaclass are described as‘proper to a graphic
editor tool and [are] not specified here’[4].

A CASE tool that intends to display UML diagrams therefore needs a complete hierarchy of
metaclasses below the ViewElement metaclass to implement view support for all elements, like classes
and associations. A diagram is then a collection of ViewElements and descendants of this meta-class.
Since view elements have a many-to-many mapping to their respective model elements, each model
element can appear in multiple diagrams. This feature is often used in large models to provide multiple
views of packages.

The XMI standard defines how to build an XML DTD from a metamodel that conforms to the OMG
MOF. XMI defines that metaclasses and their attributes become elements of the DTD, and associations
and generalization relationships are turned into element containment rules. The standard features as
an example a DTD generated from the UML semantic metamodel (an excerpt of which is sketched in
Figure2).

Since the MOF is concerned with metamodels and not with their diagrammatic representations, XMI
is currently unable to carry geometric information without the use of proprietary extension tags. Even

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

BOX: BROWSING OBJECTS IN XML 1669

Figure 6. Hiding details in layered popups.

if automatic layout features are available, the diagram information has been lost and no tool will be
able to reconstruct the original view of the model without extensive interaction with the original creator
of the model.

TOOLKIT

This section briefly describes the main features of our prototype together with some sample screenshots
of diagram representations produced by BOX.

The converter is written in Java, using the Java Development Kit (JDK) 1.2. The generated HTML
documents use Dynamic HTML (DHTML) and JavaScript to provide reactive documents. In particular,
we support expand and collapse operations for the tree of the hierarchical document structure.

Figure5 presents a screenshot of our interface. Similar to Rational Rose, our interface is divided
into three regions. The top left frame contains a tree representation of the software engineering model
that can be expanded as needed, the main right frame contains the diagrams themselves and the small

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

1670 C. NENTWICHET AL.

frame on the bottom left automatically displays any documentation associated with model elements as
soon as the mouse is moved over the respective shape in the diagram.

We use icons to allow rapid distinction of model elements in the tree. For some elements, it is
possible to activate hyperlinks to bring up related diagrams, for example it is possible to click on a
package in a diagram and display the topmost diagram inside that package.

In the diagram, it is also possible to activate detailed information about the elements of the model.
This is executed by moving the mouse over a particular element. Figure6 presents this situation. The
idea of hiding detailed information of the model elements is to simplify the presentation of complex
diagrams. Any number of popups can be pinned to the screen to allow comparisons.

The two graphical exporters discussed above are just two out of many possible back-ends to the
XML importer and model generator front-end. The simplicity of manipulating XML means that it was
fairly straightforward to write the front end and it should be similarly straightforward to add any kind
of back-end.

EVALUATION

This section describes three case studies that we used in order to evaluate BOX. We present an overview
of the main problem areas and describe alternative routes of design that were considered.

Our initial goal was to display UML diagrams in a browser so that they could be accessed by
distributed teams or clients without the need to purchase the license of a CASE tool. Moreover, we
wanted to facilitate interoperability between different CASE tools based on the XMI standard. Initial
feedback from demonstrations suggested that there was a real need for such a tool and in, general,
people seem to be enthusiastic about this application of web technology.

The prototype has been tested in two industrial case studies. The first of these is an enterprise object
model of one of the largest European airlines. This model contains 147 classes and 49 diagrams. The
second model is a domain object model from Eurocontrol, the European air traffic control authority.
The result of our translation of the Eurocontrol model can be viewed using Internet Explorer 5 [14].
This model is slightly larger than the airline enterprise model and contains 170 classes but only 18
diagrams. Figure7 shows a fragment of a diagram from the converted Eurocontrol model. Furthermore,
we have also tested BOX on an academic example, a UML design for a meeting scheduler as described
in Reference [15]. This is a small-scale model with 12 classes and 6 diagrams.

The testing machine used was a PC with Windows-98, on an Intel Pentium processor running at
400 MHz and 128 Megabytes of RAM. As can be seen from our timing figures, on-the-fly conversion
from XMI to VML is not an option for the time being, although our prototype has not been optimized
for speed. For no model conversion did the memory utilization exceed the amount of physical memory
available. The maximum amount of main memory utilized for both the Eurocontrol and the airline
case study was 34 Megabytes and the memory utilization of the meeting scheduler case study was
6 Megabytes. This suggests that our approach scales to industrial-scale projects.

Figure 8 compares the different file sizes that we observed for the Rational Rose input model
files, the intermediate XMI representation and the output representation in VML. For both the XMI
representation and the VML representations, the sizes grow more or less linearly with the number of
model elements. The Rational Rose representation, however, shows an anomaly in that a model with
more elements is smaller in size. This can be attributed to the fact that the enterprise object model

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

BOX: BROWSING OBJECTS IN XML 1671

Figure 7. Eurocontrol model fragment.

has fewer elements, which are however more heavily annotated with documentation than the larger
Eurocontrol model. We can also note that the VML representation of all models is not only a lot
smaller but also grows at a slower rate with more model elements. This strongly suggests that the
VML representation is better suited for transport across the Internet or corporate intranets than the
XMI representation (with client side translation).

Figure9 shows the elapsed time that was needed for the conversion of the three models. The limited
data seem to suggest that the total conversion time is dominated by the time needed for reading and
parsing the XMI file and that it grows linearly with the number of model elements. Note also that the
time needed for VML export does not depend on the number of model elements, but on the amount
of diagram information stored in the XMI files. The larger Eurocontrol case study has fewer diagrams
than the airline model and it is thus natural that the VML export of the airline case study takes longer
even though it has fewer model elements overall.

In all case studies, one of the problems we have encountered was the lack of diagram geometry
information being made available by existing tools. It was possible to obtain information about the
location and size of classifiers (classes, use cases, actors, etc.) on the screen, but associations between
classifiers were generally assumed to stretch between the midpoints of boxes. The problem occurs

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

1672 C. NENTWICHET AL.

Figure 8. File sizes observed.

when users insert extra vertices in the lines representation associations in diagrams, for example to
navigate associations around classes when they would normally penetrate them. These extra vertices
are lost in the XMI generation process. In one of our case studies, the association lines were fairly long
and the generated diagrams looked very messy, with lines crossing.

We have so far implemented heuristics for adjusting the routing of lines that give satisfactory results
most of the time. When an association is found in the XMI file, it is not possible to know anything
about the geometry of the association itself. However, information about where to place the label of
the association is known. We therefore propose an algorithm that will check how far the label deviates
from the midpoint between two classifiers. If the distance is too big, the association will be ‘broken’
through the label.

With a dependency or association, the angle between the two boxes it connects is measured and
if the line has the right slope (around 45± 20 degrees), it is broken into two orthogonal lines, as
demonstrated in Figure10. This approach worked well in our case study because it turned out that
whenever orthogonal lines are used, the connected classes are quite far apart and if connected with a
straight line, the line would be at an angle of 45 degrees (± the threshold). When a line becomes almost
horizontal or vertical, the initial creator of the diagram would draw a straight line so the workaround
would not be required.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

BOX: BROWSING OBJECTS IN XML 1673

Figure 9. Timings obtained during case studies.

Figure 10. Breaking a line into two orthogonal segments.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

1674 C. NENTWICHET AL.

RELATED WORK

In this section we briefly describe current developments in the area of XMI and the web and present
the research and technologies that are related to our prototype.

Efforts are currently under way to supplement the XMI standard with a standard for diagram transfer.
Two possible solutions that could be envisaged are as follows.

• Use the XMI extension facilities to append geometric data at the end of the model definition.
Since XMI allows a unique identifier to be associated with each model element, it is then possible
to link every model element to its geometric information. The beta version of the XMI exporter
from Unisys Corp. uses this approach: diagram packages are stored in an extension element at
the end of the file. Each diagram package contains multiple diagrams and is linked to the model
package it represents. The diagrams themselves are a set of UML presentation objects and are
linked to the ModelElements they represent using the ID facility.

• Store the diagrams in separate files that use a vector markup language. Every shape in the
diagram file can then be linked to its corresponding element in the XMI file using the ID facility
or more sophisticated technology like XLink [16]. This approach is implemented by the open
source tool Argo/UML [17] and has the advantage that no translation is necessary and that
diagrams can now be distributed separately.
The disadvantages are mainly that a model and its diagrams are now stored in several files, which
can be inconvenient, and that diagrams do not consist of UML elements but vector graphic
information which means that a commitment to a specific vector graphics language has to be
made.

A number of CASE tool vendors are currently extending their tools with support for publishing
models on the WWW. Rational have recently launched the Internet edition of Rational Rose. It does
not, however, utilize vector graphic languages to create graphical representations of UML models but
creates the models as GIFs, which unlike our models are not hyperlinked, not amenable to access via
search engines and also bigger to download.

Ciancariniet al. [18] introduce ‘displets’ for embedding Z fragments [19] in web pages. Displets
are tiny Java programs that can be used to extend browsers with additional rendering capabilities. The
author of a document can then introduce new tags and define which displet to call when a specific tag
is encountered. Displets are a lightweight solution because of their relatively small size compared to
proprietary plug-ins or full-blown Java applets. However, the problem of having to transfer a huge XMI
file across a network remains, as does the problem of the relatively long layout time.

We have also considered using the eXtensible Stylesheet Language Transformations (XSLT) [20].
This would ensure good use of existing standards and avoid writing Java code. XSLT is designed
to translate a source XML document into a transformed target XML document. If multiple target
documents are to be generated, in our case one target VML document per diagram, then multiple
XSLT stylesheets can be used to provide different transformations of the source data. Unfortunately,
it is not possible to know in advance exactly how many diagrams are going to be present in an XMI
document. Since the number of XSLT stylesheets required is therefore potentially unbounded, they
would have to be generated on the fly by a preprocessing stage. Even so, if an XMI file contains a large
number of diagrams it is likely to be big and traversing the whole file repeatedly for every stylesheet

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

BOX: BROWSING OBJECTS IN XML 1675

will lead to a drop in performance. By rebuilding the UML model inside BOX, only one pass has to be
performed over the XMI file, regardless of the number of diagrams in it.

FUTURE WORK

The work presented in this paper is part of a large program of research to allow consistency checking
of distributed documents on the WWW [21]. We intend to extend our approach to allow semantic
and consistency relationships among distributed software engineering documents to be represented as
hyperlinks. The consistency relationships can then be traversed to understand the semantic context of
documents by following hyperlinks.

Our current implementation of BOX for the UML is restricted to class and use case diagrams due
to the limitations of current XMI export tools. Future XMI export tools will make those parts of the
UML metamodel accessible that cannot currently be reached by our tool. When that information is
made available, support for more types of UML diagrams, e.g. sequence diagrams, can be added quite
easily.

We expect that in the foreseeable future, our architecture can be used as a base for different
applications, such as different notations employed ubiquitously in software engineering. As XML
dialects for such notations become available, so will the need to present graphical representations of
the hard to read XML content. The basic architecture of BOX that parses the XML content, generates
an internal model of an instance of a domain-specific metamodel and then compiles different output
representations in subsequent export passes is a strong candidate to achieve this aim.

Finally, vector graphics markup languages are reaching the stage of maturity. The SVG language [7]
will be recommended as a standard in the near future. We will provide a back-end for this language as
soon as working implementations appear in standard browsers.

In Reference [22], we describe literate modeling, the application of Knuth’s literate programming
ideas to earlier phases of software engineering. Literate modeling overcomes the problems of
stakeholders, who are not software engineers, in understanding formal UML models. Stakeholders,
such as project managers and users, also do not have any training for using a CASE tool and are
generally reluctant to incur substantial CASE tool licensing costs. We therefore plan to integrate the
graphic export mechanisms of BOX with standard web publishing tools so that literate models can be
produced and can be published on the web.

ACKNOWLEDGEMENTS

We would like to thank Gene Mutschler from the Computer Systems Group at Unisys for providing us with a beta
copy of the XMI exporter, Jerry Watson from Eurocontrol for the Rose models and Jim Arlow and John Quinn for
evaluating BOX with the enterprise object model of a large airline and providing valuable feedback. Moreover, we
wish to thank Morten Wang, who implemented the Javascript tree menu.

REFERENCES

1. Bray T, Paoli J, Sperberg-McQueen CM. Extensible markup language.Recommendation,
http://www.w3.org/TR/1998/REC-xml-19980210, World Wide Web Consortium, March 1998.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

1676 C. NENTWICHET AL.

2. Object Management Group.XML Meta Data Interchange (XMI)—Proposal to the OMG OA&DTF RFP 3: Stream-based
Model Interchange Format (SMIF). 492 Old Connecticut Path, Framingham, MA 01701, USA, October 1998.

3. Object Management Group.The Meta Object Facility. 492 Old Connecticut Path, Framingham, MA 01701, USA, 1997.
4. Object Management Group.OMG Semantics Guide. 492 Old Connecticut Path, Framingham, MA, ad/97-08-04 edition,

November 1997.
5. Electronic Industries Association. CASE Data Interchange Format (CDIF). http://www.cdif.org [January 1994].
6. Apparao V, Byrne S, Champion M, Isaacs S, Jacobs I, Le Hors A, Nicol G, Robie J, Sutor R, Wilson C, Wood L.

Document Object Model (DOM) level 1 specification.W3C Recommendation, http://www.w3.org/TR/1998/REC-DOM-
Level-1-19981001, World Wide Web Consortium, October 1998.

7. Ferraiolo Jet al. Scalable vector graphics.Working Draft, http://www.w3.org/TR/1999/WD-SVG-19991203, World Wide
Web Consortium, December 1999.

8. Mathews B, Lee D, Dister B, Bowler J, Cooperstein H, Jindal A, Nguyen T, Wu P, Sandal T. Vector markup language.
Technical Report, http://www.w3.org/TR/1998/NOTE-VML-19980513, World Wide Web Consortium, May 1998.

9. Al-Shamma N, Ayers R, Cohn R, Ferraiolo J, Newell M, de Bry RK, McCluskey K, Evans J. Precision Graphics Markup
Language.Technical Report, http://www.w3.org/TR/1998/NOTE-PGML-19980410.html, World Wide Web Consortium,
April 1998.

10. Quatrani T.Visual Modeling with Rational Rose and UML. Addison Wesley, 1998.
11. IBM. IBM XML Parser for Java. http://alphaworks.ibm.com/tech/xml4j [1999].
12. Megginson D. Simple API for XML, May 1998.
13. Object Management Group.UML Notation Guide. 492 Old Connecticut Path, Framingham, MA 01701, USA, ad/97-08-05

edition, November 1997.
14. Abbot P, Watson J. Gate to gate object model. http://www.cs.ucl.ac.uk/research/box [October 1999].
15. Feather MS, Fickas S, Finkelstein A, Lamsweerde Av. Requirements and specification exemplars.Automated Software

Engineering1997;4(4):419–438.
16. Maler E, DeRose S. XML Linking Language (XLink).Technical Report, http://www.w3.org/TR/1998/WD-xlink-

19980303, World Wide Web Consortium, March 1998.
17. Robins J, Redmiles D, Hilbert D. Argo/UML. http://www.ics.uci.edu/pub/arch/uml/ [1999].
18. Ciancarini P, Vitali F, Mascolo C. Managing complex documents over the WWW: A case study for XML.IEEE

Transactions on Knowledge and Data Engineering1999;11(4):629–638.
19. Spivey JM.The Z Notation—A Reference Manual(2nd edn). Prentice-Hall, 1992.
20. Clark J. XSL transformations (XSLT).Technical Report, http://www.w3.org/TR/xslt, World Wide Web Consortium,

November 1999.
21. Ellmer E, Emmerich W, Finkelstein A, Smolko D, Zisman A. Consistency management of distributed documents using

XML and related technologies.Research Note 99-94, University College London, Department of Computer Science, 1999,
submitted for publication.

22. Arlow J, Emmerich W, Quinn J. Literate modelling—capturing business knowledge with the UML.Proc.<<UML>>’98,
Mulhouse, France (Lecture Notes in Computer Science, vol. 1618), Bezivin J, Muller PA (eds.) 1999; 165–172.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:1661–1676

	INTRODUCTION
	XML AND RELATED TECHNOLOGIES
	XML
	XMI
	DOM
	Vector graphic markup languages

	APPROACH
	Architecture
	Visualization of XML

	TOOLKIT
	EVALUATION
	RELATED WORK
	FUTURE WORK

