
CORBA and ODBMSs in Viewpoint
Development Environment

Architectures

Wolfgang Emmerich

Interoperable Systems Research Centre, City University

Northampton Square, London EC1V 0HB, UK

Abstract

Viewpoints are re
ections of software systems from multiple perspec-
tives. A number of consistency conditions apply to viewpoints and de-
velopers require a tool for each type of viewpoint. These tools need to
support consistency management. Inter-viewpoint consistency can only
be checked when tools are integrated into a viewpoint development en-
vironment. We brie
y outline the functionality developers require from
these environments. We discuss the suitability of abstract syntax graphs
as a common viewpoint representation scheme. The main purpose of the
paper is to present an object-oriented architecture for viewpoint-based
environments. The architecture bene�ts from the integration of object
database management systems and object request brokers.

1 Introduction

The production process of modern software systems passes many stages, such
as requirements analysis, architectural design, detailed design, coding, test-
ing. During these stages, the system is considered from multiple perspectives.
Requirements analysis tends to take di�erent end-user perspectives and focus,
for instance, on the functionality a system should o�er from di�erent users'
point of view. Architectural design takes the perspective of an engineer who
decides how the system should be constructed. These perspectives highlight
the principal system components and their interaction mechanisms. Note, that
multiple perspectives may even be required during a single stage. Dardenne et
al., for instance, suggest in [4] di�erent requirements engineering perspectives
for goals, actions, agents, constraints, entities and relationships. Developers
have to materialise those di�erent perspectives for documentation and commu-
nication purposes in documents or artifacts, which we refer to as viewpoints [14]
so as to emphasise that they provide di�erent perspectives on the same sys-
tem. This viewpoint-oriented perspective on software processes is shared by an
increasing number of authors (see [17]).

Viewpoints are de�ned as a loosely-coupled, locally managed objects encap-
sulating representation knowledge, development process knowledge and partial
speci�cation knowledge about a system. Viewpoints are structured into �ve
slots: The style slot describes the representation scheme used by the viewpoint.
The work plan slot describes development actions together with a strategy for

their application to construct the viewpoint. The domain slot identi�es the
viewpoint and sets its context in the overall system under construction. The
speci�cation slot describes the viewpoint domain in the representation scheme
determined by the style slot. The work record slot records the history and
current state of the viewpoint development.

Viewpoints are de�ned in a formal language, determined by the viewpoint's
style slot. As di�erent viewpoints represent di�erent perspectives on the same
system they are not fully independent of each other; there are multiple consis-
tency constraints between the di�erent viewpoints. A viewpoint de�ning a goal
in a requirements speci�cation, for instance, might use an entity de�nition and
this use must match the entity declaration in some other viewpoint. The high
number of viewpoints likely in a system de�nition, together with the various
consistency constraints, generate a demand for integrated tool support. Tools
should, in particular, provide for intra- and inter-viewpoint consistency checks
and manage temporary inconsistencies. Intra-viewpoint checks should reveal
syntactic and static semantic errors within the viewpoint, while inter-viewpoint
consistency checks should reveal inconsistencies between di�erent related view-
points.

Section 2 is devoted to a discussion of the functionality required from
viewpoint-based tools in order to apply viewpoint-based methods e�ectively.
In Section 3, we discuss an architecture for the integration of multiple tools
into an environment that enables multiple developers to cooperate while us-
ing such methods. We particularly focus on the a posteriori integration of
autonomously constructed tools. In Section 4, we discuss related work and
outline open problems that need further attention in Section 5.

2 Viewpoint-based Environments

To apply a viewpoint-based method e�ectively, developers need a tool for each
viewpoint template. Developers require particular functionality from each such
tool. Some functions, however, cannot be provided by a single tool, but require
the integration of tools associated with di�erent related viewpoints. We refer
to a set of these integrated tools as a viewpoint-based development environment.

A single tool enables developers as well as other tools to instantiate a view-
point template and to complete the contents of the viewpoint, that is the spec-
i�cation slots. Therefore, the tool should o�er editing commands for all the
assembly actions identi�ed in the work plan of the viewpoint template.

Inter-viewpoint consistency constraints imply relationships between di�er-
ent fragments contained in di�erent viewpoints. It is often important for a
developer to be able to traverse these relationships e�ciently. A requirements
engineer who is concerned with requirements traceability, for instance, may
want to review the class in an object-oriented design that re�nes an entity
de�nition. The viewpoint tool for entity de�nitions should, for example, o�er
a browsing command that makes a Booch viewpoint tool highlight the class
de�nition re�ning the entity. The Booch viewpoint tool, in turn, may o�er a

browsing command to �nd the C++ interface of the class. Note, that already
this simple browsing facility requires viewpoint tools to be integrated.

Support for assembly actions and browsing facilities does not necessarily
require that viewpoint-based tools be constructed. They could equally well be
supported by generic text/graphic editors and hypertext viewers. The support
that distinguishes a viewpoint-based tool from a generic editor is consistency
handling. With respect to tool support, there are several facets of consistency
handling. Consistency checks may be applied in a lazy or eager way. In a lazy
consistency checking approach developers of a viewpoint will decide when to
perform a check and what constraints to check for. In an eager approach the
viewpoint-based tool checks for consistency while the user modi�es a viewpoint
and provides immediate consistency feedback. Observed inconsistencies may be
tolerated or prohibited. Tolerated inconsistencies must be managed and di�erent
resolution strategies may or may not be enforced at some stage of the viewpoint
development.

If multiple developers cooperate on the resolution of inconsistencies, it will
inevitably be necessary to review the impact of everyone's changes as they
occur. With an eager approach towards constraint checking, the visualisation
of inconsistencies in one developer's viewpoint should be removed as soon as
some other developer has removed the source of the inconsistency. We note
that viewpoint-based tools have to be integrated in a way that they can access
and update each other's viewpoints in a concurrent way.

It is often not appropriate for a developer to be disturbed by other develop-
ers' changes. Developers may want to work in isolation for some period of time,
especially when they perform major changes to a viewpoint. Moreover, their
changes should only become visible to other developers after they have reached
a certain degree of (in-viewpoint) consistency. A way of achieving this is to ar-
range for viewpoint-based tools that are able to maintain di�erent versions of
a viewpoint. Version management has so far only gained widespread attention
for source code viewpoints that are produced during the implementation stage,
but we strongly believe that any viewpoint produced during any stage of a soft-
ware process deserves the same attention. The concept of viewpoint versions
is not only required not only to isolate developers from each other, but also to
keep track of viewpoint history while a system is under maintenance. When
a system is ported to a new platform, for instance, the versions of viewpoints
for the previous platform must be retained. Developers will then need to freeze
versions of a viewpoint so as to prevent it from being further modi�ed. This
will be necessary whenever a viewpoint has reached a state to which it might
have to be restored in the future. Developers will then need a mechanism to de-
rive a version from another frozen version and select a particular version. Then
successive changes must only be done in that selected version. If no version is
selected, a default version of a viewpoint will be used. Further version manage-
ment support is required for labelling versions, traversing through the version
history graph and for merging di�erent alternatives into a common successor
version.

3 Environment Architecture

Although viewpoints result from the di�erent perspectives of di�erent agents, it
will be essential to have a common conceptual representation for all viewpoints
so as to facilitate the de�nition of inter-viewpoint check actions. Having a
common conceptual representation, however, does not imply that all viewpoints
are supported in a uniform way and stored centrally.

3.1 Conceptual Viewpoint Representation

The style slots of viewpoints determine formal graphical or textual languages.
Even viewpoints that express informal perspectives may have a structure of, for
example chapters and sections, that can be expressed in a mark-up language
such as SGML [12]. In search of a common conceptual viewpoint representa-
tion, we can, therefore, assume that any viewpoint has some form of syntactic
structure that can be exploited.

The de�nitions of inter-viewpoint consistency constraints make reference to
syntactic viewpoint fragments [9]. If a consistency condition relates two frag-
ments, it is highly bene�cial to materialise this relationship within the view-
point representation, as opposed to computing it whenever the relationship is
needed; the relationship should be materialised as soon as the related fragments
are consistent with each other. Change propagations and browsing operations
can then be implemented fairly e�ciently by traversing the relationship. If
one or the other related fragment is changed, relationships can be exploited
for incremental reevaluation during check actions. Fragments to be related are
often lexemes that match terminal symbols of the underlying grammar rather
than more coarse-grained morphemes. Given that lexemes are usually involved
in relationships, it will be necessary to model the complete syntactic structure
of viewpoints using the common conceptual representation.

To break down the syntactic structure of a viewpoint, the speci�cation
slot of each viewpoint can be represented as an abstract syntax tree (AST),
whose structure is determined by the grammar in the style slot. Nodes in this
AST represent morphemes and lexemes. Nodes that represent morphemes are
generated by productions of the viewpoint grammar and are referred to as non-
terminal nodes. Lexemes are represented as terminal nodes, which have been
matched with terminal symbols of the viewpoint grammar. Edges in these
ASTs represent the syntactic decomposition and are referred to as syntactic
edges. Nodes may have attributes for storing layout information or semantic
data, for example symbol tables or details about inconsistencies to be resolved.

ASTs are generalised to abstract syntax graphs (ASGs) by the introduction
of semantic edges. Such an edge between two nodes represents a semantic re-
lationships between the two lexemes or morphemes represented by the nodes.
Note that these edges lead to nodes contained in ASTs of other viewpoints if
they are due to an inter-viewpoint consistency constraint. Therefore, the rep-
resentation of all viewpoints that are produced in a project can be considered
as one project-wide abstract syntax graph (see [8, 5]). The distinction between

syntactic and semantic edges achieves the identi�cation of those subgraphs that
model single viewpoints. All nodes that are in the transitive closure of nodes
reachable via syntactic edges from a designated root node belong to the view-
point together with all semantic edges connecting nodes within that set. These
edges model semantic relationships due to in-viewpoint consistency constraints.

1

dms

cl 1

2

1rels Relation
 ships

Booch
Diagram Classes Class

’BABaseString’

Class

Inherits
From

source

...n

...n

Class
Definition

id Class
Identifier

’BAString’

Inherited
ClassList

icl Inherited
 Class

’BABaseString’

public Public
Members

Data
Members

Member
Functions

mfs
Constructor OpName

name
’BAString’

Parameter
 List

Comment
’Mistakingly ...’

...n

protected
...

...private

Class
Definition

id Class
Identifier

Inherited
ClassList

icl

public

’BABaseString’

protected ...
...private

...

C++ Class Interface Subgraph

C++ Class Interface Subgraph

pl

’BAString’

DefinedIn

SuperClass

ToDesign

ToDesign

1
Parameter

type Type
Identifier

’BAString’

Constructs

Booch Diagram Subgraph

com

ClassDefi
nitionPool

target

BoochDia
gramPool

1

1

2

2

1
...

Figure 1: Fragment of a Project-wide Abstract Syntax Graph

As an example, consider Figure 1, which shows three excerpts from view-
point subgraphs. The subgraph in the upper left corner represents a graphical
Booch diagram viewpoint. The subgraph below represents an interface for a
C++ class BAString that occurs in the Booch diagram and the subgraph in the
upper right represents the class interface of BABaseString, the super class of
BAString. Node attributes, given in quotes at the upper right corner of a node
representation, store lexemes. Syntactic edges are drawn with solid arrows and
semantic edges are displayed as dashed arrows. The edge ToDesign, for instance
relates the root node of a C++ class interface viewpoint subgraph to the node
in the Booch diagram viewpoint subgraph that designs the class. Although
edges are directed, they are considered traversable in both directions. The two
nodes labelled BoochDiagramPool and ClassDefinitionPool act as directories for
the two viewpoint templates involved and are the starting point for queries
that have to look-up a particular viewpoint that has been instantiated from
that template.

This representation scheme is particularly appropriate for the e�cient im-
plementation of actions identi�ed in a viewpoint template's workplan. Assem-
bly actions are merely replacements of AST subtrees. In- and intra-viewpoint
check action can be implemented on the basis of traversals through the project-

wide ASGs. Semantic edges considerably reduce search spaces and shorten
traversal paths. Checking, for instance, the inter-viewpoint consistency con-
straint that each inheritance link in a Booch diagram viewpoint should be re-

ected by a respective declaration in the C++ class interface viewpoint can be
implemented in the Booch diagram in the following way: For each InheritsFrom

node in a Booch diagram viewpoint subgraph, an edge target leads to a super-
class cs of a class c identi�ed by the source edge. The ToDesign edges leading
to cs and c can be traversed in reverse direction to �nd the root nodes c0

s
and

c0 of the C++ class interface subgraph re�ning cs and c. Then the icl edge
starting from c0 is used to �nd the list of inherited classes. After that the list
is traversed and searched for a node whose lexeme attribute equals the lexeme
attribute of cs. Finally, a new semantic edge is created to connect the found
InheritedClass node with the class identi�er node that is reached by traversing
edge id from c0

s
. This edge might then be exploited for change propagations of

the class name of c0s or for e�ciently browsing to all subclasses of c0s.

3.2 Autonomous Viewpoint Implementation

The question arises how abstract syntax graphs can be implemented in an au-

tonomous manner. Autonomy is particularly important in order to achieve in-
teroperability of tools, which might not be changeable if they have been bought
o�-the-shelf. Then the abstract syntax graph structures and operations have to
be implemented using the integration capabilities that o�-the-shelf tools o�er.
Two major problems have to be solved to accomplish autonomy: heterogene-
ity and distribution. Heterogeneity of subgraph implementation occurs since
di�erent tools will use di�erent hardware- and operating system platforms. It
is also quite likely that di�erent programming languages have been used for
implementing tools. As di�erent hardware platforms use di�erent data rep-
resentation formats and as di�erent programming languages might be incom-
patible with each other, an integration framework is needed to resolve such
heterogeneity. Distribution is required for both the type and instance level
implementation of project-wide ASGs. At a type level, viewpoint owners have
to de�ne the structure and operations of ASG subgraphs to represent their
viewpoint templates. At an instance level, subgraphs have to be distributed
so as to meet the performance expectations of developers. A centralised ASG
database server might become a performance bottleneck when serving a large
numbers of users. Therefore, distributed ASG servers are needed for di�erent
viewpoint subgraphs to overcome such a performance bottleneck.

An architecture that has faced the challenge of supporting distributed and
heterogeneous computation is OMG's CORBA [16]. To use a CORBA im-
plementation for achieving a distributed and heterogeneous implementation of
viewpoints e�ectively, project-wide ASGs have to be de�ned using the object-
oriented concepts supported in CORBA's interface de�nition language (IDL).
In [6] we have discussed how ASGs can be de�ned with object-oriented con-
cepts. These considerations also apply to IDL. The main idea is to use classes
to de�ne ASG node types. Attributes model both node attributes and edges.

Edges are modelled as a pair of attributes so as to allow for traversals in both
directions. Attribute types restrict the type of nodes to which edges may lead.
Inheritance is used to model common properties of node types. Heterogeneous
edges, i.e. edges that may lead to di�erent types of nodes, are modelled by
polymorphism. ASG operations that represent workplan actions are modelled
as operations of classes. We suggest the use of IDL modules for restricting the
name space of de�nitions such as node type declarations.

module BoochDiagrams { module ClassInterfaces {
interface Class; interface ClassDefinition;

}; };

module ClassInterfaces { module BoochDiagrams {
interface ClassDefinition:NonTerminal{ interface Classes : NonTerminal {
readonly ClassIdentifier id; readonly sequence<Class> l;
readonly InheritedClassList icl; Class addClass();
readonly Members public; void deleteClass(in Class cursor);
readonly Members protected; ...
readonly Members private; };
readonly

BoochDiagrams::Class ToDesign;
... interface Class : Terminal {
}; readonly CORBA::String value;
interface ClassIdentifier:Terminal { readonly InheritsFrom INVtarget;
readonly CORBA::String value; readonly ClassInterface::
readonly InheritedClass INVDefinedIn; ClassDefinition INVToDesign;
void ChangeId(in CORBA::String new); void ChangeId(in CORBA::String new);
... ...
}; };
... ...
}; };

Figure 2: ASG de�nition in IDL

As an example, consider the excerpts from two IDL fragments shown in
Figure 2. The de�nitions on the left-hand side model nodes of the C++ class
interface subgraph displayed in Figure 1 and the de�nitions on the right-hand
side model nodes of the Booch class diagram subgraph. Let us now review how
the semantic edge ToDesign that leads from the C++ class interface subgraph
into the Booch diagram subgraph is modelled. The class interface implemen-
tation contains a forward declaration, an import that declares the existence of
a module BoochDiagrams with a class Class. This import enables the quali�ed
type BoochDiagrams::Class to be used in the de�nition of class ClassDefinition
as an attribute type for ToDesign. The reverse direction of the edge ToDesign

is modelled by attribute INVToDesign in class Class of module BoochDiagrams.
Attributes are declared here as read-only, which means that the edges they
model can be traversed, but not modi�ed by any other means than the op-
erations de�ned for the class. The operation ChangeIdent in class Class, for
instance, might change the name of a class in a BoochDiagram and then im-
plement a change propagation to the related C++ class interface de�nition
viewpoint that is reached by following the INVToDesign attribute.

It is not necessary to model all node types of a subgraph in IDL, because

only those nodes that participate in inter-subgraph semantic edges have to be
accessed from heterogeneous and distributed viewpoint-based tools. Therefore,
only these have to be exposed in an IDL interface. In-subgraph traversal paths
starting from these node types can be implemented in terms of local opera-
tions. This considerably increases performance for in-subgraph traversals and
modi�cations, since local rather than remote operation invocations are used.

3.3 ODBMSs for Persistent Viewpoint Storage

Some viewpoint tools may be bought o�-the-shelf, others may be constructed
anew. In this subsection we sketch how object database management systems
can be employed for the construction of new tools.

Given that CORBA is not required for in-subgraph traversals and oper-
ations, subgraphs can be stored in an object database management system
(ODBMS) in the way suggested in [7]. A review of current database technol-
ogy that lead to the selection of ODBMSs is provided in [2]. ODBMSs have
been standardised by the object database management group [3], a group as-
sociated with the OMG. ODBMSs combine object-oriented programming lan-
guages with database technology. ODBMSs that comply to this standard o�er
an object de�nition language (ODL) for schema de�nition purposes. ODL is
a strict superset of IDL. Database technology is used to transparently manage
(1) the mapping of objects to secondary storage media, (2) integrity preserva-
tion of objects against system failures, (3) control of concurrent access to these
objects and (4) network access from multiple clients to a central object server.

Objects managed by ODBMSs are persistent if they are reachable from
a persistent root. Persistent roots are designated in the schema. To store
subgraphs of a project-wide ASG persistently, we declare a set as a persistent
root for each type of root node of each subgraph. As soon as we enter an object
that implements a root node into this set the object becomes persistent. As the
subgraph is spanned by a tree of syntactic edges, each node in the subgraph is
reachable from the root node and therefore it is also persistent.

To meet the requirement of version management, multiple versions of those
subgraphs that represent viewpoints have to be managed. Since these sub-
graphs are implemented by multiple rather than single objects, version man-
agement of collections of objects has to be supported. Mechanisms for that
have not (yet) been addressed in the ODMG standard, though there are object
databases that provide version management facilities for collections of objects.

O2 [1], an ODMG compliant ODBMS, has been extended with such version
management facilities, as discussed in-depth in [6]. The facilities are o�ered as
a pre-de�ned class o2 version that maintains a collection of objects that are
versioned together. The class then provides methods to add or delete objects
from this collection and maintains a version history graph for it. It provides
operations to traverse through this graph, to derive new version, to compare
the di�erences between versions, to merge versions, to store a default version
and to select a version other than the default version. O2 manages a lazy
object duplication strategy, which means that di�erent versions of a version

collection share versions of component objects as long as they do not di�er.
For an evaluation of this duplication technique, see [6].

This versioning facility can be exploited during viewpoint-based tool con-
struction for version management of subgraphs stored in an O2 ODB. Thus, an
instance of class o2 version is associated with the root node of each subgraph.
New objects implementing new nodes of the graph are inserted into the version
collection associated with the root of the graph. Then version management
operations for subgraphs can be implemented directly on the basis of methods
exported from o2 version.

ODBMSs support the concept of ACID transactions that protect the in-
tegrity of ASG subgraphs against hardware- or software failures. They also
ensure serialisability of concurrent object updates. This will avoid inconsis-
tent analysis and lost update problems that can occur during concurrent ASG
updates. Viewpoint-based tools use these transactions to implement single as-
sembly or check actions, rather than complete editing sessions. The duration
of these actions tend to be in the order of magnitude of several hundred mil-
liseconds rather than hours or days. The advantage of using commands rather
than sessions as the unit of concurrency control is that other developers see the
e�ect of a modi�cation immediately after the action has been completed. As
discussed in [6], computer supported cooperative work can be achieved in this
way.

3.4 Combining CORBA and ODBMSs

Assuming that viewpoint development environments might contain external
tools that do not store viewpoints as objects within an ODBMS, the need
arises for those tools to use an object request broker to access ODBMS objects.
This means that ODBMS objects have to implement IDL object interfaces.
Vice versa, tool operations of ODBMS based tools are implemented within an
ODBMS schema. They might have to access viewpoints that are represented
as CORBA objects and that are managed outside the scope of the ODBMS.
Hence, an integration between ODBMSs and CORBA is required to facilitate
integrated viewpoint based environments.

In order to enable an external tool to invoke an operation from an object
stored in an ODBMS the operation has to be speci�ed in IDL and its imple-
mentation has to invoke the operation of the ODBMS schema. Some ODBMSs,
such as O2 and ObjectStore provide facilities to generate IDL interfaces and
their implementation directly from the schema. If these generation facilities
are not provided, the IDL interfaces have to be hand-coded. Any ODMG-93
compliant ODBMS has a C, C++ or Smalltalk language binding to implement
the methods of the schema. For any of these languages IDL language bindings
that determine how IDL operations are implemented are also standardised. Fi-
nally, the skeleton and the method implementation have to be registered in the
CORBA implementation repository so that they are activated as soon as the
external tool issues the operation execution request.

Attributes that implement inter-subgraph semantic edges, i.e. edges that

lead to subgraphs that are potentially managed outside the ODBMS, are im-
plemented in the ODBMS schema as attributes that store externalised CORBA
object references as character strings. If the ODBMS is ODMG-93 compliant,
the schema will be implemented in C, C++ or Smalltalk. Using the respective
CORBA IDL binding to C, C++ or Smalltalk, methods of the ODBMS schema
can internalise a CORBA object reference and then use the CORBA static or
dynamic invocation interface to invoke an operation belonging to a subgraph
that is managed by a remote CORBA object server.

An ODBMS transaction can guarantee integrity and serialisability of op-
erations that modify objects managed under control of the ODBMS. ODBMS
transactions, however, cannot guarantee integrity and serialisability of accesses
to objects managed outside the scope of the ODBMS. This is the case if
builders of viewpoint-based tools have decided not to implement subgraphs in
an ODBMS schema, or to store them in di�erent databases managed by di�er-
ent servers. Then distributed transactions have to be employed and the di�erent
ODBMS transaction managers have to participate. The CORBA transaction
service supports these distributed transactions by using a two-phase commit
protocol.

Most database systems, be they relational or object-oriented, support the
XA transaction protocol de�ned by the X/Open Group. The XA protocol stan-
dardises an application programming interface that is used during two-phase
commit. Using the XA interface, the CORBA transaction service can be im-
plemented in a way such that databases participate in distributed transactions.
The CORBA transaction service de�nes interfaces for transactional clients,
transactional servers and transaction coordinators. A tool issuing a command
that involves more than one abstract syntax graph database server would be a
transactional client and request the transaction coordinator to begin a transac-
tion. Any object database participating in that distributed transaction registers
itself with the implementation of the transaction coordinator using the XA pro-
tocol. When the tool wants to complete the tool command it requests a commit
from the coordinator. To implement that commit the coordinator uses (in the
�rst phase) the XA protocol to obtain completion votes from any participating
database. If all participating databases express that they are able to commit,
the coordinator implementation would use the XA interface to ask all databases
to commit (in the second phase). The implementation of transactional servers,
which is very complicated in general due to server uncertainty and a necessity
of forward recovery, is fully achieved by the participating databases as part of
the XA protocol implementation.

3.5 Summary

The architecture that has been developed in this section is summarised in Fig-
ure 3. At a conceptual level, di�erent viewpoint representations form one
project-wide abstract syntax graph. Edges between nodes of subgraphs rep-
resenting di�erent viewpoints are used for checking and preserving inter-view-
point consistency.

...

...

Object Request Broker

Common Object Services

Subgraph Impl. 1

Subgraph nSubgraph 1

ODB

Common Viewpoint
Conceptual
Representation

Autonomous Viewpoint
Implementations Subgraph Impl. 2

NFS

Figure 3: Architecture for Viewpoint-based Environments

The di�erent subgraphs, however, can be implemented in a fairly autono-
mous manner. Interoperability between the distributed and heterogeneous
viewpoint representations is achieved using CORBA. An object request broker
may integrate tools, for instance constructed using object databases running on
a UNIX platform, with tools that might store viewpoint representations in the
�le system and operate on a Windows platform. The broker resolves di�erences
in data representations and programming languages. The CORBA transaction
service is used to implement transactions that span the boundaries of single
database.

4 Related Work

The idea of using syntactic structures for viewpoint representation was devel-
oped during the early eighties in a number of projects including Gandalf [11]
and the Cornell Synthesizer Generator [15]. Tools generated by these systems
are used in programming environments, that means they are intended to sup-
port viewpoints in one language only. Therefore, they initially did not address
the problem of inter-viewpoint consistency constraints. Garlan suggested the
use of di�erent views of the same common representation [10]. As there is
only one common conceptual representation this approach, however, removes
the possibility of inter-viewpoint consistency constraint violations. Moreover,
none of these early tools provide su�cient support for concurrency control;
most store viewpoints in a
attened representation in the �le system. In the
circumstance of concurrent tool execution, this implies that changes done by
one tool to a viewpoint are lost as soon as some other tool, which had read the
viewpoint before the other has written it, writes its changes to the �le system.
Version management is also not supported explicitly by any of these tools.

A proof-of-concept prototype for viewpoints was provided in the Viewer en-

vironment [14]. This prototype was implemented in Smalltalk. While demon-
strating the appropriateness of viewpoint concepts, the Viewer prototype does
not address version management, distribution or heterogeneity, as our architec-
ture does. Tools within the viewer run in the same process and concurrent tool
execution is not addressed. Persistence is achieved by storing an image of that
process and transaction management that is needed for supporting multiple
users is not addressed at all.

The IPSEN environment [13] was among the �rst environments that con-
sidered inter-viewpoint consistency. Tools checking these inter-viewpoint con-
sistency constraints are physically executed in one process. Hence, the basic
mechanism to achieve inter-viewpoint consistency is implemented by procedure
calls and the integration of autonomously constructed tools into the IPSEN en-
vironment is not addressed. Cooperative support is not supported since the
home grown database system underlying IPSEN has only very limited concur-
rency control facilities.

5 Summary and Further Work

As our motivation, we have summarised how viewpoints can be used as a con-
ceptual framework for the integration of software development methods and
tools. We have discussed project-wide abstract syntax graphs for viewpoint
representation and persistent storage of viewpoints. We have then outlined
how syntax graphs can be implemented as distributed CORBA objects. For
tools that can be constructed anew we have indicated how persistence, version
management and transaction support can be achieved using ODMG object
databases. Finally, we have sketched how CORBA and ODMG databases can
be combined to achieve interoperability of heterogeneous and distributed view-
point based tools.

The construction of tools on top of object databases has been fully validated
and explored [6]. We have preliminary but promising experience with a-priori,
CORBA-based integration of tools using di�erent object database servers (of
the same type).

The approach outlined in this paper, however, will only achieve its full
potential if we can show that it is generally applicable to the integration of o�-
the-shelf software development tools. In order to make such a general claim,
we will have to demonstrate that every o�-the-shelf tool can be wrapped with
one or more CORBA objects. To support this claim a more detailed survey of
the integration mechanisms that are available in current o�-the-shelf tools will
have to be made.

We believe that our solution to integration of viewpoint development tools
is also applicable to other information systems, where information is kept in
di�erent autonomous and heterogeneous data stores. We have yet to investigate
this possibility.

Acknowledgements

My colleagues Stephen J. Morris and George Spanoudakis provided me with
valuable comments on earlier drafts, which allowed me to improve contents and
presentation of the paper.

References

[1] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented

Database System: the Story of O2. Morgan Kaufmann, 1992.

[2] N. S. Barghouti, W. Emmerich, W. Sch�afer, and A. H. Skarra. Information
Management in Process-Centered Software Engineering Enviroments. In
A. Fuggetta and A. Wolf, editors, Software Process, number 4 in Trends
in Software, chapter 3, pages 53{87. Wiley, 1996.

[3] R. Cattell, editor. The Object Database Standard: ODMG-93. Morgan
Kaufman, 1993.

[4] A. Dardenne, A. van Lamswerde, and S. Fickas. Goal-directed Require-
ments Acquisition. Science of Computer Programming, 20:3{50, 1993.

[5] W. Emmerich. Tool Speci�cation with GTSL. In Proc. of the 8th Int.

Workshop on Software Speci�cation and Design, Schloss Velen, Germany,
pages 26{35. IEEE Computer Society Press, 1996.

[6] W. Emmerich, J. Arlow, J. Madec, and M. Phoenix. Tool Construction
for the British Airways SEE with the O2 ODBMS. Theory and Practice

of Object Systems, 1997. To appear.

[7] W. Emmerich, P. Kroha, and W. Sch�afer. Object-oriented Database Man-
agement Systems for Construction of CASE Environments. In V. Ma�rik,
J. La�zanks�y, and R. R. Wagner, editors, Database and Expert Systems

Applications | Proc. of the 4th Int. Conf. DEXA '93, Prague, Czech Re-

public, volume 720 of Lecture Notes in Computer Science, pages 631{642.
Springer, 1993.

[8] W. Emmerich, W. Sch�afer, and J. Welsh. Databases for Software Engineer-
ing Environments | The Goal has not yet been attained. In I. Sommerville
and M. Paul, editors, Software Engineering ESEC '93 | Proc. of the

4th European Software Engineering Conference, Garmisch-Partenkirchen,

Germany, volume 717 of Lecture Notes in Computer Science, pages 145{
162. Springer, 1993.

[9] A. Finkelstein, D. Gabbay, H. Hunter, J. Kramer, and B. Nuseibeh. Incon-
sistency Handling in Multi-Perspective Speci�cations. IEEE Transactions

on Software Engineering, 20(8):569{578, 1994.

[10] D. Garlan. Views for Tools in Integrated Environments. PhD thesis,
Carnegie Mellon University, 1987.

[11] A. N. Habermann and D. Notkin. Gandalf: Software Development Envi-
ronments. IEEE Transactions on Software Engineering, 12(12):1117{1127,
1986.

[12] ISO 8879. Information processing { Text and O�ce Systems { Standard-
ised General Markup Language SGML. Technical report, International
Standards Organisation, 1986.

[13] M. Nagl. An Incremental and Integrated Software Development Environ-
ment. Computer Physics Communications, 38:245{276, 1985.

[14] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Expressing
the Relationships Between Multiple Views in Requirements Speci�cation.
IEEE Transactions on Software Engineering, 20(10):760{773, 1994.

[15] T. W. Reps and T. Teitelbaum. The Synthesizer Generator { a system for

constructing language based editors. Springer, 1988.

[16] R. M Soley, editor. Object Management Architecture Guide. Technical
report, Object Management Group, 492 Old Connecticut Path, Framing-
ham, MA 01701, USA, 1992.

[17] L. Vidal, A. Finkelstein, G. Spanoudakis, and A. L. Wolf, editors. View-
point '96. In Joint Proc. of the SIGSOFT '96 Workshops. ACM Press,
1996.

