
Automated Software Engineering, 9, 151–165, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

XMILE: An XML Based Approach for Incremental
Code Mobility and Update

CECILIA MASCOLO c.mascolo@cs.ucl.ac.uk
LUCA ZANOLIN∗ l.zanolin@cs.ucl.ac.uk
WOLFGANG EMMERICH w.emmerich@cs.ucl.ac.uk
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

Abstract. The eXtensible Markup Language (XML) was originally defined to represent Web content, but it is
increasingly used to define languages, such as XPL, that are used for coding executable algorithms, policies or
scripts. XML-related standards, such as XPath and the Document Object Model, permit the flexible manipulation
of fragments of XML code, which enables novel code migration and update paradigms. The XMILE approach that
we describe in this paper exploits these mechanisms in order to achieve flexible and fine-grained code updates,
even without stopping execution. We describe a Java-based prototype that implements XMILE and our experience
in using XMILE in the domain of code updates on mobile devices.

Keywords: code mobility, XML, code update

1. Introduction

Code mobility approaches (Fuggetta et al., 1998) introduce flexibility to the general pro-
gramming paradigms, allowing code to be dynamically distributed across different hosts of
a network. Mobile code can be pro-actively shipped using push-technologies or be fetched
on demand, for example using Java’s class loading mechanism. Mobile agents (Wong et al.,
1999; University Stuttgart, 1999; Gray, 1995) permit the migration of autonomous programs
from host to host, opening new possible communication strategies. In terms of physical mo-
bility, communication and synchronisation of mobile information devices, such as personal
digital assistants, palmtops, mobile phones and wearable computers, introduce new needs
in terms of middleware and context awareness.

Due to the novelty of the arisen problems and the speed with which technologies for
mobility are being developed, there is still uncertainty about both the level of flexibility and
the paradigms for logical and physical mobility. Java-based technologies, for instance, Java
Remote Method Invocation (Sun Microsystems, 1998) and Java Virtual Machines, such as
those built into Web browsers, offer a logical mobility granularity at a class level. Mobile
agents can be considered at the coarsest level of granularity achievable in a logical mobility
context. The unit of mobility in this case is the agent itself, that is, an element containing
code, data, and possibly some state.

Several application domains need a more flexible approach to code mobility than can
be achieved with Java and mobile agents. This flexibility can either be required as a result

∗This author was on study leave from Dipartimento di Ingegneria Elettronica, Politecnico di Milano, Milano, Italy.



152 MASCOLO, ZANOLIN AND EMMERICH

of low network bandwidth, scalability or adaptability requirements. In physical mobility
settings, for instance, the 9,600 baud bandwidth between a server and a GSM mobile phone
cannot cope with downloading large amounts of Java byte code from a server, every time
an update is needed. In case of mobile GPRS or UMTS networks, where the bandwidth is
much larger, providers will charge by transmitted data volumes; also, in this case, the update
of code of the services on the phones needs to be fine-grained to achieve cost effectiveness.
Applications on several thousands of mobile information devices have to be kept in sync
and be updated with new code fragments: scalability issues rise in this context, due to the
number of applications and to the frequency of the updates.

It has been identified that mobile code is a design concept that is independent of technol-
ogy and can be embodied in various ways (Fuggetta et al., 1998) in different technologies.
The eXtensible Markup Language (XML) (Bray et al., 1998) can be exploited to achieve
code mobility at a very fine-grained level. XML has not been designed for code mobility,
however it happens to have some interesting characteristics, mainly related to flexibility, that
allow its use for code migration. In particular, we will exploit the tree structure of XML docu-
ments and then use XML related technologies, such as XML Schema (Fallside, 2000), XPath
(Clark and DeRose, 1999) and the Document Object Model (DOM) (Apparao et al., 1998)
to modify programs and even their programming languages dynamically. The availability
of these XML technologies considerably simplifies the construction of application-specific
languages and their interpreters.

In this paper we describe extensions of our previous work on XML-based code mobil-
ity. In Emmerich et al. (2000) we explain how we use XML to achieve more fine-grained
mobility than in the approaches that are based on Java and we demonstrate that the unit
of mobility can be decomposed from an agent or class level, if necessary, to individual
statements. The paper (Emmerich et al., 2000) also describes how we support incremental
insertion or substitution of, possibly small, code fragments and open new application areas
for code mobility such as management of applications on mobile thin clients, for exam-
ple wireless connected personal digital assistants (PDAs) and mobile phones, and active
networking.

This paper describes how we extended and evaluated our previous work. In particular,
we now support incremental updates to code without the need for stopping any execution,
which supports changing applications that need to be active at all times. Moreover, we now
no longer use XML Document Type Definitions to define XML programming languages
but, use XML Schema instead. This means that the definition of the language grammar is
itself contained in an XML document and therefore amenable to the same code migration
and updates. This allows us to also change the syntax of an XML programming language.
Such changes demand subsequent changes to the language interpreter. We explain how
successive updates to interpreters of XML programming languages can be achieved by
structuring interpreters according to the syntax and then use Java class loading primitives
to update the interpreter code. We have applied the extended XMILE in a number of case
studies, some of which in collaboration with the local software industry, and we report on
our experience to date.

XMILE is built on the formal foundation for fine-grained code mobility that was established
in Mascolo et al. (1999). That paper develops a theoretical model for fine-grained mobility



XMILE: AN XML BASED APPROACH 153

at the level of single statements or variables and argues that the potential of code mobility
is submerged by the capability of the most commonly used language for code mobility, i.e.,
Java. The paper underlines the need of flexible methods for analysis and description of what
needs to be mobile, so that designers can decide what to move depending on the applications
they are targeting. In this paper, we share that vision and focus on an implementation of
fine-grained mobility using standardized and widely available technology.

This paper is further structured as follows. In Section 2 we describe the XMILE approach
to code mobility, the definition of domain specific languages, and the incremental mobility
approach. In Section 3, we outline the implementation of the XMILE system. In Section 4, we
discuss how we use the XMILE approach in applications of different domains, in particular,
mobile phone services update, programmable networks and thin clients application service
provision. We describe in detail the first application scenario. Section 5 evaluates the ap-
proach and identifies strengths and weaknesses comparing with other existing approaches.
Section 6 contains a summary of the work done and some future work.

2. The XMILE approach

XML provides a flexible approach to describe data and document structures. We now show
how XML can be used to describe code and explain how XML can be used to define
programs and how specific control flow tags can be defined and used in XML documents.

XML Schemas define the grammar for XML programs. The structure of all the element
that can be put in an XML program are defined in a schema. XML Schemas (or DTDs (Bray
et al., 1998), Data Type Definition which are the predecessors of Schemas) are very similar
to attribute grammars (Knuth, 1968). Each element in an XML Schema corresponds to
a production of a grammar. The complex type of an element defines the right-hand side
of the production. Contents can be declared as enumerations of further elements, element
sequences (i.e., <xsd:sequence>) or element alternatives (i.e., <xsd:choices>). These
give the same expressive power to Schemas as BNFs have for context free grammars.
Elements of XML Schemas can be attributed. These attributes can be used to store the
value of identifiers, constants or static semantic information, such as symbol tables and
static types. Thus, XML Schemas can be used to define the abstract syntax of programming
languages. We refer to documents that are instances of such Schemas as XML programs.
XML programs can be interpreted and in Section 3 we discuss how such interpreters can
be constructed using XML technologies. By sending XML programs or fragments of them
from host to host we achieve a very fine granularity for the unit of code mobility.

We use a simple example to demonstrate this idea. Consider a simple calculator appli-
cation installed on a mobile information device. The initial calculator installation is able
to add numbers and display the result. Figure 1 shows the XML program implementing
the calculator functions. The program is written in an XML programming language whose
syntax is defined by a Schema, an excerpt of which is shown in figure 2. The program starts
with the definition of the program name in element properties (line 3). The program
itself begins with the element program (line 4) and it then defines variables in order to
store the number in the display, the number in memory and the value of the button pressed.
The element at lines 9–26 implements a while loop. As will become clear later, the block



154 MASCOLO, ZANOLIN AND EMMERICH

Figure 1. XML code for the calculator.

element is used for defining control flow and supporting updates in non-reboot condi-
tions. For simplicity we omit the user interface definition code and just show the element
GetInput, which handles the user input on the calculator. Element CaseOf manages the
different inputs: either a digit, or the plus or the enter buttons are pressed. Specific elements
for each of these events are used. For instance, the Add element has three attributes (i.e.,
parameters), namely the two numbers to be added and the name of the variable where to
store the result.

The root of the grammar in figure 2 is the definition of the general element, which
contains the properties (which we do not show) and the program element. The program
element (line 2) can contain a list of choices of other elements. The grammar showed in
figure 2 is a simplified version of the actual one. We just show some of the elements we
used in figure 1, namely the While, var, block and Add tags. While (line 16) can contain
all the possible tags (a part from var) and it has two attributes, namely a counter for the
loop and an actual variable. The var tag (line 26) defines a variable with a name and a
value. The block tag (line 33) is used to structure the program in order to be able to have
updates in non-reboot conditions. Blocks essentially are monitors for concurrent access
to the code and they may act as scopes for variables. Blocks can contain all the possible
elements.

The Add tag (line 43) has three attributes which are the first and second numbers to add
and the resulting number.



XMILE: AN XML BASED APPROACH 155

Figure 2. XML schema for the calculator.



156 MASCOLO, ZANOLIN AND EMMERICH

Note that an XML schema is an XML file itself, and we show below how we exploit this
property for dynamic updates of language grammars.1

The calculator application is running on a mobile information device. The XMILE approach
allows us to update the code by transferring fragments of new code from a server to the
phone and then dynamically patching the original code. Unlike Java programs, which are
sent in a compiled form, XML programs are transferred in source form and then interpreted
on the remote host. Unlike Java, XML does not confine us to sending coarse-grained units
of code; XML documents do not need to begin with the root of the grammar, they can
also start with other symbols of the grammar. This enables us to specify sub-programs and
even individual statements. We refer to such code fragments as XML program increments.
Hence, we can specify complete programs as well as arbitrarily fine-grained increments
in XML. The XML increments will be shipped together with some information on how to
modify the remote XML program. For instance, let us assume that we want to update the
calculator adding the ability of subtracting numbers. For this we need to add some code to
the calculator. Figure 3 shows the program increment that is shipped to the mobile phone
to update the application.

The program increment that we need to update can be sent separately without the need
to re-send the complete program. As we will describe in detail in Section 4, this is required
in situations where slow network connections, or pay by volume charges are involved.

The XML program structure makes the dynamic manipulation of the code a lot easier.
An XML program can be seen as a tree and the DOM (Apparao et al., 1998) API provides
operations for the navigation and modification (adding/deleting/changing) of branches of the
program tree. The addressing of the particular branch that needs to be modified is performed
using the XPath language (Clark and DeRose, 1999). Going back to our example, figure 4

Figure 3. XML program increment.

Figure 4. The calculator program tree.



XMILE: AN XML BASED APPROACH 157

Figure 5. The XPath expression for the addressing of the insertion point.

Figure 6. The new DOM tree after the code update.

shows the DOM representation of the program in figure 1, while figure 5 shows the XPath
expression addressing the point where the new increment (the minus operator) needs to be
added in the program.

Figure 6 shows the new tree structure after the migration and insertion of the program
increment for the minus operation into the calculator program.

Given the fact that most of the applications we are targeting (on mobile devices and
in network settings) need to be updated at run-time, XMILE was conceived with the re-
quirement that code updates need to be performed on-the-fly. We exploit the DOM tree
structure to determine when and how the updates and the code interpretation may be
interleaved. For example, in the calculator example, the user is not aware of the code
migration and update until the new “minus” button pops up on his/her window. The
user is allowed to perform operations during the code update. As we will show, the
XMILE engine handles the concurrency of events defining “blocks” of code which act as
monitors.

As described earlier, XML Schemas are themselves XML files. This allows us to dynam-
ically modify the grammar of an XML programming language. In the above example, we
did not have to change the grammar and assumed that our XML programming language
already has a Minus operator that we then used in the XML code increment. If we, however,
want to modify the language, for example by adding a “multiplication” operator so that in
a subsequent update we can also include a multiplication button to the program, we could
transmit the schema update shown in figure 7 with a specific XPath expression to define
the update point.2 To implement the richer semantics of the language, we then need to also
evolve the interpreter. We rely on Java code mobility and class loading of new interpreter
classes for that purpose and discuss that in the next section.



158 MASCOLO, ZANOLIN AND EMMERICH

Figure 7. XML Schema update code.

3. Implementation of the approach

In this section we outline the architecture and the implementation of our approach. Every
XMILE enabled machine runs Java and our XMILE engine. The XMILE engine is able to parse
and interpret XML programs such as the one in figure 1 for the calculator. The engine is able
to perform the concurrency control of updates to XML programs that are being executed, so
as to allow dynamic modification of XML programs through other XML programs. Figure 8
describes the architecture of two XMILE hosts and their interaction procedure.

XML programs with different purposes can be built and run on the same XMILE engine.
The XMILE engine spawns an interpreter for each XML program that a host receives (for
example for the calculator program of figure 1). As we mentioned earlier, the XML programs
are structured using blocks, which act as monitors for concurrent accesses, exploiting the
XML program tree structure. This means that whenever an update to any statement contained
in a block is not possible whenever an interpreter executes statements that are contained in
the block. This permits the dynamic modification of programs through other programs at

Figure 8. The architecture of two XMILE hosts and their interaction.



XMILE: AN XML BASED APPROACH 159

Figure 9. XML code for the listener.

run-time. Programmers can optimize concurrency control adding blocks (using the prim-
itive <block> </block>. Hierarchical locking is used to guarantee consistency in the
locking.

We apply the same mechanism that is used for executing XMILE programs for updating
these programs, which means that the program updates are sent and received by XML
programs, too. We refer to the sending program as a communicator and to the receiving
program as a listener. The XMILE engine contains built-in interpreters for communicator
and listener programs. They use TCP/IP through a socket interface for their communication
between each other, however any other middleware could be used (in a previous prototype
we used Java RMI). An example of a listener program is shown in figure 9.

The CommLoop loop in the program makes the program wait on a specific port for
some input (the Java class for the tag implements sockets communication) and when
received it calls the executor of the root class for the program received through the tag
Create.

We used Sun JDK1.3, and the Apache Xerces (for XML parsing and DOM API level 2)
and Xalan (for XPath processing). Let us now describe more in detail the interpretation of
an XML program.

3.1. Interpreter

Whenever a program is received on a host a XMILE Interpreter is spawned and begins to
parse the program. XMILE Interpreters are structured in such a way that there is a class for
every element type of the XML language and that class has an execute method, which is
called when control is given to an element of that type. Revisiting our calculator example
of figure 1, when element <While ...> is found the class While.class is loaded into
the interpreter and its execute method is called. The interpretation and execution of the
XML program follows the syntax tree structure and the DOM API is used to traverse the
child elements of a particular node and to read attribute values. Whenever a Java class is
not present locally dynamic class loading is used to retrieve it remotely. The tag syntax can
specify the host from where the class loader should fetch the class. An example of this is
in figure 10: the tag Minus specifies that if the class is not found locally it can be loaded
from host="sushi.cs.ucl.ac.uk".3 Figure 8 shows the class loading from the local
repository and the remote fetching of classes.



160 MASCOLO, ZANOLIN AND EMMERICH

Figure 10. An XML program for updating the calculator.

3.2. Code update

A program for the update of other programs can be written and shipped to a host as a
normal XML program. When received an interpreter is spawned as usual. As described
in Section 2, an XML program fragment and an XPath expression can be migrated and
these are sufficient to specify how to modify a program. In order to standardize the way
we update programs we write the XML code update and the XPath expression in a single
program that is shipped to the remote host. An example of an update program is the one in
figure 10.

The program contains two main parts. In between the two update tags the update code
(i.e., the “Minus” already shown in Section 2) is contained. The program itself is contained
in the program element and it instructs the interpreter to insert a child into the program
calculator, under the indicated XPath expression. This approach allows us to specify
more complex program updates, such as duplication or movement of already existing lines
of code, removal, insertion in different positions. Once again, the blocks defined in the
code act as monitor for concurrency control of the updates and the interpretation. Several
updates can be performed by different programs at the same time. This allows us to handle
code modification on-the-fly. Also a caching system for the block to be updated is also
implemented for performance reasons.

4. Evaluation

XMILE has been applied in a variety of settings, such as code update on mobile devices,
programmable networks and reconfiguration of application servers. In each of these settings
flexibility and changeability were quite important. We now describe an application to the
management of user interfaces of mobile phones in more detail. An account of a XMILE

application to programmable network (Tennenhouse and Wetherall, 1996) is described
in Meer et al. (2001) and Mascolo et al. (2001) and we refer the interested reader to those
references for more details. A XMILE application to the reconfiguration of application servers
is described in Zanolin (2001).

The calculator that we used throughout this paper is an example of a simple application
that might be deployed on mobile phones or PDAs. Mobile phone operators might want to
be able to update these applications. To date phone operators, for example, deploy about



XMILE: AN XML BASED APPROACH 161

20 different user interfaces on each handset to cater for different languages. If the user
interface were described in an XML language, operators could use XMILE to download
a new user interface whenever the language preferences of the user changes and in that
way safe significant amounts of memory. The ability to flexibly update the behaviour of a
large number of phones might also appeal when it becomes necessary to fix software faults
without having to recall a large number of handsets, such as recently experienced by Nokia
or NTT DoCoMo.

We implemented the example of the calculator shown in Section 2 on the Symbian mobile
phone operating system (Tasker, 2000), which includes a Java Virtual Machine. In order to
evaluate the performance, we installed XMILE on an Ericsson MC 218, which has 16 MB
of memory and a 37 MHz ARM processor. We now report on the performance of XMILE

on this phone with respect to memory consumption, performance of the application and
performance and costs of updates.

The Java Virtual Machine on the MC 218 requires about 2 MB of main memory. XML
parsers, the XPath processor, the DOM tree of the calculator and the AWT user interface
consume a further 1 MB bringing the total memory used to about 3 MB of main memory.
Figure 11(a) shows the calculator installed on the phone.

In order to evaluate the run-time performance of the XMILE engine, we compare the XMILE

calculator with a functionally equivalent application that is written and compiled into byte
code using Java 1.1.6. To start the Java byte-code calculator takes about 6.3 seconds, while
the launch of the XMILE calculator takes about 14.6 seconds. This total time breaks down
into initialization of the XMILE engine (4.8 seconds), start of the calculator (2.6 seconds)
and 7.2 seconds to display the AWT user interface. Thus, the initialization of the XMILE

calculator takes a little more than twice as long as the startup of the byte code calculator.
We note that booting of the XMILE engine only needs to be done once (e.g., when the
phone is switched on) and then it can execute a number of applications and therefore the
results are comparable. Once the startup is completed, the delays incurred when using
the application to perform calculations are not noticeable neither in the byte code nor the
XMILE calculator application because the operations performed are not computationally
intensive.

Figure 11(b) shows the new user interface after the code update has happened. With
respect to the example we used in Section 2 the calculator program for this application also
handles the user interface update for the “minus” button. The total size of the XML program

Figure 11. (a) Calculator on Symbian phone (b) Updated calculator.



162 MASCOLO, ZANOLIN AND EMMERICH

update for both the functionality and the additional button that had to be transmitted to the
phone in this example is 519 bytes. The updates can be sent to the phone either using IRDA
or using a network protocol for example over GSM. Transmitting the above code using a
9,600 baud GSM link takes about 500 milliseconds when reception is good and the update
time drops to about 100 milliseconds with GPRS. Thus, the cost at the time of writing
this paper for a GSM transmission would be 0.083 pence (5 pence per minute connection)
and for GPRS (1 pound sterling per Megabyte transmitted) it would amount to 0.05 pence.
When changing the Java byte code calculator, we would assume that the Java Archive (jar)
that includes the calculator code needs to be sent to the phone and for adding the same
functionality this amounts to a size of about 57,000 bytes, which is two orders of magnitude
larger than updating the XMILE calculator. To perform this update over a GSM connection
would take about 60 seconds and would incur a cost in the UK of about 5 pence and over a
GPRS connection it would take about 10 seconds and incur a cost of 5.5 pence.

Therefore, the use of XMILE is beneficial and cost effective whenever applications do not
perform any computationally intensive tasks (as is often the case in front-end components
of distributed systems), there is a need to update the application and the data links between
sender and receiver are either slow or expensive.

5. Discussion and related work

In this section we discuss the advantages and current disadvantages of the approach and
compare it to related work. We also hint at how the disadvantages may be overcome.

We have demonstrated how XML and its related technologies can be used for both
specifying and implementing incremental code mobility at any granularity. By not fixing a
particular granularity for mobile code, we enable complete programs as well as individual
lines of code to be sent across the network. The combination of fine-grained and incremental
mobility achieves a degree of flexibility previously unavailable.

Mobile agents (Wong et al., 1999; University Stuttgart, 1999; Gray, 1995; Johansen et al.,
1995) provide mobility at the agent level with some finer degree of mobility when a Java
class is fetched using Java class loading after an agent moves, or when a Tacoma folder
contains code which is patched into another agent. Other mobile code based approaches,
particularly µ-CODE (Picco, 1998), allow the designer to decide on the granularity of the
mobility depending on the application. However, for the approaches based on Java, the
finest granularity of the unit of mobility is at the class level. Other approaches not Java
based have also been developed (Levy et al., 1988; Tschudin, 1994; White, 1996; Cardelli,
1995). However, in general, the focus has not been on trying to provide a flexible granularity
for the unit of mobility, but instead, by fixing a specific granularity in providing a specific
paradigm, hiding details from the application layer. The XMILE approach is novel in that it
supports both Java class loading of interpreter classes but also incremental code mobility
of individual interpreted statements.

We have examined the application of incremental and fine-grained code mobility to
application management on mobile devices, programmable network settings, and mobile
devices application service provision and we found strong evidence that they are both needed
and sufficient.



XMILE: AN XML BASED APPROACH 163

The calculator example has shown how to migrate and add a code fragment to the program
and how to expand the grammar. However, code update and deletion are also possible using
update programs like the ones shown in Section 3 (specific tags for different operations you
would want to perform have been defined in XMILE). XMILE allows the modification of code
at three different levels. First, XML tags can be added/modified/deleted from the XML
program. We can imagine that Java classes corresponding to tags are implemented so that
users just have to write an XML program or program increment. However, in some infrequent
cases we still can imagine to have another level of mobility driven by the Java class loader
on each XMILE enabled machine. In the rare event in which a Java class corresponding to an
element needs to be modified, the class loading mechanism can be instructed to download
the new class from a remote repository. Finally, XMILE supports the modification of the
grammar of our domain specific language as we showed in Section 2.

Moreover, XML files can be validated against a Schema during parsing. This operation
can be useful when we need to ensure that the used tags respect certain conditions and
a particular syntax. The validation offers some levels of integrity checks, which could be
strengthened by additional also defining static semantic checks, such as adding types to
variables. The validation is optional and can be turned off if not needed. However, even
with validation, security is an issue when dealing with code modification and mobility and
we plan to analyze this issue further, especially in the context of programmable networks.
Some more security could be obtained constraining the communication sockets to be open
only at specific times.

As we briefly mentioned in Section 3, XML programs that send XML programs to other
hosts can be easily written. It is also possible to use XPath to address specific parts of
the same program in order to ship them. These two features combined support pro-active
mobility (in the same way as mobile agents do), or with the fine granularity, to mobility
of parts of the same programs to other hosts. We have not investigated in this direction
further, however we believe this is an interesting capability that underlines the flexibility of
XMILE.

One of the novelties of XMILE is the ability to change code, while the code is being
executed. This can be done by exploiting the tree structure of the programs and the DOM
API. Specific elements are specified in XMILE to define blocks in the XML programs. The
blocks are of monitors which synchronize concurrent access by the interpreter and the
updater to guarantee consistency. As the blocks need to be defined by the programmer,
the programmer is also able to define more efficient and less efficient programs (in the
updating perspective) as with larger blocks are updates of elements contained in that block
can only happen less frequently.

As we said, for every application, a domain specific language must be defined in XML.
For every new tag a corresponding Java class needs to be implemented. XMILE comes with
a set of common already defined tags. In our experience, only a small number of new tags
need to be defined from scratch for every application. The definition of the Java classes
for these tags is usually quite easy. XPL (VBXML, 2000) is an XML based extensible
programming language. The aim of it is to be able to allow programming, mainly scripting,
through a set of XML tags. XMILE follows the same line, however the motivations of XPL
are still very vague. XMILE aims at a fine-grain way to update remote programs, possibly



164 MASCOLO, ZANOLIN AND EMMERICH

defined with a specific extensible grammar linked to a domain, versus th XPL vision of a
generally defined grammar with which to program.

6. Conclusion and future work

We have described an XML based system for fine-grained code migration and update. We
have illustrated the main ideas behind the approach and the implementation details of XMILE.
We have shown how we are using XMILE in different application domains, such as mobile
devices application update, programmable networks, and mobile devices application service
provision. We plan to continue to apply XMILE in different context to prove its flexibility.
We are defining a policy XML based language and we want to use XMILE to distribute and
update different kind of policies such as security policies.

Technologies, such as XML RPC (2001), SOAP (Box et al., 2000) or JAXM (2001)
could potentially be integrated with our approach in order to achieve code mobility in more
flexible ways: we plan to investigate this research direction.

From a logical mobility point of view we are interested in extending our variable bind-
ing mechanism allowing dynamic downloading of non present variable in addition to the
dynamic local binding.

The XMILE web site can be found at http://pizza.cs.ucl.ac.uk/xmile.

Acknowledgments

We would like to thank Andrew Bud, Anthony Finkelstein and Richard Gold for participating
in the discussion and in the application of XMILE. We thank Jon Crowcroft and Hermann
de Meer of UCL network research group for their support using XMILE for programmable
networking. We also gratefully acknowledge the support from MBlox Ltd.

Notes

1. The actual grammar used in the application contains some tags grouping which we do not show here that help
in the modularization of the grammar update process.

2. The actual grammar update to add a new command also needs to update the list of commands in every other
command. As we said the schema in figure 2 is a simplification of the actual one we use. For convenience, we
grouped the possible commands in subsets in order to simplify the update process. Also, as will become clear
in Section 3, the double update is performed using another XML program, which sequentially executes the two
operation on the Schema.

3. The host is an optional attribute of the elements. For reasons of brevity the grammar in figure 2 did not show
this.

References

Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Le Hors, A., Nicol, G., Robie, J., Sutor, R.,
Wilson, C., and Wood, L. 1998. Document object model (DOM) level 1 specification. W3C Recommenda-
tion http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001, World Wide Web Consortium.



XMILE: AN XML BASED APPROACH 165

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H., Thatte, S., and Winer, D.
2000. Simple object access protocol (SOAP). Technical Report http://www.w3.org/TR/SOAP/, World Wide
Web Consortium.

Bray, T., Paoli, J., and Sperberg-McQueen, C.M. 1998. Extensible markup language. Recommendation
http://www.w3.org/TR/1998/REC-xml-19980210, World Wide Web Consortium.

Cardelli, L. 1995. A language with distributed scope. In Proc. 22nd ACM Symp. on Principles of Programming
Languages (POPL).

Clark, J. and DeRose, S. 1999. XML path language (XPath). Technical Report http://www.w3.org/TR/xpath, World
Wide Web Consortium.

Emmerich, W., Mascolo, C., and Finkelstein, A. 2000. Implementing incremental code migration with XML. In
M. Jazayeri and A. Wolf, editors, Proc. 22nd Int. Conf. on Software Engineering (ICSE2000). Limerick, Ireland,
June 2000, New York: ACM Press, pp. 397–406.

Fallside, D.C. 2000. XML schema. Technical Report http://www.w3.org/TR/xmlschema-0/, World Wide Web
Consortium.

Fuggetta, A., Picco, G.P., and Vigna, G. 1998. Understanding code mobility. IEEE Trans. on Software Engineering,
24(5):342–361.

Gray, R. 1995. Agent Tcl: A transportable agent system. In Proc. of the CIKM Workshop on Intelligent Information
Agents.

Java API for XML Messaging (JAXM). 2001. Available at http://java.sun.com/xml/xml jaxm.html.
Johansen, D., van Renesse, R., and Schneider, F. 1995. Introduction to the TACOMA distributed system. Technical

Report 95-23, Department of Computer Science, University of Troms, Norway.
Knuth, D.E. 1968. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–145.
Levy, J., Hutchinson, H., and Moore, D. 1988. Fine-grained mobility in the emerald system. ACM Transactions

on Computer Systems, 6(1):109–133.
Mascolo, C., Emmerich, W., and De Meer, H. 2001. An XML based programmable network platform. In ICSE

Workshop on Software Engineering and Mobility, May 2001.
Mascolo, C., Picco, G.P., and Roman, G.-C. 1999. A fine-grained model for code mobility. In O. Nierstrasz and

M. Lemoine, editors, Proc. 7th European Software Eng. Conf. (ESEC/FSE 99), Vol. 1687 of LNCS, Berlin:
Springer, pp. 39–56.

De Meer, H., Emmerich, W., Mascolo, C., Pezzi, N., Rio, M., and Zanolin, L. 2001. Middleware and management
support for programmable QoS-network architectures. In Short Papers Session of 3rd Int. Workings Conference
on Achve Networks (IWAN01), October 2001.

Picco, G.P. 1998. µCODE: A lightweight and flexible mobile code toolkit. In K. Rothermel and F. Hohl, editors,
Proc. 2nd Int. Workshop on Mobile Agents, Vol. 1477 of LNCS, Berlin: Springer, pp. 160–171.

Sun Microsystems. 1998. Java Remote Method Invocation Specification, Revision 1.50, JDK 1.2 edition.
Tasker, M. 2000. Professional Symbian Programming. Wrox.
Tennenhouse, D.L. and Wetherall, D.J. 1996. Towards an active network architecture. Computer Communication

Reviews, 26(2).
Tschudin, C.F. 1994. An Introduction to the M0 Messenger Language. University of Geneva, Switzerland.
University Stuttgart. 1999. Mobile agent list. Available at http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/

mole/mal/mal.html.
VBXML. 2000. XPL: The eXtensible programming language. Available at http://http://www.vbxml.com/xpl.
White, J. 1996. Telescript technology: Mobile agents. In J. Bradshaw, editor, Software Agents. AAAI Press/MIT

Press.
Wong, D., Paciorek, N., and Moore, D. 1999. Java-based mobile agents. Communications of the ACM, 42(3):

92–102.
Xml-rpc. 2001. Available at http://www.xml-rpc.com/
Zanolin, L. 2001. An XML-based middleware for fine-grained code mobility and update. Technical Report,

Politecnico di Milano. Tesi di Laurea.


