
A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 1 –

Answer Question 1 and two further questions

1. Answer the following five parts

a. Describe the concept of transactions by discussing what atomicity, consistency, iso-

lation and durability mean.

[8 marks]

Transactions are sequences of operations that are atomic, consistency preserving, isolated
and durable. Atomicity means that the sequence is performed completely or not at all. Con-
sistency preservation means that the sequence leads from one consistent state to another
and inconsistencies are confined to within the transaction. Isolation means that the transac-
tion is executed in isolation to any concurrent transactions and durability means that once
the transaction is completed its changes will persist.

b. What is two-phase locking and how does it achieve which of the above transaction

properties?

[5 marks]

Protocol for serializing transactions. Achieves isolation. Lock acquisition phase and lock
release phase. Only resources for which lock has been acquired are accessed. Locks are
only granted if request is compatible with previously granted lock requests.

c. Explain the circumstances in which you would use hierarchical locking and the lock

modes that are required for this concurrency control scheme. For which situations

are each of these lock modes intended?

[6 marks]

Hierarchical locking is used when there are containers that contain resources that may be
locked individually. It defines the following four locking modes: A Read lock (R) indicates
that a process may read a resource or any of the resource that is contained therein. A Write
lock (W) indicates that a process may modify a resource or any of the resources that is
contained therein. An Intention Read lock (IR) indicates that a process may have read locks
on any of the resources that are contained in the IR locked resource. Finally, an Intention
Write lock (IW) indicates that a process may have a write lock on the resources that are
included in the container.

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 2 –

d. Assume you have to build the concurrency control manager of a database man-

agement system. The database consists of many database tables, each of which is

composed of a set of records. Each record of the table has several attributes. You

choose to use hierarchical locking. Explain what the manager needs to do for:

i. changing an attribute value;
[1 marks]

request IW lock on database, table, record and W lock on attribute.

ii. reading an attribute value;
[1 marks]

request IR lock on database, table and record and R lock on attribute.

iii. modifying a record;
[1 marks]

request IW lock on database, table and W lock on record.

iv. reading all attributes of a record;
[1 marks]

request IR lock on database, table and R lock on record.

v. updating a complete column;
[1 marks]

request IW lock on database, W lock on table

vi. reading a complete column;
[1 marks]

request IR lock on database, R lock on table

vii. inserting a table;
[1 marks]

request W lock on database

viii. reading the complete database;
[1 marks]

request R lock on database

[Subtotal 8 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 3 –

e. Two-phase locking may lead to deadlocks. This causes many complications in the

design of database management systems. Absence of deadlocks can be established

using reachability analysis on LTSs. Why can this method not be used to implement

deadlock-free database concurrency control?

[7 marks]

Queries and transactions are defined in an ad-hoc manner and it is more computationally
expensive to compute a labelled transition system and analyse it for absence of deadlocks
than it is to detect and recover from deadlocks.

[Total 34 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 4 –

2. Answer the following three parts.

a. Draw an equivalent LTS for the following FSP process definitions:

i. A=(a -> b -> (c -> A | d -> A)).
[2 marks]

ii. A=(a -> B), B=(b->B | a->A).
[3 marks]

iii. A=(a->b->A). C=(c->b->C). ||AC=(A||C).
[3 marks]

iv. A=(a->b->A). C=(c->d->C). ||AC=(A||C)/{b/c}.
[3 marks]

[Subtotal 11 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 5 –

b. You have been asked to assist in the re-engineering of the control software for the

Northern Line of London Underground. There is a particular difficulty because of

the intersection of the Bank/Charing Cross and the Edgware/High Barnet branches

between Camden and Euston. In particular, there are trains coming from both Edg-

ware and High Barnet that need to be dispatched onto the Bank and Charing Cross

branches. For southbound trains, there is thus a piece of track that needs to be pro-

tected by signalling equipment in such a way that trains can be dispatched without

crashing into each other.

Complete the following FSP model to describe the signalling equipment, taking

into account that trains can concurrently arrive from the Edgware and from the High

Barnet branches and must not crash into each other.

Signal = (green -> red -> Signal).

Train = (request -> ... -> Train).

||Branch = ...

Controller = ...

||Camden = (edgware:Branch || highbarnet:Branch || Controller).

[13 marks]

Signal = (green -> red -> Signal).
Train = (request -> green -> cross -> leave -> red -> Train).
||Branch = (Signal || Train)
Controller = (edgeware.green -> edgeware.red ->

highbarnet.green->highbarnet.red -> Controller).
||Camden = (edgware:Branch || highbarnet:Branch || Controller).

c. For the model of Question 2.b specify a safety property so that you can use a model

checker to prove that there is never more than one train crossing the southbound

track intersection between Camden and Euston.

[9 marks]

property SafeCrossing=(edgware.cross->edgware.leave->SafeCrossing
|highbarnet.cross->highbarnet.leave->SafeCrossing).

[Total 33 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 6 –

3. Answer the following three parts

a. Consider the following Labelled Transition Systems and give equivalent FSP pro-

cess algebras

i.
[2 marks]

A=(a -> b -> B),
B=(b->B

|a->A).

ii.
[3 marks]

A = (a -> b -> A).
||AA = (c:A || d:A).

iii.
[3 marks]

A = (a -> b -> A).
||AA = (c:A || d:A)/{c.a/d.a}.

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 7 –

iv.
[3 marks]

A = (a -> aa -> A).
B = (c -> B).
||AB = (A || B)\{aa}.

[Subtotal 11 marks]

b. Consider the McDonald’s Restaurant on the corner of Warren St and Tottenham

Court Rd. At lunchtime, the restaurant has four waiters (lucy, bob, alice and jill),

who take orders (mostly from UCL students). As we are in England, a student who

arrives at McDonald’s enters an arrival queue. She waits until one of the waiters

becomes available. The waiter then takes her order, serves her and finally the stu-

dent pays her bill. Model how students queue and how their orders are processed

concurrently in FSP.
[13 marks]

const MaxIF=4
range IF=0..MaxIF
set Waiters={lucy, bob, alice, jill}

ARRIVE=ARRIVE[0],
ARRIVE[num:IF]=(enterarrq[num]->ARRIVE[(num+1)%MaxIF]).
ARRIVALQ=(enterarrq[num:IF]->ARRIVALQ[num]),
ARRIVALQ[n0:IF]=(enterarrq[num:IF]->ARRIVALQ[n0][num]

|Waiters.order[n0]->ARRIVALQ),
ARRIVALQ[n0:IF][n1:IF]=(

enterarrq[num:IF]->ARRIVALQ[n0][n1][num]
|Waiters.order[n0]->ARRIVALQ[n1]),

ARRIVALQ[n0:IF][n1:IF][n2:IF]=(
enterarrq[num:IF]->ARRIVALQ[n0][n1][n2][num]

|Waiters.order[n0]->ARRIVALQ[n1][n2]),
ARRIVALQ[n0:IF][n1:IF][n2:IF][n3:IF]=(

Waiters.order[n0]->ARRIVALQ[n1][n2][n3]).

Waiter = (order[c:IF] -> serve [c] -> pay[c] ->Waiter).

||McDonalds=(Waiters:Waiter|| ARRIVE || ARRIVALQ)}.

c. Specify the liveness property that “hungry students eventually get their lunch”.
[9 marks]

progress LunchServed={Waiters.serve[IF]}

[Total 33 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 8 –

4. Answer the following three parts.

a. For each of the following FSP processes, define the alphabet of:

i. Server = (receive -> process -> send-> Server).
[2 marks]

{receive, process, send}

ii. Client = (send -> wait -> receive -> Client)\{wait}.
[2 marks]

{receive, send}

iii. {a,b}::Server
[3 marks]

{a.process, a.invoke, a.return b.process, b.invoke, b.return}

iv. ||CS=(a:Client||b:Client||{a,b}::Server}/{a.send/a.invoke,

b.send/b.invoke,

a.receive/a.return,

b.receive/b.return}.

[4 marks]
{a.process, a.send, a.receive b.process, b.send, b.receive}

[Subtotal 11 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 9 –

b. Consider the following FSP Process of a cross country railroad that has only a single

track, which connects villages N and S via M.
const MaxTrains=4

range Trains=0..MaxTrains

NM=NM[0][0],

NM[nb:Trains][mb:Trains]=

(when (nb==0 && mb<MaxTrains) go_nm->NM[nb][mb+1]

|when (mb==0 && nb<MaxTrains) go_n->NM[nb+1][mb]

|when (mb>0) arr_at_m_from_n->NM[nb][mb-1]

|when (nb>0) arr_at_n->NM[nb-1][mb]

|when (nb>0&&mb>0) unsafe->ERROR).

SM=SM[0][0],

SM[mb:Trains][sb:Trains]=

(when (mb==0 && sb<MaxTrains) go_s->SM[mb][sb+1]

|when (sb==0 && mb<MaxTrains) go_sm->SM[mb+1][sb]

|when (sb>0) arr_at_s->SM[mb][sb-1]

|when (mb>0) arr_at_m_from_s->SM[mb-1][sb]

|when (mb>0&&sb>0) unsafe->ERROR).

N=(go_nm->N |arr_at_n->N).

S=(go_sm->S |arr_at_s->S).

M=M[0][0],

M[nb:Trains][sb:Trains]=

(when (sb<MaxTrains) arr_at_m_from_n -> M[nb][sb+1]

|when (nb<MaxTrains) arr_at_m_from_s -> M[nb+1][sb]

|when (sb>0) go_s -> M[nb][sb-1]

|when (nb>0) go_n -> M[nb-1][sb]).

||COUNTRYRR=(NM||SM||N||S||M).

Design the signalling control software in a UML class diagram, detailing associa-

tions, operations and attributes. Use stereotype<<Monitor>> to identify those

classes in your design that are monitors.

[13 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 10 –

TrackSegmentNM
nb : int
mb : int

goFromNtoM()
goToN()
arriveAtN()

<<Monitor>>

Thread

TrackSegmentNM
nb : int
mb : int

goFromNtoM()
goToN()
arriveAtN()

<<Monitor>> Station M
nb : int
sb : int

ArriveAtMFrom...
ArriveAtMFrom...
goToS()
goToN()

<<Monitor>>

TrackSegmentSM
mb : int
sb : int

goToS()
goFromStoM()
arriveAtS()

<<Monitor>>

StationN

StationS
Train

run()

File: (untitled) 11:46:37 19 February 2001 Class Diagram: Logical View / Main Page 1

c. Show the implementation of the operations of the class that controls access to station

M.

[9 marks]

class StationM {
private

final int MaxTrains=10;
int nb;
int sb;

public synchronized void arr_at_m_from_n() {
while(sb>=MaxTrains) wait();
sb++;
notifyAll();

}
public synchronized void arr_at_m_from_s() {

while(nb>=MaxTrains) wait();
nb++;
notifyAll();

}
public synchronized void go_s() {

while (sb<=0) wait();
sb--;
notifyAll();

}
public synchronized void go_n() {

while (nb<=0) wait();
nb--;
notifyAll();

}
}

[Total 33 marks]

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 11 –

5. Answer the following three parts.

a. In no more than 50 words each define the following concepts:

i. Semaphore
[2 marks]

ADT with encapsulated counter and waiting list. Exports two operations signal and
wait. wait checks whether counter is greater than 0. If yes decrements counter, oth-
erwise appends calling process to waiting list. If there are waiting processes, signal
wakes up first of these, otherwise it increments the counter.

ii. Monitor
[2 marks]

A programming language concept that guarantees mutually exclusive access to a data
structure encapsulated by the monitor.

iii. Deadlock
[2 marks]

A set of processes mutually waiting for each other.

iv. Livelock
[2 marks]

A process spinning while waiting for a condition that will never become true.

v. Condition Synchronization
[2 marks]

Condition synchronization is implemetned inside a monitor, forces calling process to
wait (outside the monitor) if conditions are not yet met. Only let them proceed when
conditions are met and notifies other processes if changes to data structures have
occurred.

vi. Safety Property
[2 marks]

Ascertain that nothing bad will ever happen

vii. Liveness Property
[2 marks]

Ascertain that something desirable will eventually happen

[Subtotal 14 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 12 –

b. An ftp server provides two principal operations,put andget . In order to use these

operations, clients have toopen a connection first and theyclose the connection

when they no longer want to use the server. The ftp server can have several con-

current sessions with different clients. To protect ftp servers from becoming too

overloaded, the number of concurrent sessions in practice has an upper boundary,

which we can assume to be 4 for this exercise. Use FSP to model the behaviour of

the ftp server to show how it serves a number of concurrent clients.

[11 marks]

const MaxSessions = 4
range Session = 0..MaxSessions
Client = (open-> Connected),
Connected = (put -> Connected

|get -> Connected
|close -> Client).

Server = Sessions[0],
Sessions[i:Session] = (

when (i<MaxSessions) open -> Sessions[i+1]
| when (i>0) close -> Sessions[i-1]

).

set Clients = {c1,c2,c3,c4,c5,c6}
||FTP = (Clients:Client || Clients::Server).

c. When trying to access popular ftp servers you might have experienced that it is

not possible to get through. Specify the liveness property that every client will

eventually be able to connect to the ftp server of Question 5.b in FSP.

[8 marks]

progress Download = {{Clients}.open}

[Total 33 marks]

END OF PAPER

