
1

1© Wolfgang Emmerich, 1997

Distributed Transaction
Processing

2© Wolfgang Emmerich, 1997

Roles of Components

n Distributed system components involved
in transactions can take role of:

n Transactional Client
n Transactional Server
n Coordinator

2

3© Wolfgang Emmerich, 1997

Coordinator

n Coordinator plays key role in managing
transaction.

n Coordinator is the component that
handles begin / commit / abort transaction
calls.

n Coordinator allocates system-wide unique
transaction identifier.

n Different transactions may have different
coordinators.

4© Wolfgang Emmerich, 1997

Transactional Server

n Every component with a resource
accessed or modified under transaction
control.

n Transactional server has to know
coordinator.

n Transactional server registers its
participation in a transaction with the
coordinator.

n Transactional server has to implement a
transaction protocol (two-phase commit).

3

5© Wolfgang Emmerich, 1997

Transactional Client

n Only sees transactions through the
transaction coordinator.

n Invokes services from the coordinator to
begin, commit and abort transactions.

n Implementation of transactions are
transparent for the client.

n Cannot tell difference between server and
transactional server.

6© Wolfgang Emmerich, 1997

Two-Phase Commit

nMultiple autonomous distributed servers:
• For a commit, all transactional servers have

to be able to commit.
• If a single transactional server cannot commit

its changes every server has to abort.

n Single phase protocol is insufficient.
n Two phases are needed:

• Phase one: Voting
• Phase two: Completion.

4

7© Wolfgang Emmerich, 1997

Phase One

n Called the voting phase.
n Coordinator asks all servers if they are

able (and willing) to commit.
n Servers reply:

• Yes: it will commit if asked, but does not yet
know if it is actually going to commit.

• No: it immediately aborts its operations.

n Hence, servers can unilaterally abort but
not unilaterally commit a transaction.

8© Wolfgang Emmerich, 1997

Phase Two

n Called the completion phase.
n Co-ordinator collates all votes, including

its own, and decides to
• commit if everyone voted ‘Yes’.
• abort if anyone voted ‘No’.

n All voters that voted ‘Yes’ are sent
• ‘DoCommit’ if transaction is to be committed.
• Otherwise ‘Abort'.

n Servers acknowledge DoCommit once
they have committed.

5

9© Wolfgang Emmerich, 1997

Server Uncertainty (1)

n Period when a server must be able to
commit, but does not yet know if has to.

n This period is known as server
uncertainty.

n Usually short (time needed for co-
ordinator to receive and process votes).

n However, failures can lengthen this
process, which may cause problems.

10© Wolfgang Emmerich, 1997

Recovery in Two-Phase Commit

n Failures prior to start of 2PC results in abort.
n Coordinator failure prior to transmitting

commit messages results in abort.
n After this point, co-ordinator will retransmit

all Commit messages on restart.
n If server fails prior to voting, it aborts.
n If it fails after voting, it sends GetDecision.
n If it fails after committing it (re)sends

HaveCommitted message.

6

11© Wolfgang Emmerich, 1997

Complexity

n Assuming N participating servers:
n (N-1) Voting requests from coordinator to

servers.
n (N-1) Completion requests from

coordinator to servers.
n Hence, complexity of requests is linear in

the number of participating servers.

12© Wolfgang Emmerich, 1997

Committing Nested Transactions

n Cannot use same mechanism to commit
nested transactions as:
• subtransactions can abort independently of

parent.
• subtransactions must have made decision to

commit or abort before parent transaction.

n Top level transaction needs to be able to
communicate its decision down to all
subtransactions so they may react
accordingly.

7

13© Wolfgang Emmerich, 1997

Provisional Commit

n Subtransactions vote either:
• aborted or
• provisionally committed.

n Abort is handled as normal.
n Provisional commit means that

coordinator and transactional servers are
willing to commit subtransaction but have
not yet done so.

14© Wolfgang Emmerich, 1997

Locking and Provisional Commits

n Locks cannot be released after provisional
commit.

n Data items remain ‘protected’ until top-level
transaction commits.

n This may reduce concurrency.
n Interactions between sibling

subtransactions:
• should they be prevented (different)?
• allowed (part of the same transaction)?

n Generally they are prevented.

8

15© Wolfgang Emmerich, 1997

CORBA Transaction Service

Application
 Objects

CORBA
facilities

CORBAservices

Domain
Interfaces

Object Request Broker

Object
Transactions

16© Wolfgang Emmerich, 1997

IDL Interfaces

n Object Transaction Service defined
through three IDL interfaces:

n Current
n Coordinator
n Resource

9

17© Wolfgang Emmerich, 1997

Current

interface Current {
 void begin() raises (...);
 void commit (in boolean report_heuristics)
 raises (NoTransaction, HeuristicMixed,
 HeuristicHazard);
 void rollback() raises(NoTransaction);
 Status get_status();
 string get_transaction_name();
 Coordinator get_control();
 Coordinator suspend();
 void resume(in Coordinator which)
 raises(InvalidControl);
};

18© Wolfgang Emmerich, 1997

Coordinator

interface Coordinator {
 Status get_status();
 Status get_parent_status();
 Status get_top_level_status();
 boolean is_same_transaction(in Coordinator tr);
 boolean is_related_transaction(in Coordinator tr);
 RecoveryCoordinator register_resource(
 in Resource r) raises(Inactive);
 void register_subtran_aware(
 in SubtransactionAwareResource r)
 raises(Inactive, NotSubtransaction);
 …
};

10

19© Wolfgang Emmerich, 1997

Resource

interface Resource {
 Vote prepare();
 void rollback() raises(...);
 void commit() raises(...);
 void commit_one_phase raises(...);
 void forget();
};
interface SubtransactionAwareResource:Resource
{

 void commit_subtransaction(in Coordinator p);
 void rollback_subtransaction();
};

20© Wolfgang Emmerich, 1997

Acc1@bankA
:Resource

Acc2@bankB
:Resource :Current :Coordinator

get_control()

begin()
debit()

get_control()

register_resource()

credit()
register_resource()

prepare()

commit()
commit()
prepare()

Example: Funds Transfer

commit()

11

21© Wolfgang Emmerich, 1997

Summary

n Two-phase commit
• phase one: voting
• phase two: completion

n CORBA Transaction Service
• implements two-phase commit
• needs resources that are transaction aware

