Distributed Object Lifecycle

© Wolfgang Emmerich, 1997

% The Lifecycle

[>110ve

available

unavailable

© Wolfgang Emmerich, 1997

UCL Motivation

m Distributed object life cycle different from
local object life cycle

m Creation:
* Where to create an object

m Migration:
* Where to copy/move an object to

* How to resolve heterogeneity in data and
object code representation

m Deletion:
» Garbage collection does not work

© Wolfgang Emmerich, 1997

% Object Creation

m Clients might wish to create objects on
remote machines

m Achieved by factories.

m Remote machines have to be identified in
a location transparent way

m Achieved by factory finders.

© Wolfgang Emmerich, 1997

UCL Factories
—

AbstractFactory | _ _ _ _ _ _ _ _ __ __ ___ ________ LeagueMgmnt

CreateTeam()
CreatePlayer()

|

Il

| Team =T

N N :

I

CricketFactory SoccerFactory [~ —- —l"‘ SoccerTeam ‘ ‘CrickeiTeam ‘ :
|

CreateTeam() CreateTeam() [
CreatePlayer() CreatePlayer() -=1

3
E
4
|
|
I_

T T
| |
| |
| |

: - b-‘sq;ccerPlayer ‘ ‘CricketPlayer ‘
|

m In distrib. systems: factories hide location

© Wolfgang Emmerich, 1997 S

ﬁ Factory Finders

m Location should not be transparent to
everybody

m Administrators should be able to decide
where to create new objects

m Policies are implemented using
FactoryFinder objects.

m FactoryFinders export an operation
find_factories that returns a suitable
factory and thus implements the location
policy.

© Wolfgang Emmerich, 1997 6

% Creating Distributed Objects

Factory | [f:Team

Client Finder Factory
' |

f=find_factories("Team") |

- newteam:
: Team
[| [|
| ['
|

newteam=create_team() |

m New team object will be created on
machine that hosts TeamFactory f.

© Wolfgang Emmerich, 1997

% Implementing Factories

m Encapsulation of generic factories in type
specific factories.

f:Team Genetric
Client _ Factory Factory

' [
create_team("BvB"
— () — t=crea£e_objec¥("Team2 :

set_name("BvB") | |

© Wolfgang Emmerich, 1997

P

3

Client
|

Migrating Objects - Client’s View

ff:Factory
Finder

ff=resolve("Hosts","BvB")

move(ff,...)

© Wolfgang Emmerich, 1997 9
% Migrating Objects - Server’s View
ff:Factory | | f:Player Object
p:Player Finder Factory ||np:Player || Adapter
| | | T
1f=find_factories(criteria) 1 : : :
|
np=create_player .'m | : :
[’D | !
transfer_values(...) | | | |
3 T T - I
transfer_obj_ref(p) | | D |
X 1 H
© Wolfgang Emmerich, 1997 10

UCL Deleting Objects

t:Team Player || Player || Player
remove T | | |
™ release | | |
release [h | |
! - !
release | D I
f T ’D
| | |
| | |
X | | i

© Wolfgang Emmerich, 1997 11

% What's Missing: Replication

m Copies made by life cycle service are
separate and do not evolve together.

m Life cycle service cannot be used for
replication.

m Replicated objects reflect each other’s
state changes and hence evolve together.
m Replication used for
* load balancing
« fault-tolerance.

© Wolfgang Emmerich, 1997 12

UCL Composite Objects

m Consist of atomic objects
m Control life cycle of atomic objects
m Modelling of composite objects:

has > consists of >
4

Club x| Team = Player
Game
© Wolfgang Emmerich, 1997 13
% Base Relationships
==

m Defined by a set of roles two or more
objects play (ownership, containment,
reference, employment, ...).

m Objects can play different roles.

m Cardinality defines maximum number of
relationships in which arole is involved.

m Degree defines number of roles of a
relationship (e.g. binary or ternary).

m Relationship may have attributes.

m Related objects form a graph of nodes
(objects) and edges (relationships).

© Wolfgang Emmerich, 1997 14

UCL

RelationshipFactory

relationship_type
degree
named_role_types

create()

RoleFactory

role_type
max_cardinality
min_cardinality
related_object_types

create_role()

© Wolfgang Emmerich, 1997

creates

creates

CORBA Relationship Service

Relationshipiterator
Reiationship iterates
named_roles [<— -~~~ next_one()
next_n
destroy() deslﬁ);f})
i
‘' connects
|
Role

related_object

get_other_related_object()
get_other_role()
get_relationships()
destroy_relationships()
destroy()
check_minimum_cardinality()
link()

unlink()

15

% Relationship and Role Examples
Role Relationship
=N
Contains ||Containedin || Home || Away Has| | Game
© Wolfgang Emmerich, 1997 16

% Graph of Related Objects

==object=> ==object=> ==object>>
Spurs:Club Spurs1:Team klinsi:Player
<enodess| g |<<roles= || rglmm <<roles: | <<nodes=iy | <<roless| g | warglss | =<role== -y | niOdE>
Nede |—®iContains ™ Contai [[MNode *|C ins |~ Contai —- i 1[—* | Node
fOlEen g | wwielen g | <sioless | gy | <<node=x <=phject==
Home |—™ Reference|—™ Away || Node B ManU1:Team

© Wolfgang Emmerich, 1997 17

% Composite Object Lifecycle

m Apply lifecycle operations to root nodes

m All nodes that are in transitive closure of
containment relationship will be
copied/moved/deleted.

m All relationships internal to that closure
will be copied/moved/deleted.

m All objects that are connected to these
nodes will be copied/moved/deleted.

18

© Wolfgang Emmerich, 1997

% Example: Copying composite object

—— |

:CIientI:NodeI Spurs:Club [| :Role | | :Rel. }| :Role :NodeI

[copy =| copy

copy >

copy,

cop copy

T@ Wolfgang E'I:lmerich 1997 T T T T 19

% Copied Composite Object

m—r |

=<object== <=objects= <=0bject==»
purs:Club Spurs1:Team klinsi:Player

<<ngde=> - =:<role:»>‘_ z<iglss c<fless - s - <«:role>>_._ c<igl=> | <<TOlE=> - ==Noas:
Node |—™(Contains—™ Containment | |Containedin [—™ Node |—|Contains —# Containment [—*Containedin || Node

<<fOle=> g | =<rel=»
Home |~ Ref e ‘\}

caioles gy | <<nodes: <=phject>=

Away |[—™ Node ManU1:Team

OO [y | waril== '//4

Home [~ Reference

1

o | TOlEnE Ly fccnodedy |c<ioless| g | <creler (g | <<roless Ly [<<nodex
Node |—*|Contains 7 Ci i it [~ |Containedin | Node |—(Contains|—# Contai —= Containedin |—#=| Node

<<object>> <<oblect=» ==object==
Spurs:Club Spursi:Team klinsi:Player

© Wolfgang Emmerich, 1997 20

<<NOdE=>| gy [l | g wargl=z

