
1

1© Wolfgang Emmerich, 1997

Advanced Communication

2© Wolfgang Emmerich, 1997

Motivation

n Requests we have seen have
• two parties (client and server object0
• trigger execution of one operation
• have at-most-once reliability

n Other forms of requests are useful
nWe therefore look at different forms of

• Requests Synchronization
• Request Multiplicity
• Request Reliability

2

3© Wolfgang Emmerich, 1997

Request Synchronization

n Non-synchronous forms:
• oneway requests
• deferred synchronous requests
• asynchronous requests

n OO-Middleware: synchronous requests.
n Synchronous requests might block clients

unnecessarily
:Server:Client

push()

4© Wolfgang Emmerich, 1997

Oneway Requests

n Return control to client as soon as
request has been taken by middleware

n Client and server are not synchronized
n Use if

• Server does not produce a result
• Failures of operation can be ignored by client

:Server:Client
oneway()

3

5© Wolfgang Emmerich, 1997

Oneway requests in CORBA

n Declared statically in the interface
definition of the server object

n IDL compiler validates that
• operation has a void return type
• does not have any out or inout parameters
• does not raise type specific exceptions

n Example:
interface Team {

 oneway void mail_timetable(in string tt);
 };

6© Wolfgang Emmerich, 1997

Deferred Synchronous Requests

n Return control to client as soon as
request has been taken by middleware

n Client initiates synchronization
n Use if

• Requests take long time
• Client should not be blocked
• Clients can bear overhead of synchronization

:Server:Client
op()

:Request
op()

get_result()

4

7© Wolfgang Emmerich, 1997

CORBA Deferred Sync. Requests

n Determined at run-time through Dynamic
Invocation Interface.

n By invoking send() from a Request object.

:Server:Client
r=create_request(“op”)

r:Request
op()

get_response()

send()

8© Wolfgang Emmerich, 1997

Asynchronous Requests

n Return control to client as soon as
request has been taken by middleware

n Server initiates synchronization
n Use if

• Requests take long time
• Client should not be blocked
• Server can bear overhead of synchronization

:Server:Client
op()

5

9© Wolfgang Emmerich, 1997

Asynchronous Requests by Threads

n Client has interface for callback
n Perform request in a newly created thread
n Client continues in main thread
n New thread is blocked
n Requested operation invokes callback to

pass result
n New thread dies when request is complete

10© Wolfgang Emmerich, 1997

Example in Java

interface Callback {
 public void result(String s);
}
class PrintSquad implements Callback {
 public void Print(Team team, Date date){
 A=newAsyncReqPrintSquad(team,date,this);
 A.start()
 }
 public void result(String s){
 System.out.print(s)
 }
}
class AsyncReqPrintSquad extends Thread {
 Team team; Date date; Callback call;
 AsyncReqPrintSquad(Team t, Date d, Callback c) {
 team=t;date=d;call=d;
 }
 public void run() {
 String s=team.AsString(date);
 call.result(s);
 }
}

6

11© Wolfgang Emmerich, 1997

Request Multiplicity

n OO Middleware: peer-to-peer requests
• Two components: client and server
• One operation execution
• Non-anonymous

n Other forms:
• More than two components (group requests)
• More than one operation (multiple requests)

12© Wolfgang Emmerich, 1997

:Trader :Channel :Ticker :Ticker :Ticker

Group Communication

n Example: Stock Exchange Ticker

connect()

push()
push()

disconnect()
connect()

connect()
push()

push()push()

push()

7

13© Wolfgang Emmerich, 1997

Group Communication Principles

n Group communication informs a group of
components about a particular event.

n Two roles:
• Event producer
• Event consumer

n Producers and consumers do not know
each other.

n Two forms of request:
• push-type: producer initiates communication
• pull-type: consumer initiates communication

14© Wolfgang Emmerich, 1997

CORBA Event Notification Service

Application
 Objects

CORBA
facilities

CORBAservices

Domain
Interfaces

Object Request Broker

Event
Notification

8

15© Wolfgang Emmerich, 1997

Multiple Requests

n Triggers n operation executions in one
request.

n Usually deferred synchronous
n Defined at run-time.
n Advantages:

• Smaller overhead on client side
• Process results as they become available

16© Wolfgang Emmerich, 1997

Multiple Requests in CORBA

n Dynamic Invocation Interface supports
multiple deferred synchronous requests
module CORBA {
 interface ORB {
 typedef sequence<Request> RequestSeq;
 Status send_multiple_requests (

 in RequestSeq targets
)
 Status get_next_response(in Flags f);
 };
};

9

17© Wolfgang Emmerich, 1997

Multiple Request Example

n Revenue from a portfolio of assets
:Client rs:RequestSeq :ORB :Share :Bond

r1=create_request(”dividend”)

add(r1)

send_multiple_requests(rs)

r2=create_request(”interest”)

add(r2)

dividend()

interest()
get_next_response()
get_next_response()

18© Wolfgang Emmerich, 1997

Request Reliability

n OO Middleware: At-most-once semantics
n Other degrees of request reliability:

• Peer-to-peer
– exactly once
– atomic
– at-least-once
– maybe

• Group and multiple requests
– k-reliability
– totally ordered
– best effort

