-

Advanced Communication

© Wolfgang Emmerich, 1997

% Motivation

m—r |

m Requests we have seen have
» two parties (client and server objectO
e trigger execution of one operation
* have at-most-once reliability

m Other forms of requests are useful

m We therefore look at different forms of
* Requests Synchronization
* Request Multiplicity
* Request Reliability

© Wolfgang Emmerich, 1997

UCL Request Synchronization

m OO-Middleware: synchronous requests.

m Synchronous requests might block clients
unnecessarily

p

m Non-synchronous forms:
* oneway requests
» deferred synchronous requests
e asynchronous requests

© Wolfgang Emmerich, 1997

% Oneway Requests

m Return control to client as soon as
request has been taken by middleware

m Client and server are not synchronized

m Use if
» Server does not produce a result
 Failures of operation can be ignored by client

© Wolfgang Emmerich, 1997

%_ Oneway requests in CORBA
—

m Declared statically in the interface
definition of the server object

m IDL compiler validates that
e operation has a void return type
» does not have any out or inout parameters
» does not raise type specific exceptions

m Example:
interface Team {
oneway void mail _tinmetable(in string tt);

b

© Wolfgang Emmerich, 1997

ﬁi Deferred Synchronous Requests

m Return control to client as soon as
request has been taken by middleware

m Client initiates synchronization
m Use if
* Requests take long time
» Client should not be blocked
» Clients can bear overhead of synchronization

:Request
op() op()

get _result()

© Wolfgang Emmerich, 1997

% CORBA Deferred Sync. Requests

m Determined at run-time through Dynamic
Invocation Interface.

m By invoking send() from a Request object.

:Server

r=create_request(“op”)

r:-Request
send() op()

get _response()

© Wolfgang Emmerich, 1997

% Asynchronous Requests

m Return control to client as soon as
request has been taken by middleware

m Server initiates synchronization
m Use if
* Requests take long time
 Client should not be blocked
» Server can bear overhead of synchronization

:Server

© Wolfgang Emmerich, 1997

UCL Asynchronous Requests by Threads

m Client has interface for callback

m Perform request in a newly created thread
m Client continues in main thread

m New thread is blocked

m Requested operation invokes callback to
pass result

m New thread dies when request is complete

© Wolfgang Emmerich, 1997

%L Example in Java

i nterface Call back {
public void result(String s);

}

class PrintSquad inplenents Call back {
public void Print(Teamteam Date date){
A=newAsyncReqgPri nt Squad(t eam date, thi s);
A start()

public void result(String s){
System out. print(s)

cl ass AsyncRegPrint Squad extends Thread {
Team team Date date; Call back call;
AsyncReqgPri nt Squad(Teamt, Date d, Callback c) {
t ean¥t ; dat e=d; cal | =d;

public void run() {
String s=team AsStri ng(date);
call.result(s);

© Wolfgang Emmerich, 1997 10

% Request Multiplicity

—]

m OO Middleware: peer-to-peer requests
 Two components: client and server
* One operation execution
* Non-anonymous

m Other forms:
* More than two components (group requests)
* More than one operation (multiple requests)

© Wolfgang Emmerich, 1997

% Group Communication

E— |

m Example: Stock Exchange Ticker

:Channel I :Ticker :TickerI :TickerI

‘connect()L
L|-Lconnect @)

push() T push()
push()

di sconnect|() ﬂ
yﬁconnect()]

push) T push()
push()

©Wquana Emmerich, 1997 [E 12

%L Group Communication Principles
]

m Group communication informs a group of
components about a particular event.

m Two roles:
* Event producer
e Event consumer

m Producers and consumers do not know
each other.

m Two forms of request:
* push-type: producer initiates communication
e pull-type: consumer initiates communication

© Wolfgang Emmerich, 1997 13

%‘ CORBA Event Notification Service

Application Domain CORBA
Objects Interfaces facilities

rp Y Y
Object Request Broker

@ @) [Event J

Notification

CORBAservices

14

© Wolfgang Emmerich, 1997

UCL Multiple Requests

m Triggers n operation executions in one
request.

m Usually deferred synchronous
m Defined at run-time.

m Advantages:
» Smaller overhead on client side
* Process results as they become available

© Wolfgang Emmerich, 1997 15

% Multiple Requests in CORBA

m Dynamic Invocation Interface supports
multiple deferred synchronous requests
nodul e CORBA {

i nterface ORB {
t ypedef sequence<Request> Request Seq;
Status send _nultiple_requests (
I n Request Seq targets
)
Status get _next _response(in Flags f);
1
1

© Wolfgang Emmerich, 1997

16

% Multiple Request Example

—— |

m Revenue from a portfolio of assets

rs:RequestSeq I W :ShareI :Bond

1 rl=create_rdquest(”dividehd”)
r2=create_request(”interest”) B R
add(r 1) -
add(r2)

L

send_nul tipl e_requests(rs)|

| |di vi dend

I nterest(
get _next response() g
get _next _resppnse() i
© Wolfgang Emmerich, 1997 17
% Request Reliability

m OO Middleware: At-most-once semantics

m Other degrees of request reliability:

* Peer-to-peer
—exactly once
—atomic
—at-least-once
—maybe
e Group and multiple requests
—k-reliability
—totally ordered
—best effort

© Wolfgang Emmerich, 1997

18

