i
Resolving
Language Heterogeneity
© Wolfgang Emmerich, 1997
% Motivation

m Components of distributed systems are
written in different programming
languages

m Programming languages may or may not
have their own object model

m Object models largely vary

m Differences need to be overcome in order
to facilitate integration

© Wolfgang Emmerich, 1997

ucr Resolving Language Heterogeneity

Smalltalk|

NG T

Common
Object
Model

(¢ Java

d

© Wolfgang Emmerich, 1997

% Purpose of Common Object Model

m Meta-model for middleware’s type system

m Defines meaning of e.g.
» object type

operation

attribute

request

exception
* subtyping

m Defined general enough for mappings to
most programming languages

© Wolfgang Emmerich, 1997

% Interface Definition Language
=

m Language for expressing all concepts of
the middleware’s object model

m Should be
e programming-language independent
* not computationally complete

m Bindings to different programming
languages are needed

m As an example: OMG object model and
OMG/IDL

© Wolfgang Emmerich, 1997

%‘ Attributes of Objects

m Attributes have a name and a type
m Type can be object or non-object type

m Attributes are readable by other
components

m Attributes may or may not be modifiable
by other components

m Attributes correspond to one or two
operations (set/get)

© Wolfgang Emmerich, 1997

-

Example IDL Attributes

readonly attribute ATM.i st ATMs;
readonly attribute BankLi st banks;

© Wolfgang Emmerich, 1997

% Exceptions

m—r |

m Service requests in a distributed system
may fail

m Exceptions explain reason of failure to
service requester

m Operation execution failures may be
* generic
» specific

m Specific failures are explained in type
specific exceptions

© Wolfgang Emmerich, 1997

UCL Example IDL Exceptions

exception InvalidPIN

exception I nvali dATM

excepti on Not EnoughMoney ({
short avail abl e;

b

© Wolfgang Emmerich, 1997

% Operations

m Operations have a signature

m Signature consists of

name

list of in, out, or inout parameters
return value type

list of exceptions operation may raise

© Wolfgang Emmerich, 1997 10

% IDL Operation Examples

—— |

voi d accept _request (i n Requester req,
i n short anmount)
rai ses(lnvalidPIN,
Not EnoughMbney) ;
short noney_in_ATM (in ATM di spenser)
rai ses(l nvali dATM ;

© Wolfgang Emmerich, 1997 11

% Object Types
m Objects export attributes, operations and
exceptions
m Multiple objects may export the same
properties

m Only define the properties once

m Attributes, operations and exceptions are
defined in object types

© Wolfgang Emmerich, 1997 12

UCL Example IDL Interfaces

i nterface ATM
interface TellerCirl {
t ypedef sequence<ATM> ATM.i st ;
exception | nvali dATM
excepti on Not EnoughMoney{...};
readonly attribute ATM.i st ATMs;
readonly attribute BankLi st banks;
voi d accept _request(in Requester req,
in short anount)
rai ses(1 nval i dPI N, Not EnoughMbney) ;
¥

© Wolfgang Emmerich, 1997 13

% Subtyping

m Properties shared by several types should
be defined only once

m Types organised in type hierarchy

m Subtypes inherit attributes, exceptions
and operations from super-types

m Subtypes can add properties

m Subtypes may redefine inherited
properties

14

© Wolfgang Emmerich, 1997

%_ Example of Inheritance in IDL
E——|

i nterface Controll ee;

interface Cirl {

t ypedef sequence<Controllee> Ctrleeli st
readonly attribute CirleeList controls;
void add(in Controll ee new controll ee);
void discard(in Controllee old ctrlee);
b

interface ATM: Controllee {...};
interface TellerCrl : Crl {...};

© Wolfgang Emmerich, 1997

15

%‘ Programming Language Bindings

m Atomic data types / type constructors
m Constants

m Interfaces and multiple inheritance

m Object references

m Attribute accesses

m Operation execution requests

m Exception declaration / handling

m Modules

m Middleware interface invocations

© Wolfgang Emmerich, 1997

16

% Standardisation of Bindings

—— |

m Facilitate portability with respect to:
* Object requests
* Object implementations
* ORB interface invocations

m Decrease learning curve of developers

© Wolfgang Emmerich, 1997 17

