
1

1© Wolfgang Emmerich, 1997

Resolving
Language Heterogeneity

2© Wolfgang Emmerich, 1997

Motivation

n Components of distributed systems are
written in different programming
languages

n Programming languages may or may not
have their own object model

n Object models largely vary
n Differences need to be overcome in order

to facilitate integration

2

3© Wolfgang Emmerich, 1997

IDL

Common
Object
Model

Smalltalk

Cobol

Java

Ada-95C++

C

Resolving Language Heterogeneity

4© Wolfgang Emmerich, 1997

Purpose of Common Object Model

nMeta-model for middleware’s type system
n Defines meaning of e.g.

• object type
• operation
• attribute
• request
• exception
• subtyping

n Defined general enough for mappings to
most programming languages

3

5© Wolfgang Emmerich, 1997

Interface Definition Language

n Language for expressing all concepts of
the middleware’s object model

n Should be
• programming-language independent
• not computationally complete

n Bindings to different programming
languages are needed

n As an example: OMG object model and
OMG/IDL

6© Wolfgang Emmerich, 1997

Attributes of Objects

n Attributes have a name and a type
n Type can be object or non-object type
n Attributes are readable by other

components
n Attributes may or may not be modifiable

by other components
n Attributes correspond to one or two

operations (set/get)

4

7© Wolfgang Emmerich, 1997

Example IDL Attributes

 readonly attribute ATMList ATMs;
 readonly attribute BankList banks;

8© Wolfgang Emmerich, 1997

Exceptions

n Service requests in a distributed system
may fail

n Exceptions explain reason of failure to
service requester

n Operation execution failures may be
• generic
• specific

n Specific failures are explained in type
specific exceptions

5

9© Wolfgang Emmerich, 1997

Example IDL Exceptions

 exception InvalidPIN;
 exception InvalidATM;
 exception NotEnoughMoney {
 short available;
 };

10© Wolfgang Emmerich, 1997

Operations

n Operations have a signature
n Signature consists of

• name
• list of in, out, or inout parameters
• return value type
• list of exceptions operation may raise

6

11© Wolfgang Emmerich, 1997

IDL Operation Examples

void accept_request(in Requester req,
 in short amount)
 raises(InvalidPIN,
 NotEnoughMoney);
short money_in_ATM (in ATM dispenser)
 raises(InvalidATM);

12© Wolfgang Emmerich, 1997

Object Types

n Objects export attributes, operations and
exceptions

nMultiple objects may export the same
properties

n Only define the properties once
n Attributes, operations and exceptions are

defined in object types

7

13© Wolfgang Emmerich, 1997

Example IDL Interfaces

interface ATM;
interface TellerCtrl {
 typedef sequence<ATM> ATMList;
 exception InvalidATM;
 exception NotEnoughMoney{...};
 readonly attribute ATMList ATMs;
 readonly attribute BankList banks;
 void accept_request(in Requester req,
 in short amount)
 raises(InvalidPIN,NotEnoughMoney);
};

14© Wolfgang Emmerich, 1997

Subtyping

n Properties shared by several types should
be defined only once

n Types organised in type hierarchy
n Subtypes inherit attributes, exceptions

and operations from super-types
n Subtypes can add properties
n Subtypes may redefine inherited

properties

8

15© Wolfgang Emmerich, 1997

Example of Inheritance in IDL

interface Controllee;
interface Ctrl {
 typedef sequence<Controllee> CtrleeList
 readonly attribute CtrleeList controls;
 void add(in Controllee new_controllee);
 void discard(in Controllee old_ctrlee);
};
interface ATM : Controllee {...};
interface TellerCtrl : Ctrl {...};

16© Wolfgang Emmerich, 1997

Programming Language Bindings

n Atomic data types / type constructors
n Constants
n Interfaces and multiple inheritance
n Object references
n Attribute accesses
n Operation execution requests
n Exception declaration / handling
nModules
nMiddleware interface invocations

9

17© Wolfgang Emmerich, 1997

Standardisation of Bindings

n Facilitate portability with respect to:
• Object requests
• Object implementations
• ORB interface invocations

n Decrease learning curve of developers

