
1

Tools for Testing

Software Architectures

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Learning Objectives

• To discuss tools to validate software architectures

• Review ways in which implementations of software

architecture can be tested against different non-

functional requirements

• Gain some practical experience with some such tools

(Apache’s Jmeter)

3

Context

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

I1 I2 In In+1 In+2 Im Im+1Preliminary
Iterations

Amount
of work



2

4

Elaboration Stage

• test design products by analysis, simulation,

walkthroughs and inspection

• generate user acceptance test cases from use cases

• generate test cases that validate non-functional

requirements

• implement test architecture that automates tests

• execute non-functional tests to validate lifecycle

architecture

5

Aim of validating software architectures

• Ascertain that all relevant non-functional
requirements are being met by the life cycle
architecture

• Can be done analytically

– Modelling the software architecture using an appropriate
formalism (e.g. process algebra or queuing network)

– Subjecting the models to analysis (e.g. reachability
analysis or solution of queuing networks)

• Problem with analytical approaches: models often do
not correspond to the developed architecture

• Alternative: testing the executable code that
implements the architecture.

6

Overview of architecture test strategy

• Ease of deployment - Measure time to deploy

• Openness - Integration test interfaces

• Legacy Integration - Integration test interfaces

• Usability - Conduct usability experiment

• Security - Get expert hackers to break in

• Availability

• Latency

• Throughput - Conduct performance tests

• Scalability



3

7

Performance tests - latency under no load

• Work out how the system performs in the best case
scenario

• Identify use cases and user stories that are sensitive
to latency

• Translate them into performance test cases that
exercise the non-loaded system and measure the
latency.

• Use performance testing tools, e.g.

– Mercury LoadRunner or

– Apache Jmeter (open source)

to perform the tests

8

Using JMeter to test online car dealership

9

Capture and Replay

• Defining test cases at protocol level cumbersome

• When possible use capture and replay capabilities

offered by testing tools, e.g. in

– Mercury WinRunner

– Apache Jmeter

• Capture interactions with the system at protocol level

by inserting proxies between the browser and the

system under test

• Use the captured interaction as baseline for test

cases



4

10

Architecture for Capture and Replay

System 

under Test

Proxy 

provided

by test tool

Browser

11

JMeter capture and replay demo

12

Testing latency under no load

• Sample system under test sufficiently often to have a

statistically significant sample set of test execution

• Observe minimal, average and maximum latency

• Observe how latency behaves over an extended

period of time. Latency can be adversely affected by:

– Garbage collection in Java containers

– Memory leaks (and yes they also exist in Java and C#!)

– Increases in data sets / file sizes

• Latency observed represents the best case scenario

for the latency real users will experience



5

13

JMeter demo

14

Testing latency under load

• Determine how the maximum number of concurrent

users

• Determine typical user behaviour (e.g. by measuring

the time users are idle between requests in a

capture/replay session)

• Define a number of test cases that gradually

increase numbers of users up to the max. required

• Measure the latency of the system under test in

these different test cases

15

Latency under load with JMeter



6

16

Testing throughput

• You can use the same test cases used for

determining latency under load also for throughput.

• Expect the throughput to have a maximum when

latency begins to increase as load increases.

• Ideally you want to ascertain that the throughput is

constant no matter what the load.

• In practice throughput deteriorates under high loads

(due to e.g. memory paging).

17

Testing availability

• Leave a load test running for an extended period of

time (e.g. day or even a week) to see whether the

system performance degrades during that period

• Then leave a load test running for a shorter period

and selectively switch off hosts in your distributed

system

• Observe how the system reacts

• Expect to see latency and throughput degradation

due to redistribution of load

18

Testing scalability

• Add hardware resources to your distributed system

• Verify that you do not need to change the software of

your distributed system (apart from deployment

configurations)

• Repeat the throughput tests

• Ascertain that the throughput is now higher

• Throughput increase should be proportional to the

hardware resources you have added.



7

Key Points

• Architecture tests complement
architecture analysis

• Performance testing requires an
executable baseline architecture

• Built in RUP/USDP during
Elaboration

• Performance tests can assess
whether architectures meet
requirements on

– Latency

– Throughput

– Availability

– Scalability

20

References

• Jmeter. http://jakarta.apache.org/jmeter

• Eclipse Test and Performance Tool Platform.

http://www.eclipse.org/tptp/


