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Learning Objectives

• To discuss tools to validate software architectures

• Review ways in which implementations of software

architecture can be tested against different non-

functional requirements

• Gain some practical experience with some such tools

(Apache’s Jmeter)
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Elaboration Stage

• test design products by analysis, simulation,

walkthroughs and inspection

• generate user acceptance test cases from use cases

• generate test cases that validate non-functional

requirements

• implement test architecture that automates tests

• execute non-functional tests to validate lifecycle

architecture
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Aim of validating software architectures

• Ascertain that all relevant non-functional
requirements are being met by the life cycle
architecture

• Can be done analytically

– Modelling the software architecture using an appropriate
formalism (e.g. process algebra or queuing network)

– Subjecting the models to analysis (e.g. reachability
analysis or solution of queuing networks)

• Problem with analytical approaches: models often do
not correspond to the developed architecture

• Alternative: testing the executable code that
implements the architecture.
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Overview of architecture test strategy

• Ease of deployment - Measure time to deploy

• Openness - Integration test interfaces

• Legacy Integration - Integration test interfaces

• Usability - Conduct usability experiment

• Security - Get expert hackers to break in

• Availability

• Latency

• Throughput - Conduct performance tests

• Scalability
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Performance tests - latency under no load

• Work out how the system performs in the best case
scenario

• Identify use cases and user stories that are sensitive
to latency

• Translate them into performance test cases that
exercise the non-loaded system and measure the
latency.

• Use performance testing tools, e.g.

– Mercury LoadRunner or

– Apache Jmeter (open source)

to perform the tests
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Using JMeter to test online car dealership
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Capture and Replay

• Defining test cases at protocol level cumbersome

• When possible use capture and replay capabilities

offered by testing tools, e.g. in

– Mercury WinRunner

– Apache Jmeter

• Capture interactions with the system at protocol level

by inserting proxies between the browser and the

system under test

• Use the captured interaction as baseline for test

cases
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JMeter capture and replay demo
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Testing latency under no load

• Sample system under test sufficiently often to have a

statistically significant sample set of test execution

• Observe minimal, average and maximum latency

• Observe how latency behaves over an extended

period of time. Latency can be adversely affected by:

– Garbage collection in Java containers

– Memory leaks (and yes they also exist in Java and C#!)

– Increases in data sets / file sizes

• Latency observed represents the best case scenario

for the latency real users will experience
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JMeter demo
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Testing latency under load

• Determine how the maximum number of concurrent

users

• Determine typical user behaviour (e.g. by measuring

the time users are idle between requests in a

capture/replay session)

• Define a number of test cases that gradually

increase numbers of users up to the max. required

• Measure the latency of the system under test in

these different test cases
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Latency under load with JMeter
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Testing throughput

• You can use the same test cases used for

determining latency under load also for throughput.

• Expect the throughput to have a maximum when

latency begins to increase as load increases.

• Ideally you want to ascertain that the throughput is

constant no matter what the load.

• In practice throughput deteriorates under high loads

(due to e.g. memory paging).
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Testing availability

• Leave a load test running for an extended period of

time (e.g. day or even a week) to see whether the

system performance degrades during that period

• Then leave a load test running for a shorter period

and selectively switch off hosts in your distributed

system

• Observe how the system reacts

• Expect to see latency and throughput degradation

due to redistribution of load
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Testing scalability

• Add hardware resources to your distributed system

• Verify that you do not need to change the software of

your distributed system (apart from deployment

configurations)

• Repeat the throughput tests

• Ascertain that the throughput is now higher

• Throughput increase should be proportional to the

hardware resources you have added.
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Key Points

• Architecture tests complement
architecture analysis

• Performance testing requires an
executable baseline architecture

• Built in RUP/USDP during
Elaboration

• Performance tests can assess
whether architectures meet
requirements on

– Latency

– Throughput

– Availability

– Scalability
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