
1

1© Wolfgang Emmerich, 1997

Distributed System Principles

2© Wolfgang Emmerich, 1997

What is a Distributed System?

n Definition: A distributed system consists
of a collection of autonomous computers,
connected through a network and
distribution middleware, which enables
computers to coordinate their activities
and to share the resources of the system,
so that users perceive the system as a
single, integrated computing facility.

2

3© Wolfgang Emmerich, 1997

Centralised System Characteristics

n One component with non-autonomous
parts

n Component shared by users all the time
n All resources accessible
n Software runs in a single process
n Single Point of control
n Single Point of failure

4© Wolfgang Emmerich, 1997

Distributed System Characteristics

nMultiple autonomous components
n Components are not shared by all users
n Resources may not be accessible
n Software runs in concurrent processes on

different processors
nMultiple Points of control
nMultiple Points of failure

3

5© Wolfgang Emmerich, 1997

Common Characteristics

nWhat are we trying to achieve when we
construct a distributed system?

n Certain common characteristics can be
used to assess distributed systems
• Resource Sharing
• Openness
• Concurrency
• Scalability
• Fault Tolerance
• Transparency

6© Wolfgang Emmerich, 1997

Resource Sharing

n Ability to use any hardware, software or
data anywhere in the system.

n Resource manager controls access,
provides naming scheme and controls
concurrency.

n Resource sharing model (e.g. client/
server or object-based) describing how
• resources are provided,
• they are used and
• provider and user interact with each other.

4

7© Wolfgang Emmerich, 1997

Openness

n Openness is concerned with extensions
and improvements of distributed systems.

n Detailed interfaces of components need to
be published.

n New components have to be integrated
with existing components.

n Differences in data representation of
interface types on different processors (of
different vendors) have to be resolved.

8© Wolfgang Emmerich, 1997

Concurrency

n Components in distributed systems are
executed in concurrent processes.

n Components access and update shared
resources (e.g. variables, databases,
device drivers).

n Integrity of the system may be violated if
concurrent updates are not coordinated.
• Lost updates
• Inconsistent analysis

5

9© Wolfgang Emmerich, 1997

Scalability

n Adaption of distributed systems to
• accomodate more users
• respond faster (this is the hard one)

n Usually done by adding more and/or
faster processors.

n Components should not need to be
changed when scale of a system
increases.

n Design components to be scalable!

10© Wolfgang Emmerich, 1997

Fault Tolerance

n Hardware, software and networks fail!
n Distributed systems must maintain

availability even at low levels of
hardware/software/network reliability.

n Fault tolerance is achieved by
• recovery
• redundancy

6

11© Wolfgang Emmerich, 1997

Transparency

n Distributed systems should be perceived
by users and application programmers as
a whole rather than as a collection of
cooperating components.

n Transparency has different dimensions
that were identified by ANSA.

n These represent various properties that
distributed systems should have.

12© Wolfgang Emmerich, 1997

Access
Transparency

Location
Transparency

Concurrency
Transparency

Migration
Transparency

Performance
Transparency

Scalability
Transparency

Replication
Transparency

Failure
Transparency

Distribution Transparency

7

13© Wolfgang Emmerich, 1997

Access Transparency

n Enables local and remote information
objects to be accessed using identical
operations.

n Example: File system operations in NFS.
n Example: Navigation in the Web.
n Example: SQL Queries

14© Wolfgang Emmerich, 1997

Location Transparency

n Enables information objects to be
accessed without knowledge of their
location.

n Example: File system operations in NFS
n Example: Pages in the Web
n Example: Tables in distributed databases

8

15© Wolfgang Emmerich, 1997

Concurrency Transparency

n Enables serveral processes to operate
concurrently using shared information
objects without interference between
them.

n Example: NFS
n Example: Automatic teller machine

network
n Example: Database management system

16© Wolfgang Emmerich, 1997

Replication Transparency

n Enables multiple instances of information
objects to be used to increase reliability
and performance without knowledge of
the replicas by users or application
programs

n Example: Distributed DBMS
n Example: Mirroring Web Pages.

9

17© Wolfgang Emmerich, 1997

Failure Transparency

n Enables the concealment of faults
n Allows users and applications to

complete their tasks despite the failure of
other components.

n Example: Database Management System

18© Wolfgang Emmerich, 1997

Migration Transparency

n Allows the movement of information
objects within a system without affecting
the operations of users or application
programs

n Example: NFS
n Example: Web Pages

10

19© Wolfgang Emmerich, 1997

Performance Transparency

n Allows the system to be reconfigured to
improve performance as loads vary.

n Example: Distributed make.

20© Wolfgang Emmerich, 1997

Scaling Transparency

n Allows the system and applications to
expand in scale without change to the
system structure or the application
algortithms.

n Example: World-Wide-Web
n Example: Distributed Database

