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Hardware Evolution

4C57/GI06 Evolutionary Systems

Tim Gordon

What is Hardware Evolution?

• The application of evolutionary techniques to 
hardware design and synthesis

• It is NOT just hardware implementation of EA

• Also called: Evolvable Hardware
Evolutionary Electronics

Where is Hardware Evolution?
• Many learning algorithms 

are inspired by nature
- GA/GP
- ANNs
- Immune Systems
- Ant Colony Optimisation

• Nature also inspires 
hardware designers
- Spiking ANNs
- Fault tolerance
- Design Optimisation
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How is Evolution Applied? 

• Digital Hardware 
Design = Logic 
Synthesis + Mapping

• Both processes 
involve optimisation 
steps

• Most interest in 
evolving design + 
mapping at once
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Technology Map,
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HE Example: Reconfigurable 
Hardware

• There are chips where the behaviour of all the 
components can be programmed

• There are chips where the interconnections 
between the components can also be 
programmed 

• The program that places a circuit design on the 
chip is called a bitstream.

• Once written, the chip will stay configured with 
the design until bitstream is rewritten

• One type of reconfigurable chip is a Field 
Programmable Gate Array

Field Programmable Gate Array

• FPGAs are 2D arrays of cells
• Cells are called Configurable Logic Blocks
• CLBs connected together with wires to/from nearest neighbours
• Each cell contains logic, and switches to select inputs & outputs
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CLB Example
• The logic within CLBs is 

usually several lookup tables 
(LUTs) + other stuff

• This example has 2x 4 Input 
LUTs, labelled F and G

• A 4-input LUT can implement 
any logical function of 4 inputs

• The logical function of LUT is 
defined by the truthtable output 
bits

• A LUT can be programmed by 
setting the corresponding bits 
in the bitstream
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Bitstream
fragment:

Inputs Example
• Inputs can be selected from 

the LUT outputs of 4 
neighbouring cells

• An input is selected by a 
special configuration 
multiplexer

• 8 possible inputs = 3 bits per 
MUX

• Inputs programmed by setting 
corresponding configuration 
bits in the bitstream
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Bitstream Example

• Bitstream consists of a concatenation of all 
configuration bits

• Example shows bitstream fragment for 1 CLB

000010011100 …….……. 0000000000001111

Bitstream fragment:

0101010101010101

CLB Input
Bits

F LUT
Bits

G LUT
Bits
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Evolving an FPGA design
• A circuit can be evolved 

using a GA
• The chromosome is the 

bitstream
• Each individual is 

evaluated in 2 steps:
1: Configure FPGA with 

bitstream/chromosome
2. Test configured FPGA by 

applying all possible input 
combinations, using output 
for fitness

0 10110 101 1

1 10010 100 1

1 10111 010 0

1 10100 110 0

1 11010 010 1

1 10010 010 0

1 10100 110 0

Fitness

30

14

14

28

18
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1 10111 100 1

1 11010 010 1

1 11010 010 1

1 10111 100 1

1 111 11 010 1

1 010 10 100 1

1 110 01 000 1

1 110 10 100 0

2. Evaluate Circuit

3. Select Breeding Pairs

1. Create New Population

4. Cross Over

5. Mutate6. Insert Into New Population

Iterate until
stopping conditions

are met

Example: 2 Bit Adder Evaluation
• Task is to evolve a 2 Bit adder
• Adds 2x 2 bit numbers 

together
• 4 inputs, 2 outputs
• Create a truthtable of all 

possible inputs / outputs
• Pick input and output points on 

FPGA
• Pass all possible input 

combinations one at a time
• Measure total number of 

output bits correct for each 
input combination

• Fitness = sum(correct output 
bits)

• Set of all input combinations 
called training set
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Example of an Evolved Adder
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• This example actually 

implements carry 
in/out too

• Has been simplified to 
show a logic gate 
implementation

• Evolved in 2 CLBs
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Is it practical?

• For most real-world hardware problems 
human designers outperform evolution

• Solving the problems that limit HE is an 
active area of research

• This research discussed later
• BUT

– Hardware evolution does have niches

Why? 1. Lowers Costs
• Automatic design = low cost hardware
• Low design cost makes low volumes more acceptable
• HE + field-reconfigurable hardware allows one-off 

designs (Kajitani et al. 1999) 

• Integrated circuit manufacture is not perfect
• Variations in manufacture result in substandard 

performance
• Evolution can tune circuits to take account of variations
• This improve yields (Mukarawa et al. 1998)

One-off design e.g.: Myoelectric arm controller

• Traditionally user must learn to 
control arm 

• Task is to learn to control 
actuators from nerve signals

• Inputs are Fourier transformed 
nerve data (training set) from 
user

• Outputs are control signals for 
actuator

• Successfully evolved circuits to 
control arm for individual users

• Circuit automatically 
implemented on reconfigurable 
chip

• Hardware solution is small & 
light
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Why? (2) Poorly Specified 
Problems

• Can’t easily design solution to these problems
• When applied to ANN-type problems

– Faster operation and design
– Easier to analyse

• HE tends to evolve feed-forward networks of 
logic gates for such problems: avoids some 
problems

e.g. classifiers (Higuchi, Iwata et al. 1996) 
image filters (Sekanina 2003)

Myoelectric Arm Revisited

• Evolved 1 control circuit for each actuator 
• 200 training patterns of each movement
• 800 training patters of no movement
• Slightly better than 64 node backprop ANN 

- 85% rather than 80%
• Much faster learning (80 ms rather than 3 

hours on 200MHz PC) 

Why? 3. Adaptive Systems
• HE + reconfigurable hardware = real-time 

adaptation
• Can adapt autonomously to changes in 

environment
• Useful when real-time manual control not 

possible 
– E.g. spacecraft systems (sensor processing) 

• Non-critical systems are more suitable
– E.g. data compression systems 
– plant power management 
– ATM cell scheduling
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Image Compression Example

• Pixels in an image tend to tightly correlate 
with their neighbours

• Pixel value can usually be predicted from 
neighbours

• Compressed image = prediction function + 
error at each pixel (lossless)

JPEG Compression

• Prediction function 
based on surrounding 
pixels

• Image is broken into 
blocks

• For each block a 
prediction function is 
selected

Hardware Evolution Compression

• Prediction function is evolved on reconfigurable 
hardware

• Evolve a circuit for each 16x16 block:
– Input: image data, 4 pixels x 8b = 32 inputs, all 256 training 

cases
– Output: predicted pixel
– Fitness: compare predicted with raw, sum(error for 16x16 block)
– Aim is to minimise error

• Each circuit = compression function for a 16x16 block
• Total compressed image size = sum(chromosome bits 

for each circuit + error bits for each pixel)
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• Similar performance 
to JPEG, ANN 
compression

• Improved method is 
ISO standard for high-
speed image 
compression in 
printers

Why? 4. Fault Tolerance

• Fabrication techniques not 100% reliable
• Miniaturisation increases risk of 

operational faults (power fluctuations, 
radiation)

• Redundancy is expensive
• Adaptive fault recovery by evolution + 

reconfiguration is one solution
• Designed-in fault tolerance is another

Why? 5. Design Innovation
• Traditional digital hardware design uses well-trodden 

rules.
• The rules don’t actually search the entire space of all 

circuits
• It may be possible to use old technologies more 

efficiently
• It isn’t possible to determine useful general design rules 

for some technologies
– Analogue Design

• New technologies and designs paradigms don’t have 
rules in place yet
– Programmable logic: convenient
– Nanoelectronics: small & efficient
– Shared component designs: efficient, low power
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Can Evolution Really Innovate With 
Standard Technologies?

• Traditional design works from the top 
down

• Design rules limit interactions between 
components to a tractable level

• Evolution tinkers with designs from the 
bottom up

• Hence it might be searching non-
traditional areas of space

• More on whether it actually can later

Classifying HE – Level of 
Constraint

• Both software and hardware design rely on 
abstraction

• Abstraction simplifies large problems
• When we use a design abstraction we need to 

make sure the hardware actually behaves 
according to the abstraction

• i.e. we need to constrain the hardware to 
particular behaviours

• Constraints are spatial (granularity), spatial 
(interconnection) or temporal

Constraint – Spatial, Granularity
• All traditional design methodologies use encapsulation
• Designers like to describe their problems with large well-understood 

units
• Digital designers encapsulate collections of transistors into gates, 

gates into adders, registers etc.
• Analogue designers encapsulate collections of components into 

amplifiers, filters etc.
• This limits the interactions within the circuits
• Interactions can only take place between the interfaces of the 

chosen units
– i.e. the internals of one unit can’t interact with another

• Hence it actually constrains the types of circuit we explore



10

Constraint - Temporal
• Digital circuits are made of 

transistors
• Digital design abstracts 

transistors ( & other larger 
granularity units) to perfect 
switches

• Transistors are actually 
analogue devices

• They take time to saturate
• We have to be sure this has 

happened
• Signals also take time to travel 

along wires
• A clock can tell us when it’s safe 

to accept a signal
• Clock constrains us to using v. 

limited segment of circuit’s 
behaviour

Constraint: Spatial, Interconnection

• Clocking every component would be extremely 
restrictive

• Feedforward networks of gates will always 
eventually behave as expected

• We can avoid using a clock in areas of circuit 
that are feed-forward only

• Combinational logic design is constrained to 
feed-forward only

• Only a suitable approach for some areas of 
circuit, a few problems
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• There is a lot of design space that is not traditionally explored
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Classifying HE – Evaluation 
Strategy

• Early HE used evaluated circuits in 
simulation: Extrinsic HE

• Simulating logical abstractions is efficient

• Simulating low-constraint HE is 
computationally expensive

• Simulating low-constraint is difficult

Evaluation Strategy (2)
• Evaluating with a programmable logic device is called Intrinsic HE

• Disadvantages are: 

– Limited reconfigurability
– Speed of reconfiguration
– Destructibility
– Limited topology and granularity
– Limited observability

• The most versatile programmable logic device is the FPGA

• Commercial FPAAs also available but to date limited by one or more 
of the above

• Only a few research platforms actually designed for evolution

Innovation Research – Traditional 
vs. Evolutionary Search

• Traditional design decomposes from the top 
down into known sub-problems

• Applies constraints to ensure design behaves 
like known sub-problems

• Evolution works from the bottom up
• Evolution uses fitness to guide performance
• Not directed by prior knowledge 
• Oblivious to complexities of the interactions 

within the circuit
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Relaxing Constraints
• There may be innovative circuits in space 

beyond traditional design
• But can evolution actually manipulate circuit 

dynamics / structure when traditional constraints 
are relaxed?

• Gates have delays measured in ns
• Inputs and outputs of interest are often much 

slower
• Traditionally temporal constraints are used to 

achieve this
• Can evolution manipulate fast components into 

a configuration that behaves more slowly?

Evolving an Oscillator
• Evolved a network of high-speed gates at to behave as a 

low frequency oscillator (Thompson, Harvey et al. 1996)
• Few constraints: none on connectivity or temporal, gate 

level granularity
• Aim: Oscillate every 0.5ms, using gates with 1-5ns 

delays

• Fitness =
1. Measure time b/w each oscillation
2. Calculate difference b/w oscillation time & 0.5ms
3. Sum error over 10ms (simulated) evaluation time

Chromosome Structure
• Defines network of gates
• Array of 100 segments as 

shown in table
• Each segment describes a 

component + connections

• Node function: gate type
• Length: how many segments 

to count
• Direction: count 

forwards/backwards
• Addressing mode: count from 

current segment / start of array
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Best Circuit Evolved

Oscillator Performance

• Evolution really can find potentially useful circuits (low-
speed behaviour) with no design constraints (only 
high-speed gates)

Relaxing Constraints – Intrinsic

• Can this be achieved with real hardware?
• Evolved circuit to discriminate between two 

frequencies
• To discriminate b/w frequencies circuit must 

measure oscillations over a (relatively) long time
• Evolved entire bitstream for a 10x10 cell area of 

FPGA
• Only real, fast-saturating FPGA gates available
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Thompson’s Frequency 
Discriminator

• 1 input, 1 output
• No clock signal 

available
• Fitness:

– Maximise difference 
b/w output voltage 
when 1kHz or 10kHz 
signals applied

Can Evolution Find Innovative 
Circuits? 

• Circuits that could not be found using 
traditional design abstractions are 
innovative

• Solution has high performance
• Uses less gates that traditional designs
• Analysis shows internal non-digital 

behaviour
∴ Innovative 

Problems with innovative circuits

• Important to understand how a circuit 
works

• Some behaviour defies analysis
• Not portable

– Fails on other FPGAs
– Fails when temperature changed 

• These problems have to be tackled before 
evolved innovative circuits are useful
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Innovation in Digital Design Space

• Are there innovative circuits that don’t 
break the digital design constraints?

• Expt. repeated with clock as additional 
input

• Solutions used clock, simulated perfectly 
on logic simulator

• Analysis revealed solution could not be 
discovered by traditional top-down design

Innovation – New Technologies

• Traditional design maps to AND, OR gates
• FPGAs use XOR, LUTs and MUXs
• Can evolution make better use of these 

gates?
• Evolved 3 bit multipliers

– i.e. multiplies 2x 3bit numbers together

Conventional 3 Bit Multiplier

26 gates
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Evolved 3 bit multiplier

• Fewer gates than traditional design
• Makes much greater use of MUX than traditional design

Innovation – Complex 
Technologies

• Traditional analogue design is difficult as it has few rules 
– good potential target for HE

• Mutating a digital circuit often causes a big change in 
fitness

• Mutating an analogue circuit usually only causes a small 
change in fitness

∴ Usually more evolvable than digital
• BUT

– FPAAs are small, restricted topology
– Simulation is computationally expensive
– Simulator has to be very good, e.g. no infinite currents, voltages

• Huge range of circuits evolved, e.g. filters, amplifiers, 
computational circuits (i.e. sqrt, log etc)

HE Research - Generalisation
• Evolution is an inductive learner
• Inductive learners infer hypotheses from 

observed training examples
• Impossible to train using all possible 

combinations of input signals for big problems
• Generalisation vital if HE is to rival traditional 

design
• Generalisation to unseen operating conditions 

must also be considered
– i.e. portability
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Approaches to Generalisation

• Hope for the best
• Constrain representation to circuits that 

generalise well
• Reward circuits that generalise well 

through fitness function
– Evolution must infer the structure along with 

the primary task
– More opportunity for innovation

Generalisation to Unseen Inputs
• For some problems feedforward HE outperforms 

backprop ANNs on pattern recognition (e.g. 
Myoelectric arm)

• Square root function generalises well too
• So hoping for the best can work
BUT
• Arithmetic circuits don’t generalise well
• Applying random subsets of training cases to 

reward general circuits doesn’t work 
• Why?

Input Generalisation Explained
• Arithmetic functions: all input cases and all bits 

contain some unique information
• They all contribute equally to fitness
• Square root: low order bits contribute less to 

fitness, can be ignored to some extent
• Pattern recognition: redundant data within input 

set
• Redundancy is the key
• Most real-world problems likely to have 

redundancy, but it’s a big difficulty
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Generalisation to Unseen 
Environments

• Circuits are expected to function under a range 
of conditions:
– Temperature
– Power fluctuations
– Fabrication variations
– Electronic surroundings
– Output load

• Portability a particular problem for unconstrained 
HE, intrinsic or extrinsic

Unseen Environments –
Constraining Representation

• Digital design imposes timing constraints 
to ensure digital operation

• VLSI foundries test process + set timing, 
environmental constraints accordingly

• Exhaustive testing not possible for HE
• Restricting circuit structure to traditional 

constraints solves problem
BUT at the expense of innovation 

Environmental Generalisation –
Biasing Fitness

• One solution – define an “Operational Envelope” of operating 
conditions & evaluate population at different points within it
– non-portable solutions are automatically penalised

• Thompson’s tone discriminator re-evolved using “Operational 
Envelope” approach

• Each evaluation carried out on 1 of 5 FPGAs chosen at random:
– Held at different temperatures
– Different power supplies
– Made in different factories

• Evolved solutions were
– Robust across whole temperature range of envelope
– Portable to unseen FPGAs
– Portable to unseen power supplies

∴ Introducing bias towards generalisation can work well
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Generalisation – Simulation Issues

• Circuit simulation is important - allows analysis
• Logic simulators don’t model all the processes 

unconstrained evolution might make use of
• Might not simulate on low-abstraction simulator 

too!
– might make use of fabrication, power supply 

variations etc.
– these are difficult to replicate in a simulator 

• Extrinsic solutions might not work in real life
– low-abstraction simulators often allow infinite currents 

voltages
– Evolution often makes use of these

Generalisation – Mixtrinsic 
Evolution

• Can do something similar to the operational 
envelope:
– During evolution use intrinsic and extrinsic evaluation
– Evaluate circuits at random on either platform
– Non-portable solutions are automatically penalised
– This is called mixtrinsic evaluation

• Could do reverse: reward circuits that are not 
portable between intrinsic and extrinsic
– Might promote innovative solutions

Fault Tolerance

• Operation in the presence of faults is 
another environmental condition

• Introducing faults during evaluation 
improves fault tolerance: just like 
Operational Envelope

• EA search bias can cause inherent fault 
tolerance to certain conditions

• How?
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Representational Fault Tolerance

• EAs optimise the population not individual
• Population likely to contain many mutants of 

good circuit
• EA is drawn to area where best + mutants are all 

high fitness
• If representation is chosen so mutation has 

same effect as common fault
– Circuit is identical to mutant
– Mutant still has high fitness because of above

Representational FT: Example

• Hardware often implemented as a finite state machine
• State transitions for FSM can be encoded in RAM
• We could evolve hardware by evolving the RAM bits
• Single Stuck At faults are a common operational fault
• SSA fault would have the same effect on the FSM as a mutation

Output Logic

1 0 0

SSA Fault

000 0 1 0
001 1 0 0
010 0 1 1
011 0 0 1
100 0 0 0

Current
State

Next
State

0

Output Logic

1 0 0

000 0 1 0
001 1 0 0
010 0 1
011 0 0 1
100 0 0 0

Current
State

Next
State

Historical Fault Tolerance
• Introduce fault that breaks best solution (Layzell 

and Thompson 2000)
• Some of population usually robust to fault
• EA theory says population should have 

converged. What’s going on?
• Earlier best solutions were inherently different 

designs
• Crossover often combines these with new best
• Current best is descendent of both designs
• Info about old best retained in population
• Crossover vital to this phenomenon
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Populational Fault Tolerance

• Population diversity can also allow fault 
tolerance

• Shown by evolving population of 
oscillators with no shared evolutionary 
history (no crossover)

• Faults in one individual did not affect 
whole population

• Nicheing might be able to combine PFT & 
HFT

HE Research - Evolvability

• Evolvability covers improving:
– Solution quality
– Search performance
– Scalability

• Representation is crucial
• Search space size not as important as order of 

search
• Changes in circuit geometry, I/O positioning 

often affect performance greatly.

Function Level Evolution
• Aims to improve performance by reducing 

search space

• Use domain knowledge to select high-level 
building blocks, e.g. add, sub, sin

• Disadvantages:
– Requires designer with domain knowledge
– Not hierachical modularity
– An abstraction that imposes constraint
– Traditional building blocks might not be evolvable
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Neutral Networks
• EAs converge to suboptimal solutions on large search 

spaces
• Traditional thinking says evolution stops when population 

converges
• Not necessarily true
• NNs are networks of genotypes with identical fitness
• Genetic drift along NNs allows escape from local optima
• ∴ Evolution continues after genetic convergence
• Many circuit representations have a good deal of 

neutrality
• Improves fitness for many HE problems

Incremental Learning

• Break down problem into sub-problems
• Learn solution to 1st sub-problem
• Learn solution to 1st + 2nd sub-problem
• Learn solution to 1st + 2nd + 3rd sub-problem
• Can be automated
• Requires some form of sensible problem 

decomposition
– Requires some domain knowledge

Dynamic Representations
• Variable length representation proposed to reduce 

search space
• Short representation = small search space
• Start with short representation – reduces initial search 

space
• Several researchers have taken similar approach

– Each gene mapped directly to a Boolean function (product term)
– Genes ORed in final solution
– Genes added/removed either by evolutionary operators or 

another heuristic
• Improved performance for some pattern recognition 

problems reported


