
1

Hardware Evolution

4C57/GI06 Evolutionary Systems

Tim Gordon

What is Hardware Evolution?

• The application of evolutionary techniques to
hardware design and synthesis

• It is NOT just hardware implementation of EA

• Also called: Evolvable Hardware
Evolutionary Electronics

Where is Hardware Evolution?
• Many learning algorithms

are inspired by nature
- GA/GP
- ANNs
- Immune Systems
- Ant Colony Optimisation

• Nature also inspires
hardware designers
- Spiking ANNs
- Fault tolerance
- Design Optimisation

BiologyComputer
Science

Electronic Engineering

Evolvable
Hardware Bio-

inspired
Hardware

Bio-
inspired
Software

Systems
Engineering

2

How is Evolution Applied?

• Digital Hardware
Design = Logic
Synthesis + Mapping

• Both processes
involve optimisation
steps

• Most interest in
evolving design +
mapping at once

Evolutionary
Design

Evolvable
Hardware

Evolutionary Logic
Design

Evolutionary
Map, Place,

Route

Technology Map,
Place, Route

Logic
Synthesis

Hardware
Synthesis

HE Example: Reconfigurable
Hardware

• There are chips where the behaviour of all the
components can be programmed

• There are chips where the interconnections
between the components can also be
programmed

• The program that places a circuit design on the
chip is called a bitstream.

• Once written, the chip will stay configured with
the design until bitstream is rewritten

• One type of reconfigurable chip is a Field
Programmable Gate Array

Field Programmable Gate Array

• FPGAs are 2D arrays of cells
• Cells are called Configurable Logic Blocks
• CLBs connected together with wires to/from nearest neighbours
• Each cell contains logic, and switches to select inputs & outputs

Out 1F LUT

Out 2G LUT

Inp 1

Inp 2

Inp 3

Inp 4

Cell Cell

Cell Cell CellCell

Cell Cell CellCell

Cell Cell CellCell

Cell Cell

3

CLB Example
• The logic within CLBs is

usually several lookup tables
(LUTs) + other stuff

• This example has 2x 4 Input
LUTs, labelled F and G

• A 4-input LUT can implement
any logical function of 4 inputs

• The logical function of LUT is
defined by the truthtable output
bits

• A LUT can be programmed by
setting the corresponding bits
in the bitstream

G
LUT

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

Inp1 Inp2 Inp3 Inp4 Output

F
LUT

Output =
AND(Inp1,Inp2)

F LUT
Truthtable:

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bitstream
fragment:

Inputs Example
• Inputs can be selected from

the LUT outputs of 4
neighbouring cells

• An input is selected by a
special configuration
multiplexer

• 8 possible inputs = 3 bits per
MUX

• Inputs programmed by setting
corresponding configuration
bits in the bitstream

Input 1

Input 4In
pu

t 2

Input 3

F
LUT

G
LUT

F
North

G
North

F
East

G
East

G
South

F
South

F
West

G
West

F
N

or
th

G
N

or
th

F
E

as
t

G E
as

t
G

S
ou

th
F

S
ou

th
F

W
es

t
G

W
es

t F
N

orth
G

N
orth

F
E

ast
GE
ast

G
S

outh
F

S
outh

F
W

est
G

W
est

F
North

G
North

F
East

G
East

G
South

F
South

F
West

G
West

010

011

100

000

000010011100 …….…….

Input
Configuration

Bits:

Bitstream Fragment:

Bitstream Example

• Bitstream consists of a concatenation of all
configuration bits

• Example shows bitstream fragment for 1 CLB

000010011100 …….……. 0000000000001111

Bitstream fragment:

0101010101010101

CLB Input
Bits

F LUT
Bits

G LUT
Bits

4

Evolving an FPGA design
• A circuit can be evolved

using a GA
• The chromosome is the

bitstream
• Each individual is

evaluated in 2 steps:
1: Configure FPGA with

bitstream/chromosome
2. Test configured FPGA by

applying all possible input
combinations, using output
for fitness

0 10110 101 1

1 10010 100 1

1 10111 010 0

1 10100 110 0

1 11010 010 1

1 10010 010 0

1 10100 110 0

Fitness

30

14

14

28

18

0 10110 101 1

1 10111 100 1

1 11010 010 1

1 11010 010 1

1 10111 100 1

1 111 11 010 1

1 010 10 100 1

1 110 01 000 1

1 110 10 100 0

2. Evaluate Circuit

3. Select Breeding Pairs

1. Create New Population

4. Cross Over

5. Mutate6. Insert Into New Population

Iterate until
stopping conditions

are met

Example: 2 Bit Adder Evaluation
• Task is to evolve a 2 Bit adder
• Adds 2x 2 bit numbers

together
• 4 inputs, 2 outputs
• Create a truthtable of all

possible inputs / outputs
• Pick input and output points on

FPGA
• Pass all possible input

combinations one at a time
• Measure total number of

output bits correct for each
input combination

• Fitness = sum(correct output
bits)

• Set of all input combinations
called training set

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
1
1
0
1
1
0
0
1
0
0
1

A B
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
1

Sum1Sum0

FPGAA1
B0

Sum0
Sum1

B1

A0

Example of an Evolved Adder

B0
C In

A0

B1
A1

S1

C Out

S0
• This example actually

implements carry
in/out too

• Has been simplified to
show a logic gate
implementation

• Evolved in 2 CLBs

5

Is it practical?

• For most real-world hardware problems
human designers outperform evolution

• Solving the problems that limit HE is an
active area of research

• This research discussed later
• BUT

– Hardware evolution does have niches

Why? 1. Lowers Costs
• Automatic design = low cost hardware
• Low design cost makes low volumes more acceptable
• HE + field-reconfigurable hardware allows one-off

designs (Kajitani et al. 1999)

• Integrated circuit manufacture is not perfect
• Variations in manufacture result in substandard

performance
• Evolution can tune circuits to take account of variations
• This improve yields (Mukarawa et al. 1998)

One-off design e.g.: Myoelectric arm controller

• Traditionally user must learn to
control arm

• Task is to learn to control
actuators from nerve signals

• Inputs are Fourier transformed
nerve data (training set) from
user

• Outputs are control signals for
actuator

• Successfully evolved circuits to
control arm for individual users

• Circuit automatically
implemented on reconfigurable
chip

• Hardware solution is small &
light

6

Why? (2) Poorly Specified
Problems

• Can’t easily design solution to these problems
• When applied to ANN-type problems

– Faster operation and design
– Easier to analyse

• HE tends to evolve feed-forward networks of
logic gates for such problems: avoids some
problems

e.g. classifiers (Higuchi, Iwata et al. 1996)
image filters (Sekanina 2003)

Myoelectric Arm Revisited

• Evolved 1 control circuit for each actuator
• 200 training patterns of each movement
• 800 training patters of no movement
• Slightly better than 64 node backprop ANN

- 85% rather than 80%
• Much faster learning (80 ms rather than 3

hours on 200MHz PC)

Why? 3. Adaptive Systems
• HE + reconfigurable hardware = real-time

adaptation
• Can adapt autonomously to changes in

environment
• Useful when real-time manual control not

possible
– E.g. spacecraft systems (sensor processing)

• Non-critical systems are more suitable
– E.g. data compression systems
– plant power management
– ATM cell scheduling

7

Image Compression Example

• Pixels in an image tend to tightly correlate
with their neighbours

• Pixel value can usually be predicted from
neighbours

• Compressed image = prediction function +
error at each pixel (lossless)

JPEG Compression

• Prediction function
based on surrounding
pixels

• Image is broken into
blocks

• For each block a
prediction function is
selected

Hardware Evolution Compression

• Prediction function is evolved on reconfigurable
hardware

• Evolve a circuit for each 16x16 block:
– Input: image data, 4 pixels x 8b = 32 inputs, all 256 training

cases
– Output: predicted pixel
– Fitness: compare predicted with raw, sum(error for 16x16 block)
– Aim is to minimise error

• Each circuit = compression function for a 16x16 block
• Total compressed image size = sum(chromosome bits

for each circuit + error bits for each pixel)

8

• Similar performance
to JPEG, ANN
compression

• Improved method is
ISO standard for high-
speed image
compression in
printers

Why? 4. Fault Tolerance

• Fabrication techniques not 100% reliable
• Miniaturisation increases risk of

operational faults (power fluctuations,
radiation)

• Redundancy is expensive
• Adaptive fault recovery by evolution +

reconfiguration is one solution
• Designed-in fault tolerance is another

Why? 5. Design Innovation
• Traditional digital hardware design uses well-trodden

rules.
• The rules don’t actually search the entire space of all

circuits
• It may be possible to use old technologies more

efficiently
• It isn’t possible to determine useful general design rules

for some technologies
– Analogue Design

• New technologies and designs paradigms don’t have
rules in place yet
– Programmable logic: convenient
– Nanoelectronics: small & efficient
– Shared component designs: efficient, low power

9

Can Evolution Really Innovate With
Standard Technologies?

• Traditional design works from the top
down

• Design rules limit interactions between
components to a tractable level

• Evolution tinkers with designs from the
bottom up

• Hence it might be searching non-
traditional areas of space

• More on whether it actually can later

Classifying HE – Level of
Constraint

• Both software and hardware design rely on
abstraction

• Abstraction simplifies large problems
• When we use a design abstraction we need to

make sure the hardware actually behaves
according to the abstraction

• i.e. we need to constrain the hardware to
particular behaviours

• Constraints are spatial (granularity), spatial
(interconnection) or temporal

Constraint – Spatial, Granularity
• All traditional design methodologies use encapsulation
• Designers like to describe their problems with large well-understood

units
• Digital designers encapsulate collections of transistors into gates,

gates into adders, registers etc.
• Analogue designers encapsulate collections of components into

amplifiers, filters etc.
• This limits the interactions within the circuits
• Interactions can only take place between the interfaces of the

chosen units
– i.e. the internals of one unit can’t interact with another

• Hence it actually constrains the types of circuit we explore

10

Constraint - Temporal
• Digital circuits are made of

transistors
• Digital design abstracts

transistors (& other larger
granularity units) to perfect
switches

• Transistors are actually
analogue devices

• They take time to saturate
• We have to be sure this has

happened
• Signals also take time to travel

along wires
• A clock can tell us when it’s safe

to accept a signal
• Clock constrains us to using v.

limited segment of circuit’s
behaviour

Constraint: Spatial, Interconnection

• Clocking every component would be extremely
restrictive

• Feedforward networks of gates will always
eventually behave as expected

• We can avoid using a clock in areas of circuit
that are feed-forward only

• Combinational logic design is constrained to
feed-forward only

• Only a suitable approach for some areas of
circuit, a few problems

Hardware Constraint Space

 Temporal

 A

synchronous

 S

ynchronous

Analo
gue

 (H

andshake-d
riven)

 (C

lock-driven)

Spatial, Interconnection

S
pa

tia
l,

G
ra

nu
la

ri
ty

Unconstrained
Architecture

Specific
Topology

Technology
Specific

Components

Nearest
Neighbours Feedforward Restricted

Feedforward

Gate
Level

RTL /
Function

Level

Behavioural
Descriptions

Bistream
Level

• There is a lot of design space that is not traditionally explored

11

Classifying HE – Evaluation
Strategy

• Early HE used evaluated circuits in
simulation: Extrinsic HE

• Simulating logical abstractions is efficient

• Simulating low-constraint HE is
computationally expensive

• Simulating low-constraint is difficult

Evaluation Strategy (2)
• Evaluating with a programmable logic device is called Intrinsic HE

• Disadvantages are:

– Limited reconfigurability
– Speed of reconfiguration
– Destructibility
– Limited topology and granularity
– Limited observability

• The most versatile programmable logic device is the FPGA

• Commercial FPAAs also available but to date limited by one or more
of the above

• Only a few research platforms actually designed for evolution

Innovation Research – Traditional
vs. Evolutionary Search

• Traditional design decomposes from the top
down into known sub-problems

• Applies constraints to ensure design behaves
like known sub-problems

• Evolution works from the bottom up
• Evolution uses fitness to guide performance
• Not directed by prior knowledge
• Oblivious to complexities of the interactions

within the circuit

12

Relaxing Constraints
• There may be innovative circuits in space

beyond traditional design
• But can evolution actually manipulate circuit

dynamics / structure when traditional constraints
are relaxed?

• Gates have delays measured in ns
• Inputs and outputs of interest are often much

slower
• Traditionally temporal constraints are used to

achieve this
• Can evolution manipulate fast components into

a configuration that behaves more slowly?

Evolving an Oscillator
• Evolved a network of high-speed gates at to behave as a

low frequency oscillator (Thompson, Harvey et al. 1996)
• Few constraints: none on connectivity or temporal, gate

level granularity
• Aim: Oscillate every 0.5ms, using gates with 1-5ns

delays

• Fitness =
1. Measure time b/w each oscillation
2. Calculate difference b/w oscillation time & 0.5ms
3. Sum error over 10ms (simulated) evaluation time

Chromosome Structure
• Defines network of gates
• Array of 100 segments as

shown in table
• Each segment describes a

component + connections

• Node function: gate type
• Length: how many segments

to count
• Direction: count

forwards/backwards
• Addressing mode: count from

current segment / start of array

13

Best Circuit Evolved

Oscillator Performance

• Evolution really can find potentially useful circuits (low-
speed behaviour) with no design constraints (only
high-speed gates)

Relaxing Constraints – Intrinsic

• Can this be achieved with real hardware?
• Evolved circuit to discriminate between two

frequencies
• To discriminate b/w frequencies circuit must

measure oscillations over a (relatively) long time
• Evolved entire bitstream for a 10x10 cell area of

FPGA
• Only real, fast-saturating FPGA gates available

14

Thompson’s Frequency
Discriminator

• 1 input, 1 output
• No clock signal

available
• Fitness:

– Maximise difference
b/w output voltage
when 1kHz or 10kHz
signals applied

Can Evolution Find Innovative
Circuits?

• Circuits that could not be found using
traditional design abstractions are
innovative

• Solution has high performance
• Uses less gates that traditional designs
• Analysis shows internal non-digital

behaviour
∴ Innovative

Problems with innovative circuits

• Important to understand how a circuit
works

• Some behaviour defies analysis
• Not portable

– Fails on other FPGAs
– Fails when temperature changed

• These problems have to be tackled before
evolved innovative circuits are useful

15

Innovation in Digital Design Space

• Are there innovative circuits that don’t
break the digital design constraints?

• Expt. repeated with clock as additional
input

• Solutions used clock, simulated perfectly
on logic simulator

• Analysis revealed solution could not be
discovered by traditional top-down design

Innovation – New Technologies

• Traditional design maps to AND, OR gates
• FPGAs use XOR, LUTs and MUXs
• Can evolution make better use of these

gates?
• Evolved 3 bit multipliers

– i.e. multiplies 2x 3bit numbers together

Conventional 3 Bit Multiplier

26 gates

16

Evolved 3 bit multiplier

• Fewer gates than traditional design
• Makes much greater use of MUX than traditional design

Innovation – Complex
Technologies

• Traditional analogue design is difficult as it has few rules
– good potential target for HE

• Mutating a digital circuit often causes a big change in
fitness

• Mutating an analogue circuit usually only causes a small
change in fitness

∴ Usually more evolvable than digital
• BUT

– FPAAs are small, restricted topology
– Simulation is computationally expensive
– Simulator has to be very good, e.g. no infinite currents, voltages

• Huge range of circuits evolved, e.g. filters, amplifiers,
computational circuits (i.e. sqrt, log etc)

HE Research - Generalisation
• Evolution is an inductive learner
• Inductive learners infer hypotheses from

observed training examples
• Impossible to train using all possible

combinations of input signals for big problems
• Generalisation vital if HE is to rival traditional

design
• Generalisation to unseen operating conditions

must also be considered
– i.e. portability

17

Approaches to Generalisation

• Hope for the best
• Constrain representation to circuits that

generalise well
• Reward circuits that generalise well

through fitness function
– Evolution must infer the structure along with

the primary task
– More opportunity for innovation

Generalisation to Unseen Inputs
• For some problems feedforward HE outperforms

backprop ANNs on pattern recognition (e.g.
Myoelectric arm)

• Square root function generalises well too
• So hoping for the best can work
BUT
• Arithmetic circuits don’t generalise well
• Applying random subsets of training cases to

reward general circuits doesn’t work
• Why?

Input Generalisation Explained
• Arithmetic functions: all input cases and all bits

contain some unique information
• They all contribute equally to fitness
• Square root: low order bits contribute less to

fitness, can be ignored to some extent
• Pattern recognition: redundant data within input

set
• Redundancy is the key
• Most real-world problems likely to have

redundancy, but it’s a big difficulty

18

Generalisation to Unseen
Environments

• Circuits are expected to function under a range
of conditions:
– Temperature
– Power fluctuations
– Fabrication variations
– Electronic surroundings
– Output load

• Portability a particular problem for unconstrained
HE, intrinsic or extrinsic

Unseen Environments –
Constraining Representation

• Digital design imposes timing constraints
to ensure digital operation

• VLSI foundries test process + set timing,
environmental constraints accordingly

• Exhaustive testing not possible for HE
• Restricting circuit structure to traditional

constraints solves problem
BUT at the expense of innovation

Environmental Generalisation –
Biasing Fitness

• One solution – define an “Operational Envelope” of operating
conditions & evaluate population at different points within it
– non-portable solutions are automatically penalised

• Thompson’s tone discriminator re-evolved using “Operational
Envelope” approach

• Each evaluation carried out on 1 of 5 FPGAs chosen at random:
– Held at different temperatures
– Different power supplies
– Made in different factories

• Evolved solutions were
– Robust across whole temperature range of envelope
– Portable to unseen FPGAs
– Portable to unseen power supplies

∴ Introducing bias towards generalisation can work well

19

Generalisation – Simulation Issues

• Circuit simulation is important - allows analysis
• Logic simulators don’t model all the processes

unconstrained evolution might make use of
• Might not simulate on low-abstraction simulator

too!
– might make use of fabrication, power supply

variations etc.
– these are difficult to replicate in a simulator

• Extrinsic solutions might not work in real life
– low-abstraction simulators often allow infinite currents

voltages
– Evolution often makes use of these

Generalisation – Mixtrinsic
Evolution

• Can do something similar to the operational
envelope:
– During evolution use intrinsic and extrinsic evaluation
– Evaluate circuits at random on either platform
– Non-portable solutions are automatically penalised
– This is called mixtrinsic evaluation

• Could do reverse: reward circuits that are not
portable between intrinsic and extrinsic
– Might promote innovative solutions

Fault Tolerance

• Operation in the presence of faults is
another environmental condition

• Introducing faults during evaluation
improves fault tolerance: just like
Operational Envelope

• EA search bias can cause inherent fault
tolerance to certain conditions

• How?

20

Representational Fault Tolerance

• EAs optimise the population not individual
• Population likely to contain many mutants of

good circuit
• EA is drawn to area where best + mutants are all

high fitness
• If representation is chosen so mutation has

same effect as common fault
– Circuit is identical to mutant
– Mutant still has high fitness because of above

Representational FT: Example

• Hardware often implemented as a finite state machine
• State transitions for FSM can be encoded in RAM
• We could evolve hardware by evolving the RAM bits
• Single Stuck At faults are a common operational fault
• SSA fault would have the same effect on the FSM as a mutation

Output Logic

1 0 0

SSA Fault

000 0 1 0
001 1 0 0
010 0 1 1
011 0 0 1
100 0 0 0

Current
State

Next
State

0

Output Logic

1 0 0

000 0 1 0
001 1 0 0
010 0 1
011 0 0 1
100 0 0 0

Current
State

Next
State

Historical Fault Tolerance
• Introduce fault that breaks best solution (Layzell

and Thompson 2000)
• Some of population usually robust to fault
• EA theory says population should have

converged. What’s going on?
• Earlier best solutions were inherently different

designs
• Crossover often combines these with new best
• Current best is descendent of both designs
• Info about old best retained in population
• Crossover vital to this phenomenon

21

Populational Fault Tolerance

• Population diversity can also allow fault
tolerance

• Shown by evolving population of
oscillators with no shared evolutionary
history (no crossover)

• Faults in one individual did not affect
whole population

• Nicheing might be able to combine PFT &
HFT

HE Research - Evolvability

• Evolvability covers improving:
– Solution quality
– Search performance
– Scalability

• Representation is crucial
• Search space size not as important as order of

search
• Changes in circuit geometry, I/O positioning

often affect performance greatly.

Function Level Evolution
• Aims to improve performance by reducing

search space

• Use domain knowledge to select high-level
building blocks, e.g. add, sub, sin

• Disadvantages:
– Requires designer with domain knowledge
– Not hierachical modularity
– An abstraction that imposes constraint
– Traditional building blocks might not be evolvable

22

Neutral Networks
• EAs converge to suboptimal solutions on large search

spaces
• Traditional thinking says evolution stops when population

converges
• Not necessarily true
• NNs are networks of genotypes with identical fitness
• Genetic drift along NNs allows escape from local optima
• ∴ Evolution continues after genetic convergence
• Many circuit representations have a good deal of

neutrality
• Improves fitness for many HE problems

Incremental Learning

• Break down problem into sub-problems
• Learn solution to 1st sub-problem
• Learn solution to 1st + 2nd sub-problem
• Learn solution to 1st + 2nd + 3rd sub-problem
• Can be automated
• Requires some form of sensible problem

decomposition
– Requires some domain knowledge

Dynamic Representations
• Variable length representation proposed to reduce

search space
• Short representation = small search space
• Start with short representation – reduces initial search

space
• Several researchers have taken similar approach

– Each gene mapped directly to a Boolean function (product term)
– Genes ORed in final solution
– Genes added/removed either by evolutionary operators or

another heuristic
• Improved performance for some pattern recognition

problems reported

