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Computational Development
• Life on earth was 

single-celled for 3 
billion years

• Multicellular life 
appeared at the 
Cambrian Explosion,

• Large organisms with 
many body plans 
appeared 

• Exploited new niches

Computational Development (2)

• EC is limited to small problems like acellular life
• A Cambrian Explosion in EC might allow the 

evolution of solutions to large and complex 
problems
– Microprocessor design
– Passenger jet design
– Skyscraper design

• The process that turns a single cell into a large 
organism is development

Benefits of Development

• Primarily scalability: 
• Evolution creates large, complex 

phenotypes using development
• It’s the only solution nature found in 4 

billion years
• By modelling features of development we 

might be able to create large complex 
phenotypes too



2

Other Benefits
• Multicellular organisms are fault tolerant

– Redundancy on many levels

• The developmental process itself is robust to faults
– Splitting an embryo produces twins
– Starfish, newts regrow missing limbs
– These phenomena rely on development

• So developmental robustness provides another avenue 
to fault tolerance

• Biological development is poorly understood
– Modelling might provide insight into how it really works

Other Benefits (2)

• 2D / 3D structure design
– nature has evolved a way to map from 1D 

chromosomes to 3D structures over aeons
– the basic concepts might allow us to easily map to 2D 

structures too

Problems that might benefit from 
scalability

• Problems where we know that EC is 
outperformed by other methods are currently 
under exploration:
– Circuit design (c.f. traditional methodologies)
– Software design (c.f. traditional methodologies)
– ANN design (c.f. biological NN design)

• But in reality many problems are eventually 
limited by the scalability of EAs
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What is the scalability problem?

• EC works well with small chromosomes
– Small search space, easily sampled

• Large chromosomes don’t work well
– Combinatorial explosion of search space
– EC can’t sample space effectively
– Converges to suboptimal solution

• Why?

Relating Schema Theorem

• We can think of it in terms of schema 
theorem

• Large, high order schemata are likely to be 
disrupted by evolutionary operators

• Solutions to large real-world problems are 
likely require large, high order schemata

Toy Example: Adders

ADD

A0

B0

Sum0

Carry In

001#010#01###100

Carry Out

Schema length = 16
Schema order = 11

• A 1 bit adder can be 
evolved easily

• Assume fitness is only 
rewarded when perfect 
schema is discovered

• (In reality fitness reward 
is more gradual)

• Evolution must discover 
length 16, order 11 
schema before fitness 
reward
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Toy Example: Adders (2)

• A 2 bit adder can be 
made by joining 2x1 
bit adder

• Evolution must learn 
the design for ADD 1 
independently of its 
discovery of ADD0

• A pain, but not a 
show-stopper

ADD0

A0

B0

Sum0

Carry In

001#010#01###100 001#010#01###100

ADD1

A1

B1

Sum1

Carry Out

Schema length = 32

Schema order = 22

Epistasis
• The problem is worse:
• Output Sum1 relies on the 

carry out from ADD0
∴ Fitness from Sum1 will only be 

rewarded if ADD0 is intact
• Fitness for ADD1 only 

rewarded if requires schema 
twice as long and twice as big 
as the schema for Sum0

• Linkage between genes that 
results in nonlinear fitness 
payoff is called epistasis

ADD0

A0

B0

Sum0

Carry In

001#010#01###100 001#010#01###100

ADD1

A1

B1

Sum1

Carry Out

Schema length = 32

Schema order = 22

How does development tackle 
large problems

• We don’t completely know, but:
• A mutation in a single gene can transform one 

complex feature into another
• e.g. antennae->legs, proboscis->legs
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What does this mean?
• One gene can’t describe an entire leg design
• Nature seems to have a simple mechanism to 

reuse leg design
• The generation of the mis-placed legs is almost 

perfect
• As they develop they are not interacting with the 

surrounding tissues 
• Its generation seems to be independent of 

surrounding tissues
• It can be thought of as a developmental module.

How can this improve adder 
evolution? 

• Large adders could be built by re-using the 
1 bit adder design

• A bias towards modules that do not 
interact might minimise the problem of 
epistasis

• Later it will be shown how development 
allows re-use and provides modularity

• Later it will be shown how we can model 
development to gain these features

Fundamental Processes –
Regional Specification

• RS is simply pattern formation
• Process where spatial and temporal 

pattern of cell activities is organised
• Cells acquire different identities
• Identities defined by chemical differences
• Differentiation into functional cell types 

happens later
• Occurs throughout early stages of 

development
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Fundamental Processes – Cell 
Differentiation

• Cells become structurally and functionally 
different from each other

• Cells assume one of a few distinct cell 
types 
– e.g. skin, liver etc

• One-way process
• Gradual process, occurs throughout 

development

Fundamental Processes -
Morphogenesis

• Movement of cells and tissues that alter 
the form of the embryo

• Active during early/mid-development
• Many strategies

– Alteration in cell adhesion
– Cell division
– Apoptosis (Programmed cell death)

Fundamental Processes - Growth

• Embryos do not increase in size until the 
basic structure of the embryo has 
developed

• Most size increase results from growth at 
the end of development

• Growth is mostly due to cell division
• Some morphogenesis can arise through 

differences in growth rates of cells
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Differential Gene Activation
• Development’s engine is gene activation, 

producing proteins
• Engine is directed by the differential activation of 

genes
• Activation of genes in different cells produces 

different chemical environments
• Gives cells different identities, allows 

differentiation
• The majority of DGA results from DNA 

transcription

DNA Transcription
• Protein complex binds to a 

gene
• Complex travels along gene
• Generates complementary 

RNA
• RNA translated into protein by 

cellular machinery
• Complex made of proteins 

called transcription factors
• Complex is gene-specific
• Correct combination of TFs

must be present for gene to be 
trascribed

• ∴ TFs control transcription 
rate

• Transcription factors are 
themselves gene products

Transcription Enhancers /
Repressors

RNA Polymerase

TTT G CCA C GCT G TTG G TGC A GTAT A

TTT G CCA C GCT G TTG G TGC A G

A A
A

C
U

G

C

C

A

AA A

TAT A AA A

TTT G CCA C GCT G TTG G TGC A GTAT A AA A

AAA C GGU G CGA C AAC C CG

Protein complex
dissociates

Free RNA molecule

1. Protein complex forms on promoter site.

Promoter sequence

Stop codon

2. RNA chain forms on RNA polymerase as base pairs are transcribed.

3. The new RNA chain is released during transcription of the stop codon.

Forming RNA molecule

Gene Regulatory Networks
• Gene interaction can be 

modelled as a network
• GRN is a directed graph with 

labelled nodes and edges
• Nodes represent genes
• Edges represent gene 

products (TFs)
• Edges link parent to regulated 

gene
• Genes generate a single TF
• TFs can control multiple genes

B

D

A
1

2
3

4

C

A

5

C

C

C

B

E

6
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GRNs Capture Modularity
• GRNs capture one 

possible mechanism for 
modularity

• Activation of a single 
master control gene 
causes a cascade of 
gene activity

• This can generate a 
complex feature in the 
phenotype

• The genes involved are a 
developmental module

1

2 3

A A

B B C

C C

4 5 6 7 8

9 10 11 12 13 14 15

D E

F G HE H

C

E

GRNs Capture Re-use
• GRNs capture one 

possible mechanism 
for re-use

• A feedback loop in a 
GRN can cause a 
gene to be activated 
multiple times

• If it is a master control 
gene it may allow re-
use of a complex 
feature

B

C

1

2
3

A

4

B

5
C

Intercellular Communication
• DGA explains how cells can differentiate
• DGA explains how a gene can be repeatedly 

activated
• Doesn’t explain how development forms iterative 

structures over space
– segments

• This requires information to be transferred 
between cells

• 2 mechanisms
– Cell division
– Cell induction
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Communication – Cell Division
• Cell division occurs twice

– embryo cleavage
– growth

• Cytoplasmic determinant: substance that 
guarantees that a cell assumes a particular state

• Inhomogeneities occur in CD concentrations 
within cells 

• Cells divide
• Daughter cells contain different concentrations
• Results in cells with different states

Communication - Induction

• The main form of intercellular 
communication

• Transmission of chemical signals b/w cells
• Proteins (gene products) too big to pass 

through cell membranes
• Nature must use more complex processes

Methods of Induction

1. Intercellular proteins bind to receptors in cell 
membrane
– activates a TF in the cell

2. Protein catalyses production of small molecule
– passes through both cell membranes

3. TFs interact directly before cleavage
– no cell membranes present

4. Pass signal through gap junction
– cells must be touching
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Models of Development used in EC

• Anything that the genotype is executed as a program to 
generate the phenotype
– i.e. the phenotype ‘grows’

• Models of development are surprisingly common
– e.g. a tree can describe growth rules
– it could be evolved using GP

• This is a very broad description – most models have 
more in common with biological development

• Developmental models can be broken into
– Explicit
– Implicit

• L-Systems
• Cellular

Explicit Development

• Developmental program is applied to a 
fixed ‘embryonic’ phenotype

• Explicitly specifies each developmental 
step like a computer program

• GP often used to represent the 
developmental program

• Nodes contain growth & modification 
instructions
– Split component, change component,  

Explicit Development: Toy Example
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Where’s the benefit?

• No implicit modularity
• No implicit re-use

BUT

• Additional control structures can provide this:
– Modularity (e.g. ADFs)
– Iteration (e.g. ADIs, ADLs)
– Recursion (e.g. ADRs)

Implicit Development
• Similar to the GRN model used in biology
• Consists of a set of rules
• Rule set implicitly defines a program through their 

interactions
• Rule’s postcondition can be thought of as modelling a 

gene product
• Rule precondition can be thought of as modelling 

transcription factors required for rule activation
• Current work generally decomposes into 2 approaches:

– L-Systems
– Cellular

L-Systems
• An L-System is a set of rules
• Applied to a string called an axiom
• If symbol in rule’s precondition is found in string it is 

replaced with symbols in rule’s postcondition
• Successive applications repeatedly rewrite the string

• Rules are applied in parallel

• In most L-Systems:
• Rule precondition is always only one symbol long
• Rule postcondition is one or more symbols
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L-System Example
• Can generate a long string from a short one
• Rules are encoded in a chromosome
• Axiom is pre-defined
• During evaluation string is rewritten until stopping conditions met
• Final string is then usually interpreted as a series of growth 

instructions to generate phenotype
• Allows small chromosome to generate arbitrarily large phenotype

A BC
BB EFBB
C G

A

BC

EFG

How Is It Like Development?

• Axiom is like an embryo
• Rules are like genes
• Rule postconditions are a bit like gene 

products
• Rule preconditions are a bit like 

transcription factors
• Does not model biological development 

particularly closely
• Developed to model growth in plants

What’s the benefit?

• L-Systems capture 
modularity

• L-Systems capture re-
use

• Gene products 
interpreted as a 
program

• Great success 
modelling plants

A BC
BB ADBB

A
BC

ADC
BCDCC C

D D ADCDC
BCDCDC

A BC
BB EFBB
C GHI

A

BC

EFGHI
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Turtle Graphics

BCDCDCCD

B = Move forward 1 step
C = Turn 90o

D = Move forward 2 steps

B

CD

CD

CD

CD

• Turtle graphics can 
generate structures from 
L-system strings

• Symbols are interpreted 
as instructions to move 
an object

• Object leaves trail behind 
it

• Plants modelled this way

Disadvantages

• Doesn’t inherently map to sensible 2D/3D 
operations
– Can be interpreted as instructions: growth, 

turtle etc.
– If you want 2D/3D structure then other 

approaches might be more suitable

• The bigger problem is that they are 
context-free
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Context-Free vs. Context Sensitive

• Context-free rules have only one symbol in their 
precondition

• All instances of the symbol found in the string 
are re-written

• Context-sensitive rules have more than one 
symbol in their precondition

• Only substrings that match the rule are rewritten
• This means that a symbol’s neighbours affect 

what happens to it
• i.e. the context that the symbols are found in 

alters the developmental process

Benefits of Context

• How can context be useful?
– Context allows more precise control over how 

development proceeds
– Might be useful to use environmental cues as 

context
• plants grow towards light
• neurons are guided by chemical gradients

Cellular Models

• Similar to production rules
• Usually designed to model biology more closely

– Use terms like genes, proteins etc. to describe rules
• Context sensitive rules
• Product of rule interaction is phenotype

– not instructions to build it, c.f. L-Systems

• Effectively 2D or 3D context sensitive production 
rules
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Cellular: Toy Example

• Rules applied to every filled cell
• Cells are sensitive to left, right, above, below neighbours
• In precondition 0: Absent, 1: Present, # Don’t care
• Cells are sensitive to concentration of 2 chemicals, X and Y
• Rule only fires if 4 terms in precondition are true
• Rules applied in parallel

Cellular Features
• Cellular systems model Biology a lot more 

closely
• Rules interact and can be modelled with GRNs
• Context-sensitivity is communication between 

cells
• Development works by producing increasingly 

large and complex patterns of proteins from 
simple starting conditions

• Communication between cells can allow re-use 
over space: see following e.g.

Cellular – Adder Example

• 2 D array of cells
• 2 layers to each cell: Protein layer & 

Architecture layer
• Development carried out for 30 timesteps
• 2 Types of rules

– Regulatory: Affect how proteins interact in the 
protein layer

– Architecture: Affect how the circuit develops 
over time
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Protein Layer
• Only concerned with how proteins interact
• Each cell communicates with 4 neighbours
• 4 proteins (A,B,C,D) interact through a set of 

rules
• Cells generate proteins in unit concentrations
• Rule precondition specifies what proteins must 

be present or absent for rule activation
• Rule postcondition defines what protein is 

generated
• Must set simple starting conditions somewhere 

in the array to begin protein generation

Cell Cycle

The cycle continues

1

1
0
1 Functional

Components
Protein

Generator:

?

?
?
?

?

?
?
?Internal

Protein
State:

External
Protein
State:

Cell updates Protein State registers by:

(a) querying own generator

(b) querying neighbours’ generators

Any rules with preconditions that match

the protein state registers fire

A, A<=3 ->CA

D

C

B

A

D

C

B

A

D

C

B

1

1
0
1 Functional

Components
Protein

Generator:

1

1
0
1

0

1
0
3Internal

Protein
State:

External
Protein
State:

A

D

C

B

A

D

C

B

A

D

C

B

A, B, !C ->D

0

1
1
0 Functional

Components
Protein

Generator:

?

?
?
?

?

?
?
?Internal

Protein
State:

External
Protein
State:

A

D

C

B

A

D

C

B

A

D

C

B

Generator
s fo

r ti
mest

ep t
+1 are

updated

Protein sta
tes a

re re
set

Rule Structure

• For each protein: 2 terms in precondition
• 1st term, tests cell’s internal protein conc.: T,F,D/C
• 2nd term tests external protein conc.
• 1st 2 bits: precedence or inequality operator: !=, <=, >=, ==
• Final 3 bit: Concentration value: Value b/w 0 & 7
• Concentration values >4 can be used as don’t cares, don’t fires
• If all 8 terms are true, rule fires and protein is generated
• Postcondition defines which protein is generated

then Generate BIf A absent and Neighbours Α  ≠  1  and B present and Neighbours B  =  3 and Neighbours C ≥ 7 and Neighbours D ≤ 4

Protein: A

00 001 0100 11 01111 10 11110 01 10001

B C D

(Don’t Care) (Don’t Care)
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Cell Cycle

The cycle continues

1

1
0
1 Functional

Components
Protein

Generator:

?

?
?
?

?

?
?
?Internal

Protein
State:

External
Protein
State:

Cell updates Protein State registers by:

(a) querying own generator

(b) querying neighbours’ generators

Any rules with preconditions that match

the protein state registers fire

A, A<=3 ->CA

D

C

B

A

D

C

B

A

D

C

B

1

1
0
1 Functional

Components
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Generator:

1

1
0
1

0

1
0
3Internal
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External
Protein
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A

D

C

B

A

D

C

B

A

D

C

B

A, B, !C ->D

0

1
1
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Generator:
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?
?
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?Internal
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External
Protein
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A

D
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B

A

D

C

B

A

D

C

B

Generator
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r ti
mest

ep t
+1 are

updated

Protein sta
tes a

re re
set

Architecture Layer

• Each cell contains 2 x 3 Input LUTs
• Fixed routing: each cell receives signals from West F, West G, South G
• LUTs have identical inputs
• Development alters only the LUTs

F LUT

G LUT

Cell Cell

Cell Cell CellCell

Cell Cell CellCell

Cell Cell CellCell

Cell Cell

West
F

West
G

South
G

Architecture Rules

• Identical to protein rules except the 
postcondition

• Postconditions makes a change to a LUT

then Increase F
LUT P-term 2

If A absentand NeighboursΑ  ≠ 1  and B present and Neighbours B  = 3 and Neighbours C ≥ 7 and Neighbours D ≤ 4

Protein: A

00 001 001000 11 01111 10 11110 01 10001

B C D

(Don’t Care) (Don’t Care)
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Architecture Postconditions

• Each cell also 
contains a set of 
counters

• There is 1 counter for 
each LUT Entry

• When an architecture  
rule fires it increments 
a counter

Mapping to a Circuit
• At the end of development each of the cell counters is 

queried
• If the counter value >=  a pre-defined threshold the LUT 

entry is set TRUE
• Otherwise the LUT entry is set FALSE
• Architecture rules fire at different rates in different cells
• Models gradual differentiation found in biological 

development
• ∴ LUT entries set/not set in different cells
• Evolution used to find rule set that set LUTs to form 

adder

Evolving Rules

• Chromosome: 20 protein rules + 14 arch rules
∴ Length = 1048 bits

• Population 100
• Random Initialisation
• Tournament Selection 80%
• Uniform Crossover 75%
• Point Mutation: 5 Muts. per chrom.
• Generations: 2500 or optimal solution
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Example: 2 Bit Adder With Carry
• Task is to evolve a 2 Bit adder 

with carry
• 5 inputs, 3 outputs
• 2x4 array of FPGA cells 

developed
• Set starting conditions to Cell 

0: A=1, Cell 4: B=1
• Inputs and output points as 

shown
• Pass all possible input 

combinations one at a time
• Measure total number of 

output bits correct for each 
input combination

• Fitness = sum(correct output 
bits) MAX 96

A1

B0 Sum0

Sum1B1

A0

A1
B1

B0
A0

Carry In

Carry Out

Evolved Rules
Protein Rules:

1 A==7,B,B==2,C,C!=1,!D,D==0,->D
2 A>=7,B!=0,C==6,!D,D>=4,->A
3 !A,A<=4,!B,B>=4,!C,C<=4,D,D<=4,->D
4 !A,A<=2,B<=0,C,C!=6,D!=5,->B
5 A,A>=5,B,B>=3,C!=6,D==0,->C
6 !A,A<=4,!B,B!=4,C>=1,D<=0,->D
7 A>=2,B,B!=7,!C,C>=4,D==3,->A
8 A<=1,B,B>=1,C,C==7,!D,D<=4,->C
9 A==4,B,B!=0,C!=5,D>=0,->C
10 !A,A!=3,B!=1,!C,C<=7,D!=0,->C
11 A==6,B==0,C>=1,!D,D!=1,->D
12 A>=3,B==4,C==4,D==2,->A
13 A==0,B,B!=7,C!=1,D!=1,->C
14 A,A<=2,!B,B>=3,C!=5,D,D!=0,->C
15 A,A>=7,B,B<=6,C,C<=4,D>=2,->D
16 !A,A<=4,B>=3,C==5,D>=6,->A
17 A!=0,B,B>=6,C,C<=3,D<=4,->A
18 A,A<=2,B<=4,C,C>=2,D!=4,->B
19 A>=7,!B,B==1,!C,C<=2,!D,D>=1,->D
20 A!=6,!B,B>=5,C>=0,!D,D!=7,->A

Architecture rules:

1 A<=2,B,B==1,C>=5,!D,D!=0,G: 5
2 A>=3,!B,B>=5,C<=2,D!=5,F: 0
3 A!=1,B<=5,C<=3,!D,D>=0,F: 7
4 !A,A<=6,B!=4,C!=1,D<=5,G: 1
5 A!=3,B>=4,!C,C>=1,D,D!=3,G: 4
6 A==0,B!=6,!C,C!=7,D<=7,F: 0
7 A,A!=6,!B,B<=5,C,C<=7,D<=4,G: 0
8 !A,A<=4,!B,B!=3,C!=4,!D,D<=5,G: 7
9 A==0,B<=3,C,C<=1,D==0,F: 3
10 !A,A!=3,!B,B>=6,!C,C==6,!D,D!=5,F: 5
11 A,A!=6,!B,B>=6,C==2,D==0,G: 3
12 !A,A!=6,B<=0,C,C<=6,D!=2,F: 5
13 !A,A<=7,B==6,C==0,D==4,F: 2
14 A<=4,!B,B!=4,C!=7,D>=0,G: 6 

Activated Rules
Protein Rules:

4 !A,A<=2,B<=0,C,C!=6,D!=5,->B
6 !A,A<=4,!B,B!=4,C>=1,D<=0,->D
10 !A,A!=3,B!=1,!C,C<=7,D!=0,->C
13 A==0,B,B!=7,C!=1,D!=1,->C

Architecture Rules:

3 A!=1,B<=5,C<=3,!D,D>=0,F: 7
4 !A,A<=6,B!=4,C!=1,D<=5,G: 1
6 A==0,B!=6,!C,C!=7,D<=7,F: 0
8 !A,A<=4,!B,B!=3,C!=4,!D,D<=5,G: 7
9 A==0,B<=3,C,C<=1,D==0,F: 3
12 !A,A!=6,B<=0,C,C<=6,D!=2,F: 5
14 A<=4,!B,B!=4,C!=7,D>=0,G: 6

• 4 protein rules have formed a GRN
• Activate different architecture rules in different cells
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Protein Development
• Initial conditions:

– Cell 0, A=1
– Cell 4, B=1

• After initial growth, C and D 
alternate between 0 and 
chequed patterns

• Caused by: 
6. C>=1->D, 10. D!=0->C

• B has same pattern as C one 
step later

• Caused by:
4. C->B

LUT Development
• Chequed patterns of proteins used by architecture rules
• Chequed pattern of F-LUTs generated
• Uniform Pattern of G-LUTs generated

A1

B0 Sum0

Sum1B1

A0

1
3

2
3

1
3

2
3

2
3

1
3

2
3

1
3

A1
B1

B0
A0

Carry In

Carry Out

1
0
0
1
0
1
0
1

1= 2= 3=
1
0
0
0
0
0
0
1

0
1
0
0
0
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

WFWG SG

Where:

Re-use and Large Phenotypes

• Development provides a mechanism for 
design re-use

• Allows large phenotypes to be generated
• This seems to help with scalability

– Large (in evolutionary terms) adders have 
been evolved this way: 7 bit + Carry, on 15x2 
array, routing architecture developed also


