
1 of 34 

 

Exploiting Logical Mobility 
Techniques in Physically 

Mobile Environments 

Stefanos – Zacharias Zachariadis 
 

First Year PhD Viva 

 

PhD start date: September 2001 

Ext: 37190  
s.zachariadis@cs.ucl.ac.uk 

 



2 of 34 

Executive Summary 
 

With the recent developments in wireless networks (802.11, Bluetooth) and the sales of
mobile computers of any kind (such as laptop computers, Personal Digital Assistants
(PDAs), mobile phones etc.) soaring, we are experiencing the availability of increasingly
powerful and mobile computing environments, roaming between different types of
network connectivity. We have also recently witnessed the acceptance of logical mobility
techniques, or the ability to ship part of an application or even a complete process from
one host to another. The increasing popularity of the Java programming language and
environment has largely been correlated with the acceptance of logical mobility
techniques, due to the inherent code mobility infrastructure that Java provides. 

To facilitate application developers programme for mobile devices, mobile middleware
systems have been developed, which rise the programmer abstraction beyond the network
os layer, and tackle issues of heterogeneity, communication primitives, concurrency,
security etc. Whereas various mobile middleware systems have been developed the use of
logical mobility has been very limited.  

The purpose of this work is to investigate the use of logical mobility in mobile computing
environments, our hypothesis being that it can bring tangible benefits to both developers
and users which cannot be supported by the current state of the art. While investigating
why the use of logical mobility has not been widely adopted by the mobile industry, we
have found the following problems: There is currently no design stage methodology
which allows application developers to model the effects of logical mobility in their
applications at the design stage. This limits the development of mobile applications
powered by logical mobility to simply trial-and-error scenarios, inhibiting their
popularity. Moreover, we have found that there exists no mobile middleware that offers
flexible use of logical mobility primitives to application developers, whilst allowing
devices to traverse dynamically different types of networks, handling heterogeneity,
service advertisement and discovery, communication etc. As such, applications using
logical mobility primitives have to constantly reinvent the wheel in order to implement the
solutions. We believe that these deficiencies in this area of research are closely related,
being aspects of the same issue, one affecting the design stage, and the other the
implementation stage.  

This work intends to address these deficiencies, by researching a design-stage
methodology, which allows developers to evaluate the use of logical mobility paradigms
in their application, and developing a mobile middleware, which will be targeted by the
aforementioned methodology and will offer the use of logical mobility primitives to
applications. We finally intend to build a number of applications using our middleware
and methodology, to evaluate our hypothesis. 

 

 



3 of 34 

Background and Motivation 
We are rapidly approaching the era of ubiquitous computing; People are starting to
interact daily with multiple computing environments. From the proliferation of mobile
telephones, to the widespread acceptance of personal digital assistants and the tendency to
replace desktop machines with portable laptop computers, users are increasingly starting
to own and/or interact with a number of computing devices, a primary characteristic of
which being that they are mobile. As these devices become increasingly more powerful,
users are starting to carry with them mobile processing environments of respectful
computing ability. Mobile devices are being equipped with various networking interfaces,
such as conventional modems, IrDA adapters, 802.11b compliant cards, GSM adapters,
Bluetooth chips and the like; As such, we expect these devices to dynamically connect to
different types of networks. At some point, the device might have a slow GSM connection
to the Internet; later in time, the same device may only be part of a Bluetooth piconet,
being able to communicate with devices that are within a short distance, without fixed
infrastructure; while later on, it might connect to a corporate network via a high speed
Ethernet adapter or be devoid of any network access. 

In recent years, we have also witnessed the growth of logical mobility techniques. We
define logical mobility, as the process of moving parts of an application, either a code
fragment (be it binary object code of a compiled language, interpreted fragments of a
scripting language or compiled code targeting a virtual machine), or application data (or
even migrating a whole process) from one processing environment, or a device, to
another. Consider Java Applets for example, which operate as follows: The client machine
(a host), requests via a web browser (the user interface) a code fragment (the applet),
which the server (another host) sends back. The web browser executes and displays the
applet transparently and without user intervention in an instance of the JVM (the
processing environment). The mechanism effectively allows for dynamically changing the
interaction interface on the user, on a per website (or, alternatively, per location) basis.
We consider the following forms of logical mobility based interactions[8]: Client/Server
interactions (CS), whereby the request of a client triggers the execution of a unit of code
in a server returning the results, Remote Evaluation (REV), where a device sends a code
unit to another host, has it executed and retrieves the result, Code On Demand (COD),
where a host requests a unit of code from another device to be retrieved and executed, and
Mobile Agents (MA), where an agent is an autonomous unit of code that decides when
and where to migrate. Moreover, we consider devices that can be nomadically connected
to a fixed network (e.g. a laptop dialling up to an ISP), devices that are constantly
connected to a fixed network over a wireless connection (e.g. a GPRS-enabled mobile
phone), devices that are connected to ad-hoc networks (e.g. Bluetooth) and any
combinations of the above. 

A primary demand of users, as witnessed by the flourishing of mobile networking
hardware, mobile networks and the associated industries, is to have access to networked
information and services using their mobile devices wherever they might be located.
Application developers must cope with the variability of networking techniques and types
of mobility, as well as eventualities such as no connection or frequent disconnection, lack
of a fixed infrastructure, expensive network links, limited bandwidth etc. The issues
arriving from the heterogeneity of such distributed systems have been traditionally
resolved by the use of middleware systems. Middleware systems are situated between the
network operating system (which may vary amongst devices) and the applications 



4 of 34 

 

 and facilitate the development of the latter by providing higher level abstraction
primitives than the network operating system. While many middleware systems have been
developed and are used in the industry for traditional distributed systems (e.g. CORBA,
Java/RMI etc), mobile computing middleware is slowly and only recently being
developed, with ad-hoc solutions being the norm.  Mobile Computing Middleware allows
for the systematic development of mobile applications, allowing developers to handle the
heterogeneity of devices and environments, communication primitives, data sharing,
location services etc. There are, however, no middleware systems developed which  give
developers the flexibility to utilise any logical mobility paradigm in their application,
while allowing the device to traverse through heterogeneous networks. 

We wish to prove that logical mobility techniques can be applied to mobile computing
scenarios to bring solutions to problems that the current state of the art cannot support or
cannot do so sufficiently. We believe that logical mobility offers the possibility to create a
new class of flexible mobile applications, delivering innovative experiences to end-users
and lead us to the era of ubiquitous computing. We believe that the reasons for which
logical mobility has not been sufficiently exploited in physically mobile scenarios are
twofold: a) There is currently no middleware that can offer to application developers the
ability to choose between mobile code paradigms and the ability to seamlessly move
between different types of IP-based networks, as described above. This limits the benefit
of using mobile code techniques, as developers need to constantly re-invent the wheel in
order to employ them in their application, inhibiting application interoperability as well.
b) There is currently no methodology for evaluating which paradigm (or even local
execution) would function best for a particular computing task. This limits the
development and testing of application to trial and error scenarios, where an application
may be built employing a particular methodology, only to find through testing that it does
not perform as expected. 

There are several factors that need to be taken into consideration by application
developers when applying logical mobility in physically mobile scenarios. These
considerations must take place at the application design stage, structuring the application
accordingly to take advantage of the appropriate features and paradigms that the
underlying middleware provides in each particular context, making the application
function best in each scenario. However, in our target environment, there can be various
definitions of how an application functions best: this may be when it uses underlying
technologies to perform the given task rapidly or when it minimizes the network
interactions for a specific task. This can be important to the end user, considering that
some types of wireless connection are expensive. An application can function best when it
minimises user-interaction, thus saving the user time. An application can also function
best when, in performing a function potentially involving code mobility, it minimises the
information needed to be sent over the network thus decreasing the total cost of the
operation for the user.  We believe that these are issues, which need to be thought of at the
application design stage.  

We plan to investigate this area of research, specifically by a) Providing a flexible mobile
computing middleware offering logical mobility techniques to application developers and
b) Deriving a design methodology, which, based on developer data, will evaluate the
different paradigms at the design stage for particular applications. Thus we wish to prove
that logical mobility can bring tangible benefits to mobile applications over traditional
approaches. 

. 



5 of 34 

Deficiencies in existing work 

Having reviewed the literature in this area of research, we found that the current state of
the art offers a rather limited solution to the exposed problem. Current approaches aim at
use particular paradigms of logical mobility to (often transparently) offer specific
solutions in a mobile environment. There is currently no mobile computing middleware
providing the flexible use of logical mobility to applications and application developers
and no formal support that helps use application design and performance evaluation
targeting such a middleware. What follows is a critical review of some approaches of
existing work. Sun Microsystems Jini[3]  is a distributed networking system, which
allows devices to enter a federation and offer services to other devices or utilise services
already offered. Jini, based on the Java programming language, exploits the inherent code
mobility capabilities of that language in allowing devices to transparently locate and
operate services offered. A service in a Jini system is an object or a collection of objects
provided by a computer, which can be utilised by other devices in the Jini federation.
Examples include device drivers (such as printer drivers), whereby objects controlling the
device can be operated remotely, time services, computational facilities (such as language
parsers for example) and more. Jini relies on the existence of at least one lookup service,
with which other services register, and which can be used by devices to locate services
offered. Upon locating a service, a proxy object can be transferred using Code on Demand
(COD) techniques to the requesting device, using it to utilise the service. Jini can be used
to deliver distributed services in high-speed and long lived (preferably wired) networks.
However, Jini is very much centralised, needing lookup services to operate. Jini does not
really scale well on low bandwidth highly dynamic ad-hoc networks. The reference
implementation relies on an http server to be used by the lookup service and is based on
Java/RMI, making it unsuitable for deployment over resource constraint devices. There is,
however, a lightweight implementation, JMatos[10], which does not rely on Java/RMI.
This has been specifically developed to be used over devices with minimal resources,
whilst being compatible with the reference implementation. Jini can be used to deliver
context aware services to mobile devices, connected to a fixed network nomadically. It is
not, on the other hand, particularly suitable for allowing mobile devices to offer services
themselves, particularly in ad-hoc environments, which lack a centralised lookup service.
Lime & µCode: Linda in a Mobile Environment [14] (Lime) is a middleware
implemented in Java, which allows the development of applications which exhibit logical
and/or physical mobility characteristics, by providing a coordination model based on
Linda tuple spaces. Lime is primarily geared for ad-hoc networks, although it is not
limited to such configurations only. Lime exploits the decoupled nature of tuple spaces to
provide coordination primitives and information sharing for mobile components. The unit
of logical mobility considered in Lime is a mobile agent, with mobile hosts acting as
simple containers for the agents. An agent is in reach with other agents if it resides on the
same host as they, or if the hosts of the agents are in reach. Each agent can have a set of
tuple spaces, which are identified by their name, a String. The tuple spaces are bound to
the agents and as the agent migrates, the tuple spaces migrate as well. The agent can
choose whether to share a tuple space it owns. Lime makes all tuple spaces with the same
name, marked as shared by agents in reach, transparently appear as a single tuple space.
Lime also extends the standard Linda operations to support location based computing and
allows agents to react to changes in context, by defining reaction primitives. The current
implementation of Lime uses the µCode[15] toolkit, which is a lightweight mobile code
toolkit to implement the Mobile Agent abstraction. Lime is related to our work, as it is a
data-sharing and coordination middleware based on mobile agents for mobile computing.
It does not, 



6 of 34 

 
however provide the generic cross-paradigm logical mobility middleware that we wish to
develop. Moreover, it uses an unstructured data unit, the tuple space and has no notion of
security. There also appear to be some scalability issues with misplaced tuples.
PeerWare[6] is a mobile computing middleware offering peer-to-peer communication,
event subscription and a shared data space. PeerWare binds the models of event-based
communication and data sharing into a single middleware, using REV, to distribute
operations on remote data. The PeerWare system is based around the concept of a Global
Virtual Data Structure (GVDS), a communication and coordination meta-model for
mobile environments. A GVDS provides a global data space that is made dynamically by
the local data spaces of each peer in range. It is virtual, as it does not exist on any host as a
single entity. The GVDS meta-model does not specify how the GVDS is structured,
leaving it to the implementer. The PeerWare data structure is a graph of nodes and
documents, which are collectively referred to as items. Nodes are simple containers of
items, and are structured as a forest of trees, with a distinct root. Nodes have a label,
which cannot be shared with another node if both are roots or contained directly into the
same node. This classification and organisation of nodes allows for expressing complex
document organisation schemes, the resulting model resembling a standard file system.
Each PeerWare-enabled host has a data structure stored locally. PeerWare dynamically
constructs a GVDS by superimposing all the nodes of the local data structures of all peers
in range. This function is completely hidden to applications that must only be aware that
the contents of the data structured can eventually change. PeerWare makes a sharp
distinction between operations that can be performed on the local data structure and those
that can be performed on the GVDS. This distinction, even if it lacks transparency, gives
the application programmer explicit knowledge of whether he/she is operating locally or
globally. PeerWare exploits logical mobility, by considering the execution of an action on
the GVDS, as a distributed execution of the action on the local data structures of the
connected peers. It is designed specifically to provide a minimal set of operations, with
application-specific primitives and abstractions left to the developer. PeerWare exploits
logical mobility (REV in particular) effectively, to move computations to the data sources
in a peer-to-peer environment. It is, in a sense, the next generation of the Lime system,
providing a hierarchical data structure instead of the Lime’s flat tuple space as a GVDS.
However, the PeerWare model does not prescribe anything about routing and networking
infrastructures and as such multiple different implementations must and are being
provided to work in different settings, such as ad-hoc, nomadic, etc. It does not provide a
single middleware, which can seamlessly operate in various different networks. Moreover,
it can been argued that moving the code to the data is not always better than the traditional
communication model of moving the data to code. Current implementations utilise µCode
as a logical mobility layer to move code to the peers.
PRIMAmob-UML[25] is a UML-based methodology for performance analysis of
logically mobile software architectures. UML sequence and collaboration diagrams,
which are usually available in the early stages of the software’s lifecycle are annotated
with mobility-related stereotypes, allowing the developer to model code migration. The
diagrams are then annotated with probabilities and communication & computation cost
information, and a performance model of the application is obtained, allowing the
designer to evaluate the logical mobility choices made. This methodology, allows
application developers to evaluate the various logical mobility paradigms when used on
traditional distributed systems over fixed networks, using a modelling language, which is
widely accepted in the industry and academia. Our work will differentiate from this, in
that it will cater for physically mobile software architectures, taking into account the
resource constraint nature of some the devices we are targeting, the different network
topologies and architectures that we expect devices to use etc. 

 



7 of 34 

Hypothesis statement 

We believe that the use of logical mobility in mobile computing middleware can deliver
significant advantages to mobile applications, which cannot be delivered by other
approaches.  Advantages include having the application use underlying middleware
technologies to perform a given task rapidly, minimising the network interactions for a
specific task (as wireless network connectivity can be expensive), minimising user-
interaction, thus saving the user time and more. Clearly, these are different goals, which
need to be evaluated by application developers at the design stage. We support our
hypothesis with a number of case studies, one of which is given below, in which logical
mobility can yield significant advantages over legacy approaches. 
Devices with Limited Resources and Dynamically Updating the System: Code On
Demand offers a way to dynamically and (depending on connectivity) securely update the
capabilities of a device. It also allows the manufacturer or developer not to cater for all the
possible scenarios that the device might encounter, as behaviours needed for different
scenarios can be learnt at runtime. Consider, for example, user A, who has an MP3 (a
digital music format) player, the firmware of which can be updated. Moreover, assume
that the mp3 player is equipped with a Bluetooth or infrared adaptor. Along comes B, who
has an Ogg Vorbis (another digital music format) player, which features the same
networking hardware as A. Now, even if both players are in reach and they can transfer
files to/from each other, they cannot actually play the transferred music, as they don’t
have the appropriate codec to decode the files. However Code On Demand allows A’s
player to transparently request the Ogg codec from B, initialise it and play the music, the
whole operation being hidden from the user. If memory becomes full, the player’s
middleware can decide which codec to drop (based on frequency of use); after all, it can
always retrieve it when needed from a peer. Logical mobility can offer significant benefits
to other scenarios as well: It can be used to offer location based reconfigurability and
services, communication in disaster scenarios, faster execution by distributing
computations and minimize user interaction.  
 
We believe that the reason why logical mobility has not been widely adopted in the
mobile industry is twofold: To begin with, there is no mobile computing middleware
developed offering the flexible use of logical mobility paradigms to application
developers, targeting resource constraint devices and being able to traverse different IP-
based networks. Moreover, there is no design-stage methodology that allows application
developers to evaluate the performance and functionality of their application when
employing logical mobility techniques.  
 

We will try to address these deficiencies in this area of research, by designing a mobile
computing middleware that offers this flexibility to application developers, a design stage
methodology to design applications targeting this middleware and sample applications to
evaluate our hypothesis. 



8 of 34 

Testing the hypothesis 1: 

What is proposed 
 

 

 
 
 
 
 
 
 
 
 
Why it is necessary to do this? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What assumptions will you make? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We plan to design and implement a modular and flexible mobile computing middleware
with the characteristics mentioned above. The middleware will allow devices to traverse
between different types of networks, such as ad-hoc and fixed infrastructure networks and
will allow applications to use any mobile code paradigm. The middleware will also allow
users to store information such as the maximum connectivity cost the user is prepared to
pay on profiles, which will be exposed to applications at runtime, among with other
context information, such as the hosts that are currently in reach, the services available,
the current networking structure etc. The middleware will be targeted towards mobile and
resource constraint devices, although the protocols will be able to interoperate with other
versions of the middleware, targeted and running on more powerful machines. 

The current state of the art does not offer an adaptable middleware, which exposes logical
mobility to applications. This is probably one of the reasons that the use of code mobility
has not taken off in mobile environments. These are environments in which devices
encounter various different networking configurations. We have identified two types of
metrics that need to be quantified and considered with regards to application performance
using logical mobility: Parameters regarding physical mobility and the underlying
network (speed and congestion, cost of access, network longevity, routing and network
configuration, reliability) and parameters regarding code mobility (size of mobile code
unit, how to contact the user with a result, origin or destination of the code, available
resources). We believe that these parameters can be re-organised further to mobility and
user related parameters. Mobility parameters can be modelled and evaluated at the
application design stage. User related parameters will be stored in the user profiles
mentioned above and will be made accessible to the application. It follows that the
middleware must give the application information on the current context. 

The first assumption that will be made is that we can get the context information from a
mobile device[4]. This is a different field of research and such issues will not be
addressed in this work. Moreover, conflict resolution in user-profiles either within the
same device or amongst different devices involved in a transaction will not be addressed,
for the reasons given above. The implementation of the middleware will be Java-based,
initially targeting J2SE with the possibility of scaling down to Personal Java and J2ME.
The devices we will be initially targeting are HP Compaq Ipaq PDAs.  

The mobile setting we are targeting will be both ad-hoc networks, based on 802.11b
hardware and potentially Bluetooth, as well as nomadic networks, based on Ethernet and
managed-mode 802.11b hardware. On the nomadic network setting, we will assume that
there exist some centralised (possibly ISP-provided) servers which offer hosting facilities
for REV requests and mobile agents. 



9 of 34 

 
How do you propose to do the testing? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What results do you expect? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Timescale 
 

Initially, the host and service discovery and advertising mechanisms will be tested using a
number of machines from desktop computers to laptops to the PDAs. This will be tested
using 802.11b compliant networking cards, Ethernet cards, possibly GSM/GPRS wireless
connectivity and combinations of the above.  

We will then investigate how to send and receive code over the network efficiently. This
will include testing the sending of individual classes and objects, scriptable text (e.g.
Python through JPython or even Java code through BeanShell) or groups of classes and
objects. We will also investigate sending the code compressed or uncompressed, using
various algorithms optimised for speed or size of the compressed code. Once the code
mobility aspects are implemented, test/dummy applications will be developed to test them
over the hardware mentioned above. Scalability issues when the numerous machines are
involved will also be investigated. The sandbox serving mobile agents and remote
evaluation requests will be tested last. 

When this is implemented and tested, the ability to add user profiles will be designed and
added. We will consider either adding a single per-device profile, or a profile per
application and design the semantics accordingly.  

Major testing will take part when the real applications, as mentioned in part 3, are
implemented. 

We expect that this middleware will be able to work well on resource constraint devices,
given our experience in implementing XMIDDLE[12], a java-based mobile computing
middleware (XMIDDLE currently weighs at around 125KB[2]). We believe that there
will be some scalability issues with multicast and broadcast advertising, which we plan to
investigate and we also plan to investigate the feasibility of the hosting sandbox using the
java security framework. We believe that the most efficient mechanism to transfer code in
general, will be groups of classes and objects. There will probably be cases however,
where sending text-based scripts will be more efficient, as changes between two versions
of the same script can be calculated and sent over the network as opposed to sending the
full script or class and object representing it. 

6 months



10 of 34 

Testing the hypothesis 2: 
What is proposed 
 
 
 
 
 
 
 
 
 
 
 
 
 
Why it is necessary to do this? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What assumptions will you make? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We will model the development of mobile applications using logical mobility techniques
in order to construct a design-stage methodology based on UML and using its extension
mechanisms. This will allow application developers to develop mobile applications
evaluating the use of the various code mobility paradigms in a mobile environment early
in the design stage. The diagrams will be annotated with data given by the developers,
such as expected user location, estimated size of mobile code unit, interactions of the unit
with other hosts, etc. Processing the diagrams will produce estimates, which the
developers can use to evaluate how the application will perform when employing a
particular paradigm. This is related to our original hypothesis, as it will allow us to model
the benefits of logical mobility to a mobile application. 

The current state of the art does not allow application developers to evaluate the use of the
different code mobility paradigms in mobile environments at the design stage. As such,
mobile applications employing logical mobility techniques have to be developed on a
trial-and-error basis. We believe that this is one of the reasons for which code mobility is
not widely adopted in the mobile computing industry. 

A design-stage methodology such as the one we are proposing, based on an industry
standard (UML) will allow application developers to model the effects of logical mobility
in mobile applications, evaluate its benefits and potentially lead to an increase in its use in
mobile scenarios. It would also allow us to evaluate the performance of our middleware,
when developing mobile applications. 

We believe that it is reasonable to expect the developer to supply some estimated data
regarding the application in development. This includes estimates on the size of the unit of
code that might be transferred to other hosts (which can be obtained by the number of
classes that compose the unit and the complexity of those classes), estimates on the
number of different hosts that the code will need to contact, estimates on the expected
location of the user etc. 

Further assumptions are still under investigation. 



11 of 34 

How do you propose to do the testing? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What results do you expect? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Timescale 
 

To test the validity of our approach, sample applications will be designed and
implemented to run on our middleware. More concrete testing will be performed by
designing and evaluating applications developed for the  middleware, as described in part
3. 

We expect to use a variety of tools to test our approach. We are considering developing a
UML design tool, or possibly extending current open-source tools such as DIA or
ArgoUML in order to support and test our approach. We are also proposing using process
algebra and queuing networks to model process and network interactions. 

We expect to be able to model application performance sufficiently, and be able to show
to the developer which logical mobility paradigm (if any) will be better under a particular
context. We believe that we will be able to offer an enhanced design tool for the analysis
of logical mobility in mobile computing application scenarios. The tool will be based on
performance evaluation techniques and will encode parameters important in deciding
which paradigm to use in a particular context. 

7 months



12 of 34 

Testing the hypothesis 3: 
What is proposed 
 
 
 
 
 
 
 
 
 
 
 
 
 
Why it is necessary to do this? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What assumptions will you make? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We are going to design and implement some applications using our design methodology
that target our middleware. We currently plan to build an audio player which can
dynamically request codecs to learn how to play new audio files, an e-shopping
application using mobile agents and a mobile data querying application using remote
evaluation and mobile agents, with more to follow. The applications will also be able to
function without using any logical mobility paradigm. We will be able then to extract
metrics concerning the application performance and evaluate them against those projected
by our methodology as outlined before. 

Building these applications will be essential to proving the validity of our main
hypothesis. Evaluating their performance will prove whether logical mobility can give
applications tangible advantages over legacy approaches. We will also be able to evaluate
the performance and effectiveness of our middleware and design methodology and we
will use these applications to further optimise their operation. 

We will assume that, apart from the ones our middleware provides, there are centralised
environments which offer hosting for mobile agents and remote evaluation requests.
Moreover, we will assume that there are going to be some centralised code repositories,
which can be used to download code from, or to check the hashes of code obtained from
other hosts. We believe that this is a reasonable assumption and that once the validity of
employing logical mobility in mobile applications is established, this could be a service
provided by internet service providers, mobile device vendors, etc. 



13 of 34 

How do you propose to do the testing? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What results do you expect? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Timescale 
 
 

Similarly to the testing methodology above, we will run these applications on our
middleware on a variety of machines, including PDAs, laptop computers and desktop
machines. We will use variations of our middleware to create hosting environments for
mobile agents and remote evaluation requests in desktop machines, to act as centralised
servers offering hosting services to mobile devices. Having our devices equipped with
Ethernet cards, Bluetooth adaptors and 802.11b compliant cards, we will be able to
simulate the execution of our applications on a variety of distributed networked
environments. 

We expect that logical mobility will yield significant advantages in some situations. These
advantages will include speeding up the application operation, decreasing the cost of
access to the network, minimising user-interaction etc. We do expect, however, that
traditional approaches such as local execution and client/server communication
mechanisms will be better in some circumstances, which we believe we will be able to
evaluate and predict using our design stage methodology. 

3 months



14 of 34 

Why is the above set of work sufficient to test the 
hypothesis? 
 

The above set of work is sufficient to test the hypothesis, as it manages to tackle the
deficiencies of the research in Logical Mobility over Mobile Networks and builds upon
the work to develop mobile applications employing logical mobility techniques and
evaluate them. With this work, we believe we will be able to address the two main reasons
for which logical mobility is not widely adopted in mobile computing.  

Section 1 addresses the lack of a mobile computing middleware system, which gives
application developers the flexibility of employing logical mobility in their application.
Our middleware will allow the implementation of application which employ logical
mobility techniques in their operation, on mobile environments, handling the issues of the
heterogeneity of the devices targeted and of the networks encountered. Having completed
the work of section 1, we will have proved that a mobile computing middleware that
allows application developers to use logical mobility techniques is feasible. 

Section 2 addresses the lack of a design-stage methodology which allows application
developers to evaluate the operation of their applications when employing logical mobility
paradigms, early in the design stage. As such, this methodology will allow for the design
and development of applications targeted and implemented for the middleware developed
in section 1.  

Section 3 will allow as to engineer mobile applications using our design methodology and
middleware, which will employ logical mobility techniques. Evaluating their performance
and their effectiveness in various mobile scenarios, will allow as to verify the hypothesis,
that logical mobility can bring tangible benefits to mobile applications that current state of
the art approaches cannot.  



15 of 34 

Appendix A: Work to date 
 
Work thus far has concentrated on background reading on approaches involving logical 
mobility over mobile environments. We have also come up with a number of different case 
studies whereby logical mobility would be able to give solutions to issues occurring in mobile 
environments that legacy approaches would not be able to: 
 
Limited Resources and Dynamically Updating the System 
To approach the stage of ubiquitous computing, mobile application developers and device 
manufacturers need to offer to consumers devices that can be used very easily, without having 
the user do any sort of software installation on the device to allow it to perform another 
function, thus giving consumers a device with the functionality and configurability of a 
computer, without forcing them to learn how to use one. These computers must be 
“invisible”; end users should not have to know and realise that they are using one. As such, it 
is very difficult for a middleware or even operating system developer to estimate in advance 
all the possible uses that the device might have; Moreover, resource  (memory) restrictions on 
such appliances imposed by costs might not even allow the required code for all scenarios to 
be stored on the device. Here’s how code mobility, and in particular Code On Demand can 
help in this case. Consider for example user A, who has an MP3 (a digital music format) 
player the firmware of which can be updated. Moreover, assume that the mp3 player is also 
equipped with a Bluetooth or infrared adaptor. Along comes B, who has an Ogg Vorbis 
(another digital music format) player, which features the same networking hardware as A. 
Now, even if both players are in reach and they can transfer files to/from each other, they 
cannot actually play the transferred music, as they don’t have the appropriate codec to decode 
the files. However Code On Demand allows A’s player to transparently request the Ogg 
codec from B, initialise it and play the music, the whole operation being hidden from the user. 
If memory becomes full, the player’s middleware can decide (based on frequency of use) 
which codec to drop; after all, it can always retrieve it when needed from a peer. 
Let’s take the scenario a bit further. Suppose that user A has a Bluetooth adaptor and a GPRS 
modem equipped PDA. Along comes B, that offers a document, C, which is of interest to A. 
However A’s device does not have the appropriate parser that is needed to display this file. 
Depending on the cost, the middleware has two choices: If connectivity to the GPRS network 
is cheap, it can connect to a centralised server, give it the file info, and request the appropriate 
parser. Alternatively, it can request the parser from B, generate a hash from it, and contact the 
centralised server to verify the hash (thus protecting the user from malicious code). In both 
cases, A will be able to see the document of interest, and all interactions will be transparent to 
the user. As it can be seen, Code On Demand offers a way to dynamically and (depending on 
connectivity) securely update the capabilities of a device. It also allows the manufacturer or 
developer not to cater for all the possible scenarios that the device might have, as behaviours 
needed for different scenarios can be learnt at runtime. 
We have had some experience with this setting. In developing xmiddle[12], a data-sharing 
middleware for mobile computing, we designed and are implementing a mechanism using 
Java to allow a host to dynamically update the list of protocols that were available to the 
platform. A protocol is simply a networked interaction between two or more hosts and is 
defined by an abstract superclass which all protocols can inherit. This will allow xmiddle 
hosts to acquire new behaviours from peers as they come in reach, when needed. 
 
Location-Based Reconfigurability and Services 
Personal digital assistants or other similar portable computing environments, are meant to be 
mobile, unobtrusive and accompany the user everywhere. As such, these devices are exposed 
to a variety of environments and hardware resources which might exist in these environments 
and it is possible that the user would like to exploit some of these resources as transparently 
as possible. With the advent of Bluetooth technology, the likelihood of this scenario increases 
as Bluetooth allows devices to “pair”, enabling one device to remotely operate the other. 
Code mobility can enhance the effectiveness of this scenario in the following ways: 



16 of 34 

Assume that a user, A, with a PDA and a rudimentary word processor, comes in the vicinity 
of a printer resource, say B. This printer could be a friend’s printer, a pay-per-page printer at a 
university etc. In traditional systems, if A would like to print a document to B, he/she would 
have to undergo a relatively complex printer driver installation, which would involve locating 
the printer model and the appropriate driver for A’s platform, a process which is not intuitive. 
Assume however, that both A’s PDA and B are equipped with a networking technology, such 
as Bluetooth. Upon realising that the printer is in range, the middleware running on A’s 
device automatically requests the code (a driver, complying to a generic interface) from B. 
After the transfer, the user would then be able to print the document without any intervention. 
Alternatively (for enhanced security, similarly to the scenario above) the code could be 
requested from a trusted centralised server using a resource signature (a model number for 
example) retrieved from B, assuming that A can connect to the server (using a GPRS modem 
for example). In both of these cases, the end result is that using Code On Demand and ad-hoc 
networking or base station mobility, the user is able to transparently operate a device that 
comes within his or her reach, without any intervention Alternatively, A can print the 
document on B using client/server interactions. The middleware on A’s PDA can negotiate 
with the printer a common format that both devices understand (such as Postscript), translate 
the document into this format, send it to B which would initiate a printing service resulting in 
the document being printed. Again these interactions would be completely transparent to the 
user.  
 
Messaging and Communication in Disaster Scenarios 
The popularity of systems such as the Short Message Service (SMS) that GSM networks 
provide proves that consumers wish to leave asynchronous messages to people using their 
mobile device. Taking this one step further: Why limit the devices in only allowing them to 
leave a message to a particular person? An alternative would be leaving a message to a 
particular place for all passers by to see, like an electronic billboard. Drivers could leave, for 
example, warning messages at some particular spots where driving is particularly difficult, to 
be picked up by the computer of other drivers, warning them to be careful. Or diners could 
leave comments regarding a restaurant’s quality to subsequent visitors. It has already been 
demonstrated that one can use Global Positioning System (GPS) technology to leave 
messages “in space” for passers by to pick up. We show an alternative way of doing this, 
using code mobility. Assuming the existence of a network of computers which offer these 
messaging services (similar to the SMS messaging servers), users of would be able to leave 
messages in the form of Mobile Agents to a messaging server provider, which would migrate 
on all devices that come in reach (and have registered as interested to this type of message) 
and display the encapsulated message. This is not limited to simple text messages, as the user 
could potentially encapsulate other information such as audio or images with a mobile agent. 
To take this scenario a bit further, let us consider ad-hoc networking and messaging. In this 
scenario there is no centralised computer network offering messaging services. This could be 
the case in a disaster or military scenario, which offers no fixed infrastructure. Messaging in 
this scenario could be pivotal; however locating the recipient is very difficult in an ad-hoc 
network. However, if the message were to be encapsulated in a mobile agent, the agent could 
roam the network, migrating or even cloning in other hosts that come in reach, until it reaches 
its intended destination (or its time to live expires). Some variation of ad-hoc networking 
messaging is already taking place in devices such as the Cybiko, which has already proved 
quite popular. These devices use RF networking to send messages to peers in reach. They can 
also do basic routing so that you can use an intermediate device as a router to send your 
message.  
 
Electronic Shopping, Interacting on Behalf of the User and Limiting Connectivity Costs 
The popularity of the Internet in recent years has led to the growth of electronic shopping: 
Large numbers of consumers now shop online, from electronic goods to daily groceries, and 
these numbers are bound to increase. On the other hand, electronic shopping using mobile 
devices such as PDAs has not been as popular as expected, relative to the proliferation of 



17 of 34 

these devices. The two primary factors that have been blamed for this are the following: To 
begin with, wireless network connectivity is prohibitively expensive. Moreover a great 
number of Internet sites are not optimised for portable devices (which are usually equipped 
with a very small screen and a sub-standard web browser). This forces users to stay for 
prolonged periods of time online, so that they can navigate the website, adding to the cost. We 
believe that code mobility in the form of Mobile Agents can resolve this situation. Assume a 
PDA with either a base station mobility or nomadic connectivity. This represents the majority 
of portable computing environments in production today and the numbers are bound to 
increase. The PDA could have a software application which would allow the user to input the 
product that he or she wishes to buy, the delivery address, and the payment information. 
Optionally, the user could input the highest price that he or she is willing to pay. The 
application would then encapsulate this information in a Mobile Agent, connect to the 
network (when connectivity is available) and inject the Agent into the network, which would 
transact with various online shops for the user, find the best price and order the item. The 
agent could migrate into the user’s Internet Service Provider (ISP), or another independent 
third party, and conduct the required transactions from there, where connectivity would be 
much cheaper. This solution helps consumers save time and money, and could be extended to 
various other transactions and interactions. For example users could use a similar solution to 
this to perform a query for some information. The mobile agent would migrate to the users 
ISP, perform the search, and when the user reconnects to the network (using base station 
mobility or even nomadic computing) the agent would send the results back. 
 
Distributing Computations and Exploiting Computational Resources 
Mobile computing environments such as PDAs, mobile phones and the like, are 
underpowered, compared to typical desktop computers and workstations. Moreover they 
suffer from limited battery power which inhibits their ability to exploit their processing 
ability, however limited, for prolonged periods of time. Remote Evaluation (REV) can help in 
this scenario, over a variety of networking architectures. Consider a user, A, that wishes to 
perform a complex mathematical computation (estimating a complex integral for example) 
with his or her PDA and calculus software. If A chooses to perform the computation on the 
PDA, he or she will be forced to wait for a significant amount of time (CPUs such as the 
Strong ARM which are very popular on PDAs usually do not usually feature an Floating 
Point Unit), and possibly lose a good deal of the battery power. Assume however, that the 
user had nomadic or base station mobility connectivity to a larger network from the PDA. The 
application could package the computation to be done, ship it to a more powerful computer 
which would execute it and send the result back to the PDA, when connectivity is available. 
The computational environment could be provided by a third party, such as the user’s ISP. 
Another scenario could include ad-hoc networking, where powerful peers advertise 
processing cycles. Continuing the example above, A’s calculus application could package and 
ship the computation to a peer B, which advertises enough free CPU cycles. The result of the 
computation would later be returned back to A’s PDA. The problem with this scenario is that 
the user would need to stay in reach of B whilst the computation took place. The PDAs 
middleware could however do an estimation of how long it would take based on the 
information that B advertised, and inform the user accordingly.  
 
Securing Communications over Potentially Hostile Networks 
Sending and receiving sensitive data over any network can be dangerous. Third parties could 
read the traffic, forge replies, etc. This scenario becomes even more aggravated in wireless 
networks. Instead of sending the data over the network, we can inject the computation that 
needs to be performed over the sensitive data, to the network as a mobile agent. The agent 
could migrate to the site of the data and perform the computation there. This solution could be 
implemented over any networking architecture, although one with a fixed structure (such as 
the one offered by nomadic computing and base station mobility) would make 
implementation easier. 
 



18 of 34 

We have also researched into how to select a logical mobility paradigm to be used in a mobile 
application: 
 
There are several factors that need to be taken into consideration by application developers 
when applying logical mobility in physical mobility scenarios. These considerations must 
take place at the application design stage, structuring the application accordingly to take 
advantage of the appropriate features and paradigms that the underlying middleware provides 
in each particular context, making the application function best in each scenario. However, in 
a our target environment, there can be various definitions of how an application functions 
best: An application can function best when it uses underlying technologies to perform the 
given task rapidly. An application can function best when it minimizes the network 
interactions for a specific task. This can be important to the end user, considering that some 
types of wireless connection are expensive. An application can function best when it 
minimises user-interaction, thus saving the user time. This is true for example, in the mobile 
agent shopping scenario given above. An application can also function best when in 
performing a function potentially involving code mobility, it protects the user’s privacy by 
minimizing the information needed to be sent over the network. Clearly, these are very 
different goals that need to be identified by developers at design stage, realising which are 
being targeted. We identify the following metrics that need to be quantified and considered 
with regards to mobile software performance: 
• Parameters regarding physical and network mobility 
We believe that through reflective techniques[4], a mobile middleware should be able to 
provide the application with the following information: 
– Speed and Congestion. We believe that the application developer should be able to retrieve 
some information on the current network throughput and speed. 
– Network Longevity. It is also important that the application has some information on how 
permanent the current configuration is. Is it reasonable to expect that the device will stay 
connected in the current network for some time? This is information is essential if the 
application needs to be contacted as a result of a query or computation sent through the 
network. 
– Cost of Access. The application should also be aware of how the user is being charged for 
the current connection. 
– Network Configuration and Routing. It is important for the application to know to which 
type of network it is connected as this defines which hosts it can contact and how. Application 
behaviour on an ad-hoc network with limited routing support can be radically different than 
when connected to a centralised network such as the Internet, where all hosts can be contacted 
via the networking infrastructure. 
– Network Reliability. Another consideration for application behaviour is the reliability of the 
network, i.e. whether the application can expect that a message or code fragment sent over the 
network will reach its destination, thus choosing its communication semantics. 
• Parameters regarding code mobility 
The following is information which we believe applications should be able to retrieve either 
through the middleware or calculate using available information: 
– Size of the Mobile Code Unit. The application must be able to calculate what is the size of 
the unit that will be sent through the network for a particular mobile code paradigm. 
Combined with information on the network, this can determine how much the user will be 
charged, or how long will the particular computation take. 
– Contacting the User. It is also important to know whether the user will need to be contacted 
with the result of the computation and whether it is desirable that the user be contacted in a 
short time interval. Given enough resources, if the user needs to be contacted with the result 
of the computation very quickly, it might be preferable for the application to execute a 
computation locally, if such a solution is feasible, rather than sending it through the network. 
Another consideration is how the user will be contacted if needed. 
– Origin and Destination of Code. In a solution involving the transfer of code to and/or from 
another host, it is important to know where and how the code will be retrieved from or 



19 of 34 

transferred to. Apart from transfer issues, which are related to the underlying network 
connectivity, this can also determine whether the code received can be trusted. 
– Available Resources. The application must also be aware of whether the device it is running 
on is capable to execute the code received, if the paradigm chosen for a particular function 
involves receiving code fragments over the network.  
 
These are considerations that an application developer must take into account to determine the 
feasibility of using a mobile code paradigm, and choosing which one according to run-time 
information, to deliver the best result to the user. We believe that these parameters can be 
further identified into two main categories: Network-dependent parameters, which must be 
taken into account, and user-dependent considerations. 
 
 
Moreover, work has begun on a designing a mobile computing middleware which has been 
named SATIN. Based around the concept of a very small registry of modules that provide 
different capabilities, we are aiming to allow modules to be dynamically added to and 
removed from the system at runtime. As it is still at the early design stage, it is desirable not 
to go into further detail that might change in the future. 
 
Finally, what follows is a list of publications that have been made in the first year: 
 
[1] Stefanos Zachariadis, Cecilia Mascolo and Wolfgang Emmerich. "Exploiting Logical 
Mobility in Mobile Computing Middleware". In Proc. of 22nd Int. Conf. on Distributed 
Computing Systems - WORKSHOPS (ICDCS 2002 Workshops). July 2002, Vienna, Austria.  
 
[2] Stefanos Zachariadis, Licia Capra, Cecilia Mascolo, and Wolfgang Emmerich. 
"XMIDDLE: Information Sharing Middleware for a Mobile Environment". In Demo Session 
of ACM Proc. Int. Conf. Software Engineering (ICSE02). May 2002. Orlando , FL. 
 
[3] Cecilia Mascolo, Licia Capra, Stefanos Zachariadis and Wolfgang Emmerich. 
"XMIDDLE: A Data-Sharing Middleware for Mobile Computing". In Personal and Wireless 
Communications Journal, Kluwer. April 2002. 
 
[4] Licia Capra, Cecilia Mascolo, Stefanos Zachariadis and Wolfgang Emmerich. "Towards a 
Mobile Computing Middleware: a Synergy of Reflection and Mobile Code Techniques". In 
Proc. of the 8th IEEE Workshop on Future Trends of Distributed Computing Systems 
(FTDCS'2001). Bologna, Italy. October 200 



20 of 34 

Appendix B: Literature survey 
 
Sun Jini Network Technology 
Sun Microsystems’ Jini[3] technology is a distributed networking system, which allows 
devices to enter a federation and offer services to other devices or utilize services already 
offered. Jini, based on the Java programming language, exploits the inherent code mobility 
capabilities of that language in allowing devices to transparently locate and operate services 
offered. This distributed system of services is called in Jini terminology a djinn. Jini provides 
the infrastructure to build distributed services. A service in a Jini system is an object or a 
collection of objects provided by a computer, which can be utilised by other devices in the 
Jini federation. Examples include device drivers (such as printer drivers), whereby objects 
controlling the device can be operated remotely, time services, computational facilities (such 
as language parsers for example) and more. A Jini service can even include a user interface 
for the client to operate the service directly. Essentially, any object or collection o objects that 
perform a certain task or control a device can become a Jini service. 
 
The Lookup Service; Discovering and Joining 
The Jini architecture relies on the operation of servers called the lookup services. Lookup 
services are centralised indexes where objects advertise their services and clients can search 
for particular ones and receive the needed object reference to communicate with the service 
provider. This section considers what a lookup service is, how to discover it and how a 
service can join the lookup service. Lookup services are centralised indexing and managing 
mechanisms in a djinn. When a service provider connects to the network, it registers itself 
with a lookup service. Devices that need to find a service to perform a task must query the 
lookup service for it. There can be more than one lookup service in a djiin, each having a set 
of groups with which it is associated. A group is a simple string which categorises a set of 
services. Examples of group names can include “printers”, although Sun suggests that 
implementers try to adhere to DNS-like names, such as “printers.cs.ucl.ac.uk”. One special 
group is the public group, with which all lookup services should be associated. Group names 
have a similar functionality to DNS names; instead of looking up for particular groups via 
URLs and IP addresses, a device can find a lookup service for a particular group based on the 
groups name, even after a network reconfiguration. When a Jini device is plugged into the 
network, it looks for a lookup service for a group. This is part of the discovery protocol, 
which will be more thoroughly discussed below. If the device has a service to offer to the 
djinn, it registers it with the lookup service. Registration includes supplying to the lookup 
service an object that can be used to operate the service (a proxy object, an RMI stub etc) 
offered, as well as a set of entries. A Jini entry is an attribute aggregation system, which can 
include information such as the service’s name, its location etc. Entries can be used by clients  
in looking up services. The lookup service and the service provider also negotiate a 
universally unique 128 bit service ID for the service being registered. Service providers are 
expected to employ a thread-safe implementation of the service, as multiple clients may by 
accessing the service concurrently. 
Jini includes three different lookup service discovery mechanisms, outlined below: 
• The Multicast Request Protocol is used by a device that wishes to discover a djiin. The 
device sets up a TCP server socket, and sends a multicast packet requesting lookup services 
associated with certain groups (or the public group). Lookup services listening for multicast 
requests and that are associated with the requested groups will connect to the TCP server 
socket of the device and proceed to use the unicast discovery protocol (see below) to send an 
object reference of the lookup service to the device. Note that the device may receive replies 
from multiple lookup servers matching the given group criteria. 
• The Multicast announcement protocol is the reverse of the request protocol; In this scenario, 
devices interested in finding lookup services listen to multicast announcements sent 
periodically by the lookup services themselves. To obtain an object reference to an 
announcing lookup service, clients must then use the unicast discovery protocol, as described 
bellow. This mechanism can be useful in allowing clients to re-discover lookup services after 



21 of 34 

a network reconfiguration, a failure, etc. or to simply discover new lookup services as they 
are being started. 
• The unicast discovery protocol operates as follows: Lookup services must listen for 
incoming requests. Upon locating a lookup service, either via one of the protocols above, or 
by using data such as user supplied information, a device sends a request to the particular host 
and port where the lookup service resides. It then receives a marshalled object (the Service 
Registrar) which can be used to operate the lookup service. 
 
Locating and Utilising Services; Proxy Objects. 
When a client wishes to utilise a service offered in a djinn, it must first obtain a reference to 
the service registrar object of a lookup service, using the discovery protocol as outlined 
above. When it does, it can query the registrar for the service needed, based on a service 
template, comprised by a set of optional information, such as the service ID, Entries etc. The 
lookup process returns the matches that satisfy the query. Note that the client can query 
multiple lookup services, to select the service which is more suitable to the task. 
The result of the query can be null, if no service was found, or a set of objects representing 
the services found. Before using one of the demarshaled objects, the client needs to download 
all classes associated with the objects. The Java object serialisation framework[18] annotates 
the streams representing the objects with the location where the classes can be retrieved. This 
is done at the service provider’s site. The annotation can be any URI parsable by Java. The 
usual choice is HTTP, and as such the Jini framework includes a minimal web server which 
can be used by service providers to allow clients to download any classes needed to operate 
the service. The JVM of the service provider must by provided with a value for the 
java.rmi.server.codebase property; the URI providing clients with the appropriate classes. 
Assuming that the operation of retrieving an object reference and downloading all classes 
needed to operate it was successful, the client can now use the object using the methods 
available. The object is usually a proxy object; the way it handles communication with the 
actual service is hidden from view. Examples include using the Java Remote Method 
Invocation (RMI)[19] mechanism, TCP sockets, etc. 
 
Leasing, the Event System and Transaction Support 
The Jini framework offers a few more services to clients and service providers. The Jini 
distributed leasing system allows clients to acquire access to a resource for a limited period of 
time. Upon requesting access to a service, the client can negotiate a lease with the service 
provider. The lease is time based, although the client can request an indefinite lease. The lease 
can be granted for the period asked, a smaller time period, or denied altogether. It is up to the 
service provider to make the choice. Leasing guarantees that the client will have access to the 
service for the period of time negotiated, assuming that there are no hardware or networking 
failures. The client can terminate the lease at will before it expires, and it can also negotiate a 
renewal of the lease. Leases can also be exclusive, meaning that only the client granted the 
lease will be able to access the service. Note that when a service provider registers with the 
lookup service, it too can negotiate a lease with the lookup service on how long the latter will 
advertise the service’s existence. This service leasing model gives the Jini system resilience 
on failures. The traditional programming model that assumes that a service (or device) is in 
use until explicitly freed fails on a distributed system, as a client accessing a service may fail 
and never get a chance to free the provider to service other clients. Moreover, the leasing 
system allows providers to garbage-collect object references to clients no longer leasing the 
service. Once a lease expires, the provider can delete any such references and can refuse 
requests from these clients. Note that Jini offers helper classes which can manage negotiating 
leases automatically. 
The Jini Distributed Events system allows programs running in one virtual machine to be 
notified of events occurring in a program running on another virtual machine. Jini defines a 
set of abstract classes and interfaces to allow applications to register for such events. Remote 
event registration is leased, and as such can expire in time. An object interested in an event 
can register a remote event listener to a remote event generator for a specific time period. The 



22 of 34 

remote event listener will then receive remote events by the generator. A remote event 
contains information such as the eventID which is used to identify the type of event, a 
reference to the event generator, a sequence number, which is always increasing and counts 
the number of events of this type, and more. Note that the remote event listener can choose 
whether to pass the remote event to the object interested in the event. This filtering process 
can be used if, for example, the object is running on a machine with limited resources which 
might not be able to cope with constant notification. 
Jini also offers support for distributed transactions. The framework provides support for 
distributed objects to coordinate, via the completion protocol which consists of a two-phase 
commit (2PC) protocol. The default transaction semantics provide a way for the 2PC protocol 
to provide ACID properties, although objects are not obliged to follow the default semantics. 
 
Networking and the Current Implementation 
Sun’s implementation of the Jini architecture requires hosts that want to participate in a djinn 
to have a functioning JVM and a TCP/IP protocol stack supporting TCP and UDP multicast. 
Multicast is only used in the discovery process. Moreover, service providers need to provide a 
mechanism for allowing clients to download the code needed, with a simple HTTP server 
being the recommended solution. This can also be provided by some cooperating party. The 
current implementation of Jini is heavily RMI-based (for example the lookup service, 
“reggie”, is implemented as an RMI proxy), although the specifications do not fundamentally 
require this technology. Although the implementation currently weighs in at around 400KB, 
starting and running the lookup service, a service and the web server required to download 
classes, can be quite demanding.  
 
Jini and Mobile Services 
Jini technology can be used to provide context-aware mobile services. A user with a Jini-
enabled PDA can walk into a djinn and instantly be greeted with list of available services. For 
example, booking tickets for the cinema, ordering food at a restaurant etc, using a graphical 
user interface given by the service provider. We feel that this is the environment that the 
application of Jini is suited for, at the mobile services domain; Nomadic computing devices, 
that are connected to a djinn temporarily, and can utilise the services offered. Jini technology 
could in theory also be applied in a ad-hoc scenario, but that assumes that at least one of the 
peers involved will take the role of the lookup service. It is not suitable for rapidly changing 
ad-hoc networks. One of the major hurdles in the acceptance of Jini in mobile environments, 
is that the reference implementation offered by Sun is very demanding in resources. Psinaptic, 
has recently developed a version of Jini called JMatos[9], which is specifically geared for 
mobile devices. Occupying only around 100KB of storage on the device, JMatos does not use 
the RMI technology, and does not implement a proxy-based lookup service, resulting in a 
more efficient fully compliant jini implementation. 
 
A Service Example: A Time Server 
This section presents an example of a Jini Time Server and a client that utilizes it. It is 
implemented using RMI. Some code has been omitted for clarity reasons. 
Service Interface TimeServiceInterface.java 
import java.rmi.Remote; 
import java.rmi.RemoteException; 
public interface TimeServiceInterface extends Remote { 
/** 
Returns the time at the server in the form 
dow mon dd hh:mm:ss zzz yyyy 
*/ 
public String getTime() throws RemoteException; 
} 
Service Implementation TimeService.java 
import java.rmi.RemoteException; 
import java.rmi.server.UnicastRemoteObject; 
import net.jini.core.lookup.ServiceID; 
import net.jini.core.discovery.LookupLocator; 
import net.jini.core.entry.Entry; 
import net.jini.core.lookup.ServiceRegistrar; 



23 of 34 

import java.rmi.RMISecurityManager; 
import net.jini.lookup.entry.Name; 
import net.jini.discovery.DiscoveryListener; 
import net.jini.core.lookup.ServiceRegistrar; 
import net.jini.core.lookup.ServiceItem; 
import java.util.Calendar; 
import net.jini.discovery.LookupDiscovery; 
import net.jini.discovery.DiscoveryEvent; 
import net.jini.core.lookup.ServiceTemplate; 
public class TimeService extends UnicastRemoteObject 
implements DiscoveryListener, TimeServiceInterface { 
 
/** 
* Returns the Local Time 
*/ 
public String getTime() throws RemoteException { 
System.out.println("TimeService.getTime() called"); 
return(Calendar.getInstance().getTime().toString()); 
} 
public TimeService() throws RemoteException { 
super(); 
} 
public static void main(String[] args) { 
LookupDiscovery discovery; 
TimeService service; 
try { 
System.setSecurityManager(new RMISecurityManager()); 
service=new TimeService(); 
discovery=new LookupDiscovery(LookupDiscovery.ALL_GROUPS); 
discovery.addDiscoveryListener(service); 
System.out.println("Searching for any LookupServices in 
reach..."); 
Thread.currentThread().join(); 
discovery.terminate(); 
} 
catch (Exception e) { 
e.printStackTrace(); 
} 
} 
/** 
* Registers with the given ServiceRegistrar 
*/ 
private void register(ServiceRegistrar registrar) { 
System.out.println("Registering with registrar "+registrar); 
Entry[] entries=new Entry[1]; 
entries[0]=new Name("TimeService"); 
ServiceItem service=new ServiceItem(timeID,this,entries); 
try { 
//registers the service with a maximum leas time 
registrar.register(service,Long.MAX_VALUE); 
} 
catch(Exception e) { 
e.printStackTrace(); 
} 
} 
/** 
* A Lookup service has been discovered and we’re registering with it 
*/ 
public void discovered(DiscoveryEvent event) { 
ServiceRegistrar[] results=event.getRegistrars(); 
System.out.println("Found and registering with the following:"); 
for(int counter=0;counter<results.length;counter++) { 
System.out.println("* "+results[counter]); 
register(results[counter]); 
} 
} 
/** 
* What to do when a Lookup service has been descarded. 
*/ 
public void discarded(DiscoveryEvent param1) { 
} 
/** 
* This is the TimeService’s ID 
*/ 
private ServiceID timeID=new ServiceID(000l,000l); 
} 
 



24 of 34 

Client Implementation TimeClient.java 
import java.rmi.RMISecurityManager; 
import net.jini.core.discovery.LookupLocator; 
import net.jini.core.lookup.ServiceRegistrar; 
import net.jini.core.entry.Entry; 
import net.jini.core.lookup.ServiceTemplate; 
import net.jini.lookup.entry.Name; 
class TimeClient { 
public static void main (String[] args) { 
try { 
System.setSecurityManager (new RMISecurityManager ()); 
//Unicast Discovery Protocol 
LookupLocator lookup = new LookupLocator ("jini://localhost"); 
ServiceRegistrar registrar = lookup.getRegistrar (); 
Entry[] query = new Entry[1]; 
query[0] = new Name ("TimeService"); 
ServiceTemplate template = new ServiceTemplate (null, null, query); 
TimeServiceInterface timeServer = 
(TimeServiceInterface) registrar.lookup (template); //searches for the 
service 
if (timeServer instanceof TimeServiceInterface) { 
System.out.println("Calling server..."); 
System.out.println(timeServer.getTime()); 
} 
else { 
System.out.println("no object found :( "+timeServer); 
} 
} 
catch (Exception e) { 
e.printStackTrace(); 
} 
} 
} 
 
Summary and Evaluation 
We feel that Jini is a very interesting technology which employs Code on Demand and 
Remote Evaluation techniques to deliver distributed services in high-speed and long lived 
(preferably wired) networks. However, Jini is very much centralised, needing lookup services 
to operate. Jini does not really scale well on low bandwidth highly dynamic ad-hoc networks. 
Jini and especially the JMatos implementation can be used by mobile devices to deliver 
context aware services to mobile devices, connected to a fixed network nomadically. It is not, 
on the other hand, particularly suitable for allowing mobile devices to offer services 
themselves, particularly in ad-hoc environments which lack a centralised lookup service. 
 
µCode 
µCode[15] is a lightweight Java library which provides a minimal set of primitives allowing 
code mobility. µCode was specifically designed to provide programmers with a set of 
primitives to move Java Classes and Objects between hosts. The idea being that higher 
abstractions such as mobile agents can be built using µCode, but programmers would not be 
forced to use a heavyweight mobile agent platform simply to be able to use REV for example 
in a program. As such, µCode can be used to implement all code mobility paradigms 
described above. That being said, µCode does include a set of abstractions, including a 
mobile agent implementation, in a separate package. The core µCode package is very small, 
occupying around 20KB of memory. µCode can essentially enable applications to ship and 
fetch code as well as link classes dynamically. As µCode is a library on top of the JVM, it 
only offers support for weak mobility, not being able to transfer the state of execution. µCode 
also does not rely on the existence of an RMI implementation. It supports synchronous and 
asynchronous invocation together with immediate and deferred execution of code received. 
µCode also allows programmers to compress the code being sent, increasing the 
computational power required, but reducing the time required for the actual transfer. 
 
Groups, Objects, Classes and the µCode Architecture 
The only unit of mobility in µCode, is the group. A group is a collection of classes and 
objects, defined by the programmer. There is no restriction on the objects and classes that can 



25 of 34 

be contained in a group, apart from the fact that anonymous classes are not supported. 
Additional µCode utilities enable computing and adding to a group the full closure of a class. 
Furthermore, the programmer can specify a location from which additional classes, not 
contained in the group, can be downloaded, if needed, enabling dynamic class loading. A 
group can contain two special classes: The group handler and the root class. The group 
handler is defined by a special interface, and is used to instantiate an object which will be 
used to unpack and manipulate the contents of the group. The root class can be used to 
provide additional information on the group, for example information on how to spawn a new 
thread of execution at the destination. Note that the handler and the root class can actually be 
the same class and it is not necessary for them to be included in the group. It is however the 
responsibility of the programmer to ensure that they will be available at the destination. 
µCode groups must be bound to a specific MuServer (see below). 
The destination of a µCode group is the MuServer. The MuServer provides the runtime 
support for the µCode platform. A MuServer can create a µCode group and can receive 
groups sent over the network. Receiving groups or requests for dynamic linking is optional, 
and has to be enabled specifically by the programmer, by calling the boot() method. This 
starts a thread in the MuServer, which opens a TCP server socket waiting for connections 
from incoming groups or dynamic linking requests. Upon receiving and handling a group, the 
classes are kept in a private class space, which is the group’s private namespace. A MuServer 
also provides a shared class space, to which classes from other namespaces (including private 
ones) can be published. The use of class spaces disallows name clashing and overriding of the 
classes in the default Java Class Library, while at the same time permitting sharing classes 
between groups and hosts. In order to achieve this, µCode implements a customized version 
of the Java Class Loader, the MuClassLoader. When a thread, t, requests a class, c, 
MuClassLoader takes the following steps:  
• Checks whether c is a ubiquitous class. Ubiquitous classes are classes that are available in 
the all µCode servers, such as classes belonging to the Java or the µCode API. 
• If not, it checks whether c is in the private class space of t. 
• Otherwise, it checks whether c is in the shared class space of the MuServer. 
• If not, the MuServer can download the code remotely 
• Otherwise the class was not located and an exception is thrown. 
If a dynamic linking request is received, the MuServer sends the class requested, if it is 
published in the shared class space.  
 
Evaluation 
µCode is particularly interesting in the way that it offers a very lightweight set of primitives 
to support code mobility. Its non-obtrusiveness allows it to be easily integrated with various 
middleware systems, and its small footprint makes it suitable for mobile middleware. For 
example, it is basis of the mobile agent system used in Lime. The µCode unit of mobility, the 
group, allows programmers to ship variably sized of code depending on the network the 
device receiving or sending the code is currently connected to. For example, if a portable 
device that has enough memory is connected to a wired, high-bandwidth network, it might 
make sense to download all objects and classes that might be needed for a particular function, 
if it is anticipated that the device will be disconnected from the high-speed network in the 
near future. The fact that classes can be embedded in a group is an added benefit, as it can 
allow clients to use the objects contained in a group without requiring a separate download of 
their respective classes. The ability to optionally compress the group is also beneficial to the 
programmer. Moreover, the use of the class spaces is an elegant way to solve class naming 
and overriding problems, as well as to allow groups to share classes with others. It is also 
worth noting, that µCode is licensed under the GNU Lesser General Public Licence (LGPL), 
a Free Software license. The main disadvantage we can find with µCode, is its lack of support 
for security. Anyone can connect to a MuServer without any authentication. This issue is 
however, currently being worked on.  
 



26 of 34 

Lime 
Linda in a Mobile Environment (Lime)[14, 16] is a middleware implemented in Java, which 
allows the development of applications which exhibit logical and/or physical mobility 
characteristics, by providing a coordination model based on the Linda tuple space model. 
Lime is primarily geared for ad-hoc networks, although it is not limited only to such 
configurations.  
 
Linda 
Linda is a communication model for concurrent processes, which was developed at Yale 
University in the mid-1980s. Linda processes communicate using a shared repository of 
tuples, the tuple space. A tuple is an elementary data structure, a sequence of typed 
parameters, such as (“bar”,1), and represents the information being communicated. A tuple, t, 
can be deposited to the tuple space using the out(t) operation, and can be retrieved using the 
in(p) operation, where p is a pattern matching the tuple returned. If no tuple currently matches 
the pattern, the requesting thread is blocked, until the pattern is matched. If more than one 
tuples match the given pattern, the one returned is selected non-deterministically. in(p) 
removes the resulting tuple from the tuple space. The model includes an operation to read a 
tuple from the tuple space without removing it, rd. The tuple space can be accessed 
concurrently by threads and processes, the resulting model providing spatial and temporal 
decoupling.  
 
Agents, Tuple Spaces and Sharing Tuples 
Lime exploits the decoupled nature of tuple spaces to provide coordination primitives and 
information sharing for mobile components. The unit of mobility in Lime is a mobile agent, 
with mobile hosts acting as simple containers for those agents. Special scenarios of this 
configuration are stationary agents, which are also supported by Lime. An agent is in reach 
with other agents if it resides on the same host as they, or if the hosts of the agents are in 
reach. Each agent can have a set of tuple spaces which are identified by their name, a String. 
The tuple spaces are bound to the agents and as the agent migrates, the tuple spaces migrate 
as well. The agent can choose whether to share a tuple space it owns. Lime makes all tuple 
spaces with the same name, marked as shared by agents in reach, transparently appear as a 
single tuple space. Thus, agents who have a local tuple space named “DOCUMENTS”, will 
transparently be able to access data in any tuple space named “DOCUMENTS” that has been 
shared by any agent that is currently in reach, through operations on their local tuple space. 
Lime includes the “SYSTEM” tuple space which is a read only tuple space containing 
information such as host information, the agents and tuple spaces on the host etc. Hosts are 
identified by their LimeServer id, and agents are identified by an agent id. The LimeServer is 
the Lime runtime support that a host needs to be running and the identifiers must be globally 
unique. Lime communities are dynamically formed as hosts and their corresponding agents 
become in reach. Engaging a community, as this operation is termed, dynamically 
reconfigures the tuple spaces of all hosts in the community to reflect the new contents 
available. Both engaging and disengaging (or disconnecting) are atomic actions. Note that 
hosts with no shared tuple spaces are considered to be disengaged from the community, even 
if they are in reach. Lime extends the standard Linda operations, to support location based 
computing. To place a tuple, t, in a tuple space of a specific agent, a, out[a](t) can be used by 
an application. As such, each tuple is augmented by the Lime run-time support by two 
identifiers: The current location and the intended destination location. If an agent deposits a 
tuple into one of its tuple spaces using the out(t) operation, then the current and intended 
destination locations are equal. Using out[a](t) does not guarantee delivery of t to a. It might 
be the case, for example, that agent a might not be currently in reach. This results in a tuple 
that its current location is different from its intended location. When the intended agent 
engages the community, the runtime will automatically transfer the tuple to the intended tuple 
space of the agent. Lime also extends the Linda in and rd operations, annotating them with 
location information. in[c,d](p) and rd[c,d](p) retrieve and read respectively a tuple the 
current location of which is c, but the intended destination location is d, matching a pattern p. 



27 of 34 

c may be equal to d, and either can be substituted with the wildcard _, meaning any. For 
example, in[_,_](p) is equivalent to the standard Linda in(p) operation. Lime also allows 
agent to react to changes in context, by defining the reaction primitive. A reaction r(c,p) 
specifies a code fragment, c, that is executed when the tuple matching pattern p is found in the 
tuple space. As such, whenever the contents of the tuple space change, as a result, for 
example, of the engagement or disengament of a host, if a tuple matching p is found, c is 
executed. Moreover, a reaction is annotated with location parameters, similar to in or rd. 
However, the current location of the pattern must be limited to a specific agent. These are 
called strong reactions whereby the execution of c happens synchronously with the detection 
of a tuple matching p. As such, blocking operations are not allowed. Reactions over federated 
tuple spaces are allowed, but the execution of c is guaranteed to take place some time after a 
matching tuple is detected, provided that connectivity is preserved. 
 
Implementation & Evaluation 
Lime currently uses µCode as a mobile agent library. The implementation does not support 
ad-hoc disconnection, and as such, disengagement from a Lime community can only happen 
through an explicit API call. Moreover, in order to form a Lime community, the current 
implementation requires a form of bootstrapping, by selecting a community leader, which is 
then free to disengage from the community if needed. Lime provides application developers 
with a data-sharing middleware, geared for mobile agents and ad-hoc networks, although it 
can operate under fixed networking structures as well. It does not currently provide any form 
of security and the fact that it only offers a flat tuple space as the only common data structure, 
limits the processing that can be made on the shared information. Moreover, there appear to 
be scalability issues with the concept of misplaced tuples. 
 
PeerWare 
PeerWare[6] is a new mobile middleware model, offering peer-to-peer communication, event 
subscription and a shared data space. PeerWare binds the models of event-based 
communication and data sharing into a single middleware, using mobile code and REV in 
particular, to distribute operations on remote data.  
 
Global Virtual Data Structures and the PeerWare Data Structure The PeerWare system is 
based around the concept of a Global Virtual Data Structure (GVDS). A GVDS is a 
communication and coordination meta-model for mobile environments. It is basically a 
generalisation of the Lime coordination model. A GVDS provides a global data space that is 
made dynamically by the local data spaces of each peer in range. It is virtual, as it does not 
exist on any host as a single entity. The GVDS meta-model does not specify how the 
GVDS is structured, leaving it to the implementer. The PeerWare data structure is a graph of 
nodes and documents, which are collectively referred to as items. Nodes are simple containers 
of items, and are structured as a forest of trees, with a distinct root. Nodes have a label which 
cannot be shared with another node if both are roots or contained directly into the same node. 
This classification and organisation of nodes allows for expressing complex document 
organisation schemes, the resulting model resembling a standard file system. Each PeerWare-
enabled host has a data structure stored locally. PeerWare dynamically constructs a GVDS by 
superimposing all the nodes of the local data structures of all peers in range. This function is 
completely hidden to applications, that must only be aware that the contents of the data 
structured can eventually change.  
 
PeerWare Operations and Mobile Code 
PeerWare makes a sharp distinction between operations that can be performed on the local 
data structure and on the GVDS. This distinction, even if it lacks transparency, gives the 
application programmer explicit knowledge of whether he/she is operating locally or globally. 
Hiding this difference could make programmers use the available operations in inefficient 
ways. The following operations are available only on the local data structure: 



28 of 34 

• createNode(n, n2) and removeNode(n) add and remove nodes (n) to and from the local data 
structure respectively. 
• placeIn(d, n) and removeFrom(d, n) place and remove documents (d) to and from a node (n) 
in the local data structure respectively. 
• publish(e, i) issues a notification that a given event, e, has occurred on a given item, i. 
 
The following are the operations available on both the local and global data structures: 
• I = execute(FN, FD, a). This operation performs the following steps: 
– Executes FN, the node filter function, on the nodes of the data structure, and returns a set, 
MN of the matching nodes 
– Executes FD, the document filter function, on all the documents contained in the nodes of 
MN and returns a set MI of matching items 
– Executes action a on MI and returns the results, I, to the caller. 
• subscribe(FN, FD, FE, c) allows the caller to subscribe to an event defined by FE, the event 
filter function, on the data structure identified by FN and FD (as above), executing code 
fragment c, when the event occurs. 
• I=executeAndSubscribe(FN, FD, FE, a, c) performs both execute and subscribe operations 
as defined above, but in a single atomic step.  
PeerWare exploits logical mobility, by considering the execution of an action on the GVDS, 
as a distributed execution of the action on the local data structures of the connected peers. It is 
designed specifically to provide a minimal set of operations, with application-specific 
primitives and abstractions constructible via the execute mechanism, giving flexibility to the 
developer. 
 
Evaluation 
PeerWare exploits logical mobility, REV in particular, effectively, to move computations to 
the data sources in a peer-to-peer environment. It is, in a sense, the next generation of the 
Lime system, providing a hierarchical data structure instead of the Lime’s flat tuple space as a 
GVDS. However, the PeerWare model does not prescribe anything about routing and 
networking infrastructures and as such multiple different implementation must and are being 
provided to work in different settings, such as ad-hoc, nomadic, etc. It does not provide a 
single middleware which can seamlessly operate in various different networks. Moreover, it 
has been argued [8] that moving the code to the data is not always better than the traditional 
communication model of moving the data to code. Current implementations utilise µcode as a 
logical mobility layer to move code to the peers. 
 
An Augmented Reality System 
In this system[10], it is proposed to use COD techniques to allow adding virtual objects into 
the real world view of the mobile user, using computers projecting into the user’s sensory 
systems. The core idea behind this project, is that physical objects which are to implement a 
virtual object will be equipped with an active tag. The tag contains a wireless communication 
device, such as a Bluetooth adaptor, a micro controller equipped with some memory and an 
optional interface to the physical object, which can be used by the virtual object to interact 
with the former. Mobile users equipped with mobile computers implementing the augmented 
reality (AR) system will locate the active tags. The location mechanism is not specified. An 
object as specified by this project, is considered to be either an active tag, an AR system or 
some other device. Each object is characterised by a locally unique address: This implies that 
no two tags with the same address can be in reach. Both the AR system and the tags 
implement the Mobile Code protocol, which allows for querying object identification and 
information, requesting mobile code, requesting permission to send code and sending 
arbitrary data. The mobile code implementing the virtual object is stored in the tags memory. 
Upon locating a tag, the AR system can request the code contained in the tag and execute it. 
Alternatively, the tag can request permission to send the code to the system; this allows for 
approaches where physical and virtual objects inform and/or notify all visitors of a specific 



29 of 34 

event. Upon receiving the code, the virtual object can interact with the tag via a 
communication link established between them. 
 
Evaluation 
This system offers an approach of using COD over an adhoc network to implement an AR 
system. This system is considered to be more scalable than traditional approaches in this field 
of research relying in centralised servers providing the virtual objects. The design is open-
ended, not specifying the form of the mobile code that is going to be used. The system can 
support multiple forms of mobile code, and each tag identifies the type of code that it 
contains. However this approach is also very expensive, requiring a computing environment 
for each different object. 
 
FarGo 
FarGo[23] is a system that provides dynamic application layout support and a monitoring 
service that allows applications to register and react to specific system events. Dynamic 
application layout allows for the mapping of the application logic onto hosts to be 
manipulated at runtime. FarGo, which is implemented as an extension of Java, provides 
component mobility, allowing components to be attached to the same address space (or host), 
or conversely, detached into different address spaces.  
The basic unit of mobility in FarGo is the complet. A complet, analogous to an application 
module, is a collection of objects with a FarGo application being typically comprised of a 
collection of complets. Each complet has an object, the anchor, the interface of which is the 
interface of the complet. Objects in a complet always reside within the same memory space 
and as such, normal references and method invocations are used for intra-complet 
communication. Inter-complet communication and complet interconnection happens using 
complet references, which are the major abstraction mechanism that is used for layout 
programming in FarGo. Complet references are used to interconnect two complets, which 
may reside on the same host or two different hosts. Although syntactically, using complet 
references is similar to local references, there do exist semantic differences, as parameters are 
passed by value.  
When a complet moves from one host to another, all complet references are updated so that 
they remain valid. Furthermore, complet references can be augmented with semantics that 
identify the relationship between two complets when one of them moves. For example, the 
programmer can have a pull complet reference, which translates to having a complet follow 
the other when it relocates. What FarGo does, is provide a runtime infrastructure on all hosts 
that is used to keep complet references valid, even after a relocation has occurred. This is 
provided by a set of distributed objects called the core objects, which also provide support for 
naming and mobility. Each complet is associated with exactly one Core at any given time, 
although as the complet relocates, the Core association may change. The Core services are 
usually abstracted from the application programmer. 
FarGo also provides monitoring facilities, which allow the application programmer to register 
for events in the current context (for example bandwidth) and react accordingly (for example 
move the complet to another host). This behaviour can be programmed directly from within 
the application using an API that is provided, or, alternatively, it can be encoded outside the 
application using a rule-based scripting language. 
 
FarGo-DA 
FarGo-DA[24] is an extension of FarGo, providing a mobile framework for resource-
constrained devices that allows disconnected operations.  
FarGo-DA works on the assumption that resource constrained mobile devices, named 
Networked Lightweight Portable Computing (NLPC) devices access services that are located 
on various servers. However, as NLPCs are portable, it is assumed that the servers will at 
some point be out of the reach of the devices. It extends FarGo to allow for complet 
migration, replication, replacement and merging, which will all be examined later on. It 



30 of 34 

allows application developers to add to their application disconnection and reconnection 
semantics. 
FarGo-DA extends the original Fargo complet to a disconnected aware (DA) complet. A DA-
complet can prepare for disconnection and reconnection to the network by implementing the 
preDisconnect and postReconnect methods that are exported by the DA-Listener interface. 
These are executed by the local Core before a disconnection and after a reconnection. As for 
complet references, FarGo-DA provides a set of DA reference types, which can be used by 
application programmers to describe how to maintain the validity of complet references on a 
connection, disconnection or both. The types available are the following: 
• Clone denotes that prior to disconnection, the target complet should be duplicated and 
migrated to the local NLPC. 
• Replace changes a reference to a remote complet with a reference to a local complet that has 
the same interface as the remote one, but usually a different, more lightweight implementation 
and as such may offer reduced functionality. 
• Store and Forward queues all invocations made for the remote complet after disconnection 
and forwards them to it when it is again available. This assumes that requests are one-way 
only thus allowing the local complet to continue to operate as normal. 
• Depart offers a batch-mode approach to invocations that is very similar to store and forward. 
When in disconnected mode, it operates exactly as store and forward. In connected mode 
however, it queues all requests to the remote complet, and transfers them prior to 
disconnection.  
• Purge implies that upon reconnection, the replaced or clone complet will be overwritten by 
the original complet in the reference. 
• Overwrite on the other hand, implies that the cloned object overwrites the original one. 
• Last keeps the complet with the latest timestamp. This assumes that the NLPC and the 
server have synchronised clocks and that the modification times of the complets are stored in 
the system. 
• Merge allows for merging the two complets. FarGo-DA provides two merging mechanisms, 
one based one callback methods and another based on merging operators, which are 
considered outside the scope of this report. 
 
Evaluation 
FarGo and especially FarGo-DA provide a methodology based on COD and CS interactions 
that allows applications to be distributed using a dynamic layout and allows for thin clients, or 
NLPCs to still have (somewhat limited) access to the services that servers provide, even when 
disconnected from those services. However, we can identify three main disadvantages of 
FarGo with respect to our approach: FarGo-DA assumes that disconnections are pre-
announced. This limits its applicability in mobile networks, where disconnections are frequent 
and involuntary. Moreover, FarGo-DA does not provide any support for mobile devices that 
offer services themselves to other peers. Finally the current implementation of FarGo-DA is 
based on RMI, which we have found to be very heavyweight to be used on mobile devices. 



31 of 34 

Appendix C: Timescales  
The following 2 months of the project will be spent trying to research into different ways of 
sending code from one host to another. This will involve investigating the types of code sent 
(interpreted, virtual, etc.), how to group code together and when and how to send it.  
 
After this work has been completed, 1 month will be spent to design and implementing 
logical mobility modules to SATIN, with an additional 3 months needed to complete the 
design of the our mobile middleware.  
 
Completing this part of the research, work will be focused on the second part of the testing of 
the hypothesis. 2 months will be spent in background reading of literature in design 
methodologies, queuing networks and modelling techniques. The following 4 months will 
then be spent in designing and testing our methodology and one more month will be needed 
to implement it in a design tool. 
 
The remainder of the time will be spent in designing and developing applications using our 
methodology and our middleware, and testing their operation in various environments. We 
expect that 3 months will be needed to write the thesis. 



32 of 34 

Appendix D: Bibliography 
 
[1] Stefanos Zachariadis, Cecilia Mascolo and Wolfgang Emmerich. "Exploiting Logical 
Mobility in Mobile Computing Middleware". In Proc. of 22nd Int. Conf. on Distributed 
Computing Systems - WORKSHOPS (ICDCS 2002 Workshops). July 2002, Vienna, Austria.  
 
[2] Stefanos Zachariadis, Licia Capra, Cecilia Mascolo, and Wolfgang Emmerich. 
"XMIDDLE: Information Sharing Middleware for a Mobile Environment". In Demo Session 
of ACM Proc. Int. Conf. Software Engineering (ICSE02). May 2002. Orlando , FL. 
 
[3] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jini[tm] 
Specification. Addison-Wesley, 1999. 
 
[4] Licia Capra, Cecilia Mascolo, Stefanos Zachariadis, and Wolfgang Emmerich. Towards a 
Mobile Computing Middleware: a Synergy of Reflection and Mobile Code Techniques. In In 
Proc. of the 8th IEEE Workshop on Future Trends of Distributed Computing Systems 
(FTDCS’2001), Bologna, Italy, October 2001. 
 
[5] Compaq Computer Corporation. Compaq iPAQ H3600 Hardware Design Specification. 
Specification http://www.handhelds.org/Compaq/iPAQH3600/iPAQ H3600.html, Compaq 
Computer Corporation, May 2000. 
 
[6] Gianpaolo Cugola and Gian Pietro Picco. Peerware: Core middleware support for peer-to-
peer and mobile systems. 
 
[7] J. Reilly D. Axtman, A. Ogus. IrDA Infrared LAN Access Extensions for Link 
Management Protocol. Specification http://www.irda.org/standards/pubs/IrLAN.PDF, Infared 
Data Association, July 1997. 
 
[8] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Trans. on 
Software Engineering, 24(5). 
 
[9] S. Hashman and S Knudsen. The application of jini technology to enchance the delivery of 
mobile services. http://www.sun.com/jini/whitepapers/PsiNapticMIDs.pdf, December 2001. 
 
[10] J ning K. Kangas. Using code mobility to create ubiquitous and active augmented reality 
in mobile computing. In Proceedings of the 5th Annual ACM/IEEE International Conference 
on Mobile Computing and Networking (MOBICOM), 1999. 
 
[11] D. B. Lange and M. Oshima. Programming and Deploying JavaTM Mobile Agents with 
AgletsTM. Addison-Wesley, 1998. 
 
[12] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A Data-Sharing 
Middleware for Mobile Computing. Int. Journal on Personal and Wireless Communications, 
April 2002. 
 
[13] R. Mettala. Bluetooth Protocol Architecture. 
http://www.bluetooth.com/developer/whitepaper/, August 1999. 
 
[14] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A Middleware for 
Physical and Logical Mobility. In Proceedings of the 21st International Conference on 
Distributed Computing Systems (ICDCS-21), May 2001. 
 
[15] Gian Pietro Picco. Mucode: A lightweight and flexible mobile code toolkit. 
 



33 of 34 

[16] G.P. Picco, A. Murphy, and G.-C. Roman. Lime: Linda meets Mobility. In Proc. 21st Int. 
Conf. on Software Engineering (ICSE-99), pages 368–377. ACM Press, May 1999. 
 
[17] Sun Microsystems. The Java Language Specification, Oct 1995. 
 
[18] Sun Microsystems. Java Object Serialization Specification, 1998. 
 
[19] Sun Microsystems. Java Remote Method Invocation Specification, Revision 1.50, JDK 
1.2 edition, October 1998. 
 
[20] S. Kerry V. Hayes. IEEE P802.11. Specification, Institute of Electrical and Electronics 
Engineers, Inc. (IEEE), 1996. 
 
[21] J. White. Telescript Technology: Mobile Agents. In J. Bradshaw, editor, Software 
Agents. AAAI Press/MIT Press, 1996. 
 
[22] D. Wong, N. Paciorek, and D. Moore. Java-based Mobile Agents. Communications 
of the ACM, 42(3):92–102, 1999  
 
[23] H. Gazit O. Holder, I. Ben-Shaul. Dynamic layout of distributed applications in fargo. In 
Proceedings of International Conference on Software Engineering, pages 163–173, 1999. 
 
[24] Y. Weinsberg, I. Ben-Shaul. A programming model and system support for 
disconnected-aware applications on resource-constrained devices. In Proceedings of the 24th 
International Conference on Software Engineering, pages 374–384, 2002. 
 
[25] V.Grassi, R.Mirandola. PRIMAmob-UML: a Methodology for Performance Analysis of 
Mobile Software Architectures. In Proceedings of the Third International Workshop on 
Software and Performance, 2002. 



34 of 34 

Appendix E: Table of contents 
 
• Abstract 
• Acknowledgements 
• Table of Contents 
• Chapter 1 - Introduction 
• Chapter 2 – Background and Related Work 

o Mobile Computing Middleware 
o Logical Mobility 
o Design Methodologies 

• Chapter 4 – Exploiting Logical Mobility on Mobile Computing Middleware 
o The Problem 
o Case Studies 

• Chapter 5 - Choosing a Logical Mobility Paradigm 
• Chapter 6 - The SATIN Mobile Computing Middleware 

o Introduction 
o Features 
o Design Principles 
o Architecture 

• Chapter 7 - Mobile Application Design and Performance Evaluation 
o Introduction 
o UML Extensions 
o Performance Evaluation 
o Tool Support 

• Chapter 8 - Tying it all Together: Designing, Implementing and Evaluating Mobile 
Applications 

• Chapter 9 - Evaluation and Future Work 
• Chapter 10 - Conclusion 
• Bibliography 


