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1 Introduction

Abstraction is one of the pillars of computer science. Of course, choosing the right concepts
to emphasize, and details to suppress, is crucial in all of science, but in computer science the
role of abstraction extends beyond that of sensible methodology. For in computing we have seen
the emergence of an array of constructs and methods whose chief purpose is to provide general
mechanisms for achieving, validating, or enforcing abstraction, rather than being specific instances
or examples of it. Among these are programming concepts such as objects, procedures, abstract
data types and modules, and mathematical methods such as simulation and logical relations.

But what, more precisely, is the “abstraction” achieved by these constructs? In the case of
procedural abstraction, a more or less satisfactory explanation can be given in terms of functions.
Much more subtle, and novel, is the idea of data abstraction: A collection of programs or operations
conspiring together to represent higher level pieces of data.

What kind of mathematical entities are data abstractions? One answer is provided by algebra,
and there has been a good deal of development of the theory of algebraic specifications. This
theory is important, but it does not provide a comprehensive answer. In particular, it does not
cope comfortably with imperative or object-oriented features, with the ability to generate new
abstractions (as in new objects), and it is limited to first-order functions.

The purpose of this article is to trace a line of development which revolves around a core
calculus, the polymorphic A-calculus of Girard [6] and Reynolds [31]. Just as the A-calculus is the

*©Peter W. O’Hearn, 1998.



quintessential calculus of functions, the polymorphic calculus is a basic calculus in which a wide
range of data abstractions can be expressed.

That is not to say that the polymorphic calculus provides the final word on data abstraction. In
particular, the extension of polymorphism to dependent types allows for the description of flexible
and subtle forms of module [15, 18]. But type dependency and modules fall outside the scope of
this article.

The line we trace begins with work on representing abstract data types in the polymorphic
calculus, and a semantic theory, relational parametricity, which describes the sense of “abstractness”
in the calculus. We then move on to consider the use of polymorphism to account for the hiding
aspect of the object form of data abstraction.

But before proceeding with these accounts we will take a closer look at the two forms of data
abstraction that concern us.

2 Objects versus Abstract Data Types

An abstract data type (ADT) is defined by giving a representation type, together with operations
for acting on it. The representation type is hidden, in that the operations provide the only means
of accessing it. With an object, operations are given for manipulating hidden local state, which
again may only be accessed through the provided operations.

But though ADT’s and objects both provide data abstraction, they are not the same. That this
is so can be seen immediately if we consider that the ADT form requires types, while the object
form does not. For instance, in Scheme we can construct a counter object whose local state is
hidden, which as a result can be incremented but never decremented.

(define counter
(let ((state 0))
(lambda (message)
(cond ((eq? message ’inc) (set! state (+ state 1)))
((eq? message ’val) state)

))))

Many object-oriented languages include a class concept which involves some aspects of ADT’s and,
equally, in typed languages such as ML there are often constructs which allow objects of this form
to be constructed. But the point, as illustrated by Scheme and pure object-oriented languages such
as Actor-based languages, is that types are not necessary to the object form of data abstraction.
We don’t consider absence of types as crucial to investigate this point further, but rather appeal
to it as a simple illustration of the different ways that ADT’s and objects enforce abstraction. (A
more penetrating account of the implications of the differences may be found in [32, 4].)

The reader may have noticed that we speak of the “object form” of data abstraction, rather
than simply objects; this is to separate the way of providing data abstraction from other aspects
of objects such as inheritance, which we do not consider. We are not claiming that procedures plus
local state capture the full essence of the object concept, only that they give rise to an instance of
the object form of data abstraction, based on operations for acting on hidden local state.

Although ADT’s and objects are not the same, there is an undeniable similarity between them,
and we should ask whether the way that each provides abstraction is closely related to the other.



Put another way, we may ask if the hiding aspect of the ADT and object forms of data abstraction
are, in essence, the same.

We will return to this question, after describing the view of abstract types given by the poly-
morphic A-calculus.

3 Polymorphism and Abstract Types

The polymorphic A-calculus extends the simply-typed A-calculus with types Vo . T'(«) for polymor-
phic functions. Officially, the types are given by the grammar

A= al|A—A|Va. A

where a ranges over an infinite set of type variables. A polymorphic function p of type Vo . T[]
can be supplied with a type argument, in which case the polymorphic instantiation p[A] has type
T[A].

A new binder A binds type variables in functions, so that, for example,

Aadf:a—a. Xr:a. ffz

is the polymorphic doubling function of type Va. (@« = a) — (o — «).

3.1 Encodings of ADT’s

Consider the declaration of an abstract type o with operations z; of type ¢;(«), representation type
T, and operations K;.

abstype a with z; : #1(a),...,z, : t,(@)
is T KlKn
in M

Reynolds proposed [31] that such a declaration could be regarded as an abbreviation for a poly-
morphic A-calculus expression

(Aa. Azy.. Mz, M) [T K ... Ky,

which binds « and z; to their concrete representations.

The intuition behind this abbreviation is not just syntactic, i.e., how one might evaluate or
typecheck an abstype definition. Rather, it is based on the view that the abstract, or hiding,
aspect of the ADT corresponds to parametricity, a uniformity property of polymorphic functions.
Roughly, parametricity means that a polymorphic function does not “look under” a type variable
which may be instantiated in a number of different ways. A related statement is that parametric
functions “work the same way” at all types. (See [25, 5] for further discussions of this and related
notions of parametricity.)

Thus, parametricity requires much more than mere type correctness of polymorphic functions.
For instance, we could conceive of a polymorphic function p of type Vao.a« — « — « that returns
the first projection plint] = Azy.z when instantiated to the set of integers, but that returns the
second projection p[D] = Azy.y for all other types D. This function, while being type correct in
an obvious sense, is not parametric, because it works differently for integers than for other types.

In an influential article “Abstract types have existential type” Mitchell and Plotkin proposed
a different encoding of ADT’s [19]. A value of type Ja.T(«) is given by a package, consisting of



a pair [D,m]| where D is a type and m € T(D). The type D in this pair is not supposed to be
exposed, however; it is “hidden” by 4. In Mitchell and Plotkin’s view an ADT with signature and
representation as above determines a package

[T,Kl,... ,Kn] : Ela.tl(a) X X tn(a)
With this representation we can unpack a value v € Ja.t1(a) X -+ X t, () as
unpack v as [a, x1,...,zp] in M

which is equivalent to Reynolds’s representation of an abstype declaration, except that it has the
additional proviso that « cannot appear freely in the type of M. Further, since an abstract type
in Mitchell and Plotkin’s representation is a value, it can be passed around, and even used in the
branches of a conditional, like any other value.

We could explicitly add types of the form Ja. A to the polymorphic calculus, but these types
can be encoded in terms of V and — as follows:

da.T(a) = VB.(Va.T(a) = B) = 0

(We can also encode products, which we used implicitly above in the type Ja.t1(a) X - -+ X t,(x).)
For this to work correctly, however, properties beyond bare 8 and 7 equality are needed; these are
provided by relational parametricity.

3.2 Relational Parametricity

Throughout his work Reynolds has emphasized a connection between parametric polymorphism
and representation independence, the principle that behaviour is invariant under changes to the
concrete representations of types. For example, a client that uses a type of stacks should not be
able to distinguish (at a suitable level of abstraction) an implementation based on lists from one
based on functions with integer domain.

The basic idea behind relational parametricity is simple. Suppose we have a polymorphic
function p : Ya. T'(«r). This function can be instantiated to a variety of types, yielding p[D] : T'(D),
p[E] : T(E)... Relational parametricity says that the different instantiations have the following
relationship, which we call the (binary, relational) parametricity condition:

for any types D and E and any relation R : D <> E, there is an induced relation
T(R) : T(D) «» T(E), and (p[D],plE]) € T(R).

We may regard a relation R : D < E as relating different representations of «, and T'(R) as an
invariant relationship that must be maintained. Typically, the relation T'(R) is determined in an
inductive manner (of logical relations [26]), with the significant caveat that free type variables other
than « are mapped to identity relations. The idea is that two pieces of code satisfying invariant
T'(R) should behave equivalently from the point of view of the “visible” types, types other than «.

Relational parametricity gives rise to a proof principle for abstract type declarations. In terms
of Reynolds’s encoding, parametricity of Aa.. Az; . M means that all relations are preserved. Given
two concrete representations [T'] K ... K, and [T'] K] ... K], if we can find a relation R : T < 1"
under which each pair K;, K] is invariant (according to the induced relation t;(R) : t;(T') <> t;(1")),
then the entire definition will respect R. In some cases, such as when « is not free in the type of M,
this will imply that the two declarations are equal. In terms of Mitchell and Plotkin’s encoding, such
a relation shows the equality of elements of existential type [25]. For instance, we can implement
stacks of integers using list[int] as the representation type, or a type (int — int) x int where the



int indicates the top of the stack. The relation used to prove equivalence of the representations
relates a list to a pair (f,n) such that f(0),...f(n) is the list.

[This is similar to Hoare’s work on data representations [11]. But note that Hoare’s abstraction
functions worked on states in Simula classes; it is thus more directly connected to the work in
subsequent sections, on the object form of data abstraction.]

3.3 Parametricity and Algebra

Let us say that a parametric model of polymorphism is one where all elements p € Va.. T'(«) satisfy
the relational parametricity condition

For all relations R : D < E, (p[D],p[E]) € T(R).

This condition is stated informally here: Precise treatments include [36, 14, 25, 1, 35, 9]. Parametric
models are not easy to find; the first was presented in [2].

We are interested not so much in the details of a formalization of parametricity as its conse-
quences. As a specific example, consider the type Va.a — a. We can argue that there is only one
parametric element p of this type as follows. Consider any type D and any element d € D. Then
consider the relation R : D <> D consisting only of the pair (d,d). The induced relation R — R
relates two functions f : D — D, g : D — D just in case f and g preserve R, so that they both
must map d to d. Relational parametricity of p says that p[D] must be (R — R)-related to itself,
so p must be the denotation of the polymorphic identity function Aa. Az : «. z.

A wide variety of results of this form follow from relational parametricity. These include en-
codings of products, sums, initial algebras, and final coalgebras [34, 2, 36, 25, 9].

For instance, the type of polymorphic Church Numerals is

Va.(a — a) = (a — )

The polymorphic expresison corresponding to natural number i is Aa. Af : @ = a. )z : «. flz,
where f"*lz = f(f"z) and f%z = . Relational parametricity implies that the type of Church
numerals is a (least) solution to the type equation D = D + 1, where + is coproduct and 1 is
a terminal object, which, when the equation is understood in terms of sets, yields (one way of
describing) the natural numbers.

We began by saying that parametricity should mean that a polymorphic function does not “look
under” a type variable; in that sense, the type variables are abstract. Relational parametricity says,
more precisely, that a polymorphic function must be invariant with respect to relations between
different instantiations of a type variable. The intuitive connection between the informal and
rigorous notions is that, if you were to act on any non-trivial information gathered by looking
under a variable, then this should be detected by changing representation. This is why relational
parametricity provides a satisfying, if not final, formalization of abstraction.

4 Local State

Now we turn out attention to the object form of data abstraction. As discussed in Section 2,
this does not necessarily entail working with an explicitly object-oriented language, but rather
considering that data abstractions can be realized using a combination of procedures and local
state. A more explicitly object-oriented setup is considered in the next section.



4.1 Parametricity and Local Variables

Local state has been recognized as a thorny problem in traditional denotational semantics. The
difficulties stem from the fact that a procedure may gain indirect access to a storage variable that
is not even in existence (in the sense of not yet being allocated) at the time when the procedure
is declared; this can happen if the variable is passed as an argument, or if it is referenced within
the body of a procedure parameter. However, the procedure has no direct way to refer to the
variable: Access is limited to that provided to it by arguments. This limited access is not captured
by traditional models of imperative languages, or in most program logics [16].

O’Hearn and Tennent suggested that the difficulties in the semantics of local state had essentially
to do with data abstraction [21]:

We propose that a non-local procedure is independent of local state in the same way
that a polymorphic function is independent of types to which it is instantiated.

If this thesis were true, then it would, at least partially, answer the question about the relationship
between the object and ADT forms of data abstraction posed in Section 2. For, in Section 3 we
outlined the intimate connection between polymorphism and ADT-abstraction, and in Section 2
we saw that (what we referred to as) the object form of data abstraction can be seen as arising
from a combination of procedures and local state.

To support their proposal, O’Hearn and Tennent developed a model for a small imperative
language, Idealized Algol [33], in which relational parametricity was used to govern the interaction
between non-local procedures and local state. The main idea can be understood in terms of a
mapping from programs in the imperative language into the polymorphic A-calculus. We will not
give the complete semantics here, but instead consider an extended example, which we hope conveys
the essential ideas.

Consider the following program for a counter object

newz.z:=0; P(z:=z+1,72)

Here, a “client” procedure P is passed two “methods,” a command for incrementing the local
variable and an expression thunk for reading its value. (If we A-abstract on P we obtain a counter
class, that is, a way to generate counters for arbitrary clients.) Since z is local, the client can never
access it directly, but only through using the two arguments.

The semantics works by using the traditional idea of state transformations, but where polymor-
phism is employed to give more detailed types to the state. The client P is a procedure that accepts
a command (or parameterless procedure) and an expression thunk (or parameterless, integer-valued,
procedure) as arguments, and produces a command. It corresponds to a polymorphic function

p:VB.(axf—=>axf)x(axf—axfxnat) > (axf— axf)

Here, we regard « as the portion of the store that p knows about directly, and 8 as ranging over
pieces of local state in other objects, of which p can only have indirect knowledge. So, we read the
type as follows:

for all pieces of local state 3, p accepts a command and an expression that work over «
and 3, and produces a command over « and (.

The block in which the counter object is declared is then a transformation on the non-local state o



As: a.let [s',n/] be pnat](id, x succ, id, X copy) [s, 0]
in s
o=

The key point here is that the § component in the type of p is instantiated with nat, the type of
the local variable.

This way of arranging the semantics gives a direct connection between parametric polymorphism
and local state. The idea that p cannot access the local variable, except through provided methods,
is modelled by the relational parametricity property of V. As with the encodings of ADT’s, this
gives rise to a collection of relational principles for reasoning about local state.

4.2 Linearity and Polymorphism

The parametricity semantics of state is successful in many respects, but for one problem: It does not
account well for the irreversible nature of state change, where an assignment statement destroys the
state of the store rather than producing a new copy. This problem has been addressed by O’Hearn
and Reynolds [20], by moving to a form of polymorphism based on linear logic [7].

As an example, consider a procedure that accepts a command as an argument, and produces
a command as a result. In the linear version of the parametricity semantics such a procedure has
type

VB.(a®fB—oa®f) = (a®foa®f)

For the reader unfamiliar with linear logic, the basic idea is that the linear function type —o is
for functions that use their arguments exactly once [7, 37]. After a function uses its argument, it
can never do so again because that would constitute two uses; this corresponds to the destructive
nature of state change. The ® is a kind of product where the elements are tightly coupled, where,
to use an element of such a product, you must use both components exactly once. In the type we
have just given the state is the only part subject to this linearity. The role of — is to enable the
whole command argument, of type (o ® f— a ® (3), to be used many times, as is common in an
imperative language.

This move to linear typing enables a representation theorem, analogous to the characterization
of the type of Church Numerals discussed in Section 3. For instance, the polymorphic type just
pictured is a (least) solution to the domain equation for deterministic resumptions [27]

D = S-oS&(S®D)

This result is formulated for a model where —o is the strict function space construct from domain
theory, ® is smash product, and @ is coalesced sum. In the domain equation, S is a flat cpo which
interprets «.

This representation result connects up two very different readings of imperative procedures.
The polymorphic type suggests a reading where

for all possible pieces of local state (8, p accepts a command acting on « and 8 and
produces a command acting on the same state sets.

The domain equation suggests a completely different reading, where

p starts by possibly changing the state. It then either halts, or uses its argument once
and resumes.



The polymorphic reading is “internal,” in that it mentions the local states, but with parametricity
governing the way that local state is accessed. The resumption reading, on the other hand, is
“external,” in that local states are not mentioned at all. We may regard the representation result
connecting the “internal” and “external” readings as providing evidence in favour of the thesis
concerning parametricity and local variables stated at the beginning of this section.

5 Object Encodings

The polymorphic A-calculus has played a central role in research on the foundations of object-
oriented languages. In this section we look at two object encodings from that work.
5.1 Two Encodings

The first encoding is “objects as packages,” as put forth by Pierce and Turner [24]. They describe
the basic idea thus:

Both the state of an object and the methods acting upon it are visible... with the
existential type protecting the state from external access.

For example, a counter object would be given the type
Jda.a x (o — nat x )

Here, the leftmost « component of @ x (&« — nat X «) is where the state resides, and the (a —
nat x «) component breaks down into a function of type o — nat for extracting the current value
of a counter and a function of type o« — « for incrementing the local state.

This encoding of objects appears to rest on a similar conception of local state to that discussed
in the last section, except that 3 is used instead of V. It was presented by Pierce and Turner via
examples, and then further analyzed over a period of time.

First, Hofmann and Pierce [12] provided a source language for the encodings, an extension of
the polymorphic A-calculus with a new type-forming operator

Object a. T«

For the counter type T'«x is nat x a. It gives the “interface type information” for a counter.
In addition to the package encoding, Hofmann and Pierce provided a different encoding, based
on recursive records, which (they indicated) was a synthesis of ideas implicit in previous works.

OBJECTS AS PACKAGES

P[Objecta.Ta] = Ja.a x (a = Ta)

OBJECTS AS RECURSIVE RECORDS

RR[Objecta.Ta] = pa.Ta

Here, pa. T is a (least) solution to the equation D = T'D.
It is useful to revisit the type of a counter object, from the point of view of recursive records.

po.nat X o

This gives rise to the following reading:



If p is an object of counter type, you can read its current value myp, or you can apply
the increment method and obtain an updated object mp.

We call this view “external” because it characterizes an object behaviour in terms of a pattern of
interactions with it, instead of in terms of a hidden internal state. Similarly, we call the packages
view “internal.”

These encodings were compared recently by Bruce, Cardelli and Pierce [3]. They considered
two other encodings as well, and made their comparison along a number of dimensions, including
suitability for inheritance, method update, and binary methods. For our present concerns, however,
one of their observations is especially important. They remarked that, if recursion is present in
the language, the two encodings give different results. And one certainly does want recursion,
particularly since this is the means of modelling the “self” construct [30].

The authors of [3] seem annoyed. The reason could be that computational intuition suggests
that the internal and external views, given by the package and recursive record encodings, should
amount two ways of describing the same thing. So the disagreement of the two encodings is
disappointing.

However, as with the work on local state, the situation can be improved by using a linear
polymorphic A-calculus as the target of the encodings.

5.2 Objects as Packages, Linearly

We can define a modified package encoding, as follows.

OBJECTS AS PACKAGES

P[Object.a.Ta] = Ja.a®(a—oTa)

The reader not familiar with linear logic might enjoy the following, somewhat fanciful, reading
of the new package interpretation. As before, an object has some state, which is protected from
access by an existential type. But now, when using an object the state must be given to one of the
methods, since the occurrence of «a to the left of ® has no “!”. The methods, however, need to be
available for reuse on subsequent invocations; that’s the reason for the “!” in !(a—o T«a).

As a consequence of general observations of Plotkin [28], the linear package encoding is equiv-
alent to that for recursive records. More precisely, the two encodings will be isomorphic, if we
presume a relational parametricity property for V, and hence 3 (and if T is positive in «, as re-
quired by Hofmann and Pierce). This seems to be a satisfying result, connecting the “internal”
objects-as-packages and “external” objects-as-recursive-records views. Just as was the case with
local state, it provides support for Pierce and Turner’s viewpoint, as expressed in the quote at the
beginning of this section.

6 Conclusion

Throughout the course of the paper we have tried to give an idea of how the polymorphic A-calculus,
and relational parametricity, provide a powerful account of data abstraction.

Along the way we also collected evidence in favour of the idea that the hiding aspect of the
object and ADT forms of data abstraction are based on the same underlying semantic mechanism.
However, despite this positive evidence, the jury is still out on whether they are actually the same.



Counsider the following block, where P is a non-local procedure that accepts a storage cell as an
argument and () is a parameterless non-local procedure.

newz .P(z); z:=1; Q; if (z = 1) then diverge else 7 :=1

Does this block diverge if control gets beyond Q)7 It depends. If the language does not allow the
cell denoted by x (as opposed to its contents) to be stored by P, then @ will have no access to x
and the conditional test will succeed. But if P can store z, say in a global variable z, then ) could
subsequently read x out of z and set its contents to 2. In this case, the test would fail.

The latter case is a form of the phenomenon that Milner has labelled eztrusion [17]. Extrusion
occurrs when a locally declared entity is passed out to a non-local procedure or process, which
remembers the local entity, in order to use it again in the future. This phenomenon arises in the
presence of storable procedures, as in Scheme or ML, w-calculus channels, Pascal-style pointers,
or storable object identities. Extrusion is so fundamental in object-oriented programming that it
forms the basis for Hewitt’s Actor model [10], and even shows up at an early stage in beginner’s
Java programs (as in the procedure call AddActionListener(this)).

The problem, as far as our “evidence” is concerned, is that it is not evident how to model
this form of extrusion satisfactorily in polymorphic A-calculus. In terms of the semantics of local
state from Section 4, the type of P quantifies over all possible pieces of local state, and these are
regarded as being completely independent of non-local state. In contrast, if P can store = then
there is a potential dependency between the local and non-local state. Similar remarks apply to
the objects-as-packages encoding from Section 5.

One reaction to this situation is simply that the answer to our question of Section 2 is no:
The hiding aspects of the ADT and object forms of data abstraction are different. There does not
appear to be any way to achieve the kind of behaviour exhibited by extrusion with ADT’s, unless
one includes extra primitives (such as pointers) that go beyond the ADT concept.

Another reaction is that it does not constitute a difference; rather, extrusion breaks the ab-
stractness of local state. In the program block above, notice how knowledge of = passed from P to
@, behind the scenes so to speak. In the worst case, a locally declared reference can leak through an
entire system, whereby it ceases to be local in any reasonable sense. This second reaction is summed
up well by Hogg’s [13] colorful declaration that “The big lie of object-oriented programming is that
objects provide encapsulation.”

I do not know which of these reactions, if either, is right. But I do believe that we would benefit
from a better understanding of data abstraction, in the presence of pointers.
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