
Logic Column 6Column Editor: Jon G. RieckeBell Laboratories, Lucent Technologies700 Mountain AvenueMurray Hill, NJ 07974riecke@bell-labs.comEditor's note: This month's column, by Peter W. O'Hearn, describes the semantics of data ab-straction and its importance in accounting for local state.
Polymorphism, Objects and Abstract Types�Peter W. O'HearnDepartment of Computer ScienceQueen Mary & West�eld College(ohearn@dcs.qmw.ac.uk)October 7, 1998

1 IntroductionAbstraction is one of the pillars of computer science. Of course, choosing the right conceptsto emphasize, and details to suppress, is crucial in all of science, but in computer science therole of abstraction extends beyond that of sensible methodology. For in computing we have seenthe emergence of an array of constructs and methods whose chief purpose is to provide generalmechanisms for achieving, validating, or enforcing abstraction, rather than being speci�c instancesor examples of it. Among these are programming concepts such as objects, procedures, abstractdata types and modules, and mathematical methods such as simulation and logical relations.But what, more precisely, is the \abstraction" achieved by these constructs? In the case ofprocedural abstraction, a more or less satisfactory explanation can be given in terms of functions.Much more subtle, and novel, is the idea of data abstraction: A collection of programs or operationsconspiring together to represent higher level pieces of data.What kind of mathematical entities are data abstractions? One answer is provided by algebra,and there has been a good deal of development of the theory of algebraic speci�cations. Thistheory is important, but it does not provide a comprehensive answer. In particular, it does notcope comfortably with imperative or object-oriented features, with the ability to generate newabstractions (as in new objects), and it is limited to �rst-order functions.The purpose of this article is to trace a line of development which revolves around a corecalculus, the polymorphic �-calculus of Girard [6] and Reynolds [31]. Just as the �-calculus is the� c
Peter W. O'Hearn, 1998. 1



quintessential calculus of functions, the polymorphic calculus is a basic calculus in which a widerange of data abstractions can be expressed.That is not to say that the polymorphic calculus provides the �nal word on data abstraction. Inparticular, the extension of polymorphism to dependent types allows for the description of 
exibleand subtle forms of module [15, 18]. But type dependency and modules fall outside the scope ofthis article.The line we trace begins with work on representing abstract data types in the polymorphiccalculus, and a semantic theory, relational parametricity, which describes the sense of \abstractness"in the calculus. We then move on to consider the use of polymorphism to account for the hidingaspect of the object form of data abstraction.But before proceeding with these accounts we will take a closer look at the two forms of dataabstraction that concern us.2 Objects versus Abstract Data TypesAn abstract data type (ADT) is de�ned by giving a representation type, together with operationsfor acting on it. The representation type is hidden, in that the operations provide the only meansof accessing it. With an object, operations are given for manipulating hidden local state, whichagain may only be accessed through the provided operations.But though ADT's and objects both provide data abstraction, they are not the same. That thisis so can be seen immediately if we consider that the ADT form requires types, while the objectform does not. For instance, in Scheme we can construct a counter object whose local state ishidden, which as a result can be incremented but never decremented.(define counter(let ((state 0))(lambda (message)(cond ((eq? message 'inc) (set! state (+ state 1)))((eq? message 'val) state)))))Many object-oriented languages include a class concept which involves some aspects of ADT's and,equally, in typed languages such as ML there are often constructs which allow objects of this formto be constructed. But the point, as illustrated by Scheme and pure object-oriented languages suchas Actor-based languages, is that types are not necessary to the object form of data abstraction.We don't consider absence of types as crucial to investigate this point further, but rather appealto it as a simple illustration of the di�erent ways that ADT's and objects enforce abstraction. (Amore penetrating account of the implications of the di�erences may be found in [32, 4].)The reader may have noticed that we speak of the \object form" of data abstraction, ratherthan simply objects; this is to separate the way of providing data abstraction from other aspectsof objects such as inheritance, which we do not consider. We are not claiming that procedures pluslocal state capture the full essence of the object concept, only that they give rise to an instance ofthe object form of data abstraction, based on operations for acting on hidden local state.Although ADT's and objects are not the same, there is an undeniable similarity between them,and we should ask whether the way that each provides abstraction is closely related to the other.2



Put another way, we may ask if the hiding aspect of the ADT and object forms of data abstractionare, in essence, the same.We will return to this question, after describing the view of abstract types given by the poly-morphic �-calculus.3 Polymorphism and Abstract TypesThe polymorphic �-calculus extends the simply-typed �-calculus with types 8� : T (�) for polymor-phic functions. O�cially, the types are given by the grammarA ::= � j A! A j 8� :Awhere � ranges over an in�nite set of type variables. A polymorphic function p of type 8� : T [�]can be supplied with a type argument, in which case the polymorphic instantiation p[A] has typeT [A].A new binder � binds type variables in functions, so that, for example,���f : �! � : �x : � : ffxis the polymorphic doubling function of type 8� : (�! �)! (�! �):3.1 Encodings of ADT'sConsider the declaration of an abstract type � with operations xi of type ti(�), representation typeT , and operations Ki.abstype � with x1 : t1(�); : : : ; xn : tn(�)is T K1 :::Knin MReynolds proposed [31] that such a declaration could be regarded as an abbreviation for a poly-morphic �-calculus expression(�� : �x1:::�xn :M) [T ]K1 :::Knwhich binds � and xi to their concrete representations.The intuition behind this abbreviation is not just syntactic, i.e., how one might evaluate ortypecheck an abstype de�nition. Rather, it is based on the view that the abstract, or hiding,aspect of the ADT corresponds to parametricity , a uniformity property of polymorphic functions.Roughly, parametricity means that a polymorphic function does not \look under" a type variablewhich may be instantiated in a number of di�erent ways. A related statement is that parametricfunctions \work the same way" at all types. (See [25, 5] for further discussions of this and relatednotions of parametricity.)Thus, parametricity requires much more than mere type correctness of polymorphic functions.For instance, we could conceive of a polymorphic function p of type 8� : � ! � ! � that returnsthe �rst projection p[int] = �xy : x when instantiated to the set of integers, but that returns thesecond projection p[D] = �xy : y for all other types D. This function, while being type correct inan obvious sense, is not parametric, because it works di�erently for integers than for other types.In an in
uential article \Abstract types have existential type" Mitchell and Plotkin proposeda di�erent encoding of ADT's [19]. A value of type 9� : T (�) is given by a package, consisting of3



a pair [D;m] where D is a type and m 2 T (D). The type D in this pair is not supposed to beexposed, however; it is \hidden" by 9. In Mitchell and Plotkin's view an ADT with signature andrepresentation as above determines a package[T;K1; : : : ;Kn] : 9� : t1(�) � � � � � tn(�)With this representation we can unpack a value v 2 9� : t1(�)� � � � � tn(�) asunpack v as [� ; x1; : : : ; xn] in Mwhich is equivalent to Reynolds's representation of an abstype declaration, except that it has theadditional proviso that � cannot appear freely in the type of M . Further, since an abstract typein Mitchell and Plotkin's representation is a value, it can be passed around, and even used in thebranches of a conditional, like any other value.We could explicitly add types of the form 9� :A to the polymorphic calculus, but these typescan be encoded in terms of 8 and ! as follows:9� : T (�) � 8� : (8� : T (�) ! �)! �(We can also encode products, which we used implicitly above in the type 9� : t1(�)� � � � � tn(�).)For this to work correctly, however, properties beyond bare � and � equality are needed; these areprovided by relational parametricity.3.2 Relational ParametricityThroughout his work Reynolds has emphasized a connection between parametric polymorphismand representation independence, the principle that behaviour is invariant under changes to theconcrete representations of types. For example, a client that uses a type of stacks should not beable to distinguish (at a suitable level of abstraction) an implementation based on lists from onebased on functions with integer domain.The basic idea behind relational parametricity is simple. Suppose we have a polymorphicfunction p : 8� : T (�). This function can be instantiated to a variety of types, yielding p[D] : T (D),p[E] : T (E)... Relational parametricity says that the di�erent instantiations have the followingrelationship, which we call the (binary, relational) parametricity condition:for any types D and E and any relation R : D $ E, there is an induced relationT (R) : T (D)$ T (E), and (p[D]; p[E]) 2 T (R).We may regard a relation R : D $ E as relating di�erent representations of �, and T (R) as aninvariant relationship that must be maintained. Typically, the relation T (R) is determined in aninductive manner (of logical relations [26]), with the signi�cant caveat that free type variables otherthan � are mapped to identity relations. The idea is that two pieces of code satisfying invariantT (R) should behave equivalently from the point of view of the \visible" types, types other than �.Relational parametricity gives rise to a proof principle for abstract type declarations. In termsof Reynolds's encoding, parametricity of �� : �xi :M means that all relations are preserved. Giventwo concrete representations [T ]K1 :::Kn and [T 0]K 01 :::K 0n if we can �nd a relation R : T $ T 0under which each pair Ki;K 0i is invariant (according to the induced relation ti(R) : ti(T )$ ti(T 0)),then the entire de�nition will respect R. In some cases, such as when � is not free in the type of M ,this will imply that the two declarations are equal. In terms of Mitchell and Plotkin's encoding, sucha relation shows the equality of elements of existential type [25]. For instance, we can implementstacks of integers using list[int] as the representation type, or a type (int ! int) � int where the4



int indicates the top of the stack. The relation used to prove equivalence of the representationsrelates a list to a pair (f; n) such that f(0); :::f(n) is the list.[This is similar to Hoare's work on data representations [11]. But note that Hoare's abstractionfunctions worked on states in Simula classes; it is thus more directly connected to the work insubsequent sections, on the object form of data abstraction.]3.3 Parametricity and AlgebraLet us say that a parametric model of polymorphism is one where all elements p 2 8� : T (�) satisfythe relational parametricity conditionFor all relations R : D $ E, (p[D]; p[E]) 2 T (R).This condition is stated informally here: Precise treatments include [36, 14, 25, 1, 35, 9]. Parametricmodels are not easy to �nd; the �rst was presented in [2].We are interested not so much in the details of a formalization of parametricity as its conse-quences. As a speci�c example, consider the type 8� : �! �. We can argue that there is only oneparametric element p of this type as follows. Consider any type D and any element d 2 D. Thenconsider the relation R : D $ D consisting only of the pair hd; di. The induced relation R ! Rrelates two functions f : D ! D, g : D ! D just in case f and g preserve R, so that they bothmust map d to d. Relational parametricity of p says that p[D] must be (R ! R)-related to itself,so p must be the denotation of the polymorphic identity function �� : �x : � : x.A wide variety of results of this form follow from relational parametricity. These include en-codings of products, sums, initial algebras, and �nal coalgebras [34, 2, 36, 25, 9].For instance, the type of polymorphic Church Numerals is8� : (�! �)! (�! �)The polymorphic expresison corresponding to natural number i is �� : �f : � ! � : �x : � : f ix,where fn+1x = f(fnx) and f0x = x. Relational parametricity implies that the type of Churchnumerals is a (least) solution to the type equation D �= D + 1, where + is coproduct and 1 isa terminal object, which, when the equation is understood in terms of sets, yields (one way ofdescribing) the natural numbers.We began by saying that parametricity should mean that a polymorphic function does not \lookunder" a type variable; in that sense, the type variables are abstract. Relational parametricity says,more precisely, that a polymorphic function must be invariant with respect to relations betweendi�erent instantiations of a type variable. The intuitive connection between the informal andrigorous notions is that, if you were to act on any non-trivial information gathered by lookingunder a variable, then this should be detected by changing representation. This is why relationalparametricity provides a satisfying, if not �nal, formalization of abstraction.4 Local StateNow we turn out attention to the object form of data abstraction. As discussed in Section 2,this does not necessarily entail working with an explicitly object-oriented language, but ratherconsidering that data abstractions can be realized using a combination of procedures and localstate. A more explicitly object-oriented setup is considered in the next section.5



4.1 Parametricity and Local VariablesLocal state has been recognized as a thorny problem in traditional denotational semantics. Thedi�culties stem from the fact that a procedure may gain indirect access to a storage variable thatis not even in existence (in the sense of not yet being allocated) at the time when the procedureis declared; this can happen if the variable is passed as an argument, or if it is referenced withinthe body of a procedure parameter. However, the procedure has no direct way to refer to thevariable: Access is limited to that provided to it by arguments. This limited access is not capturedby traditional models of imperative languages, or in most program logics [16].O'Hearn and Tennent suggested that the di�culties in the semantics of local state had essentiallyto do with data abstraction [21]:We propose that a non-local procedure is independent of local state in the same waythat a polymorphic function is independent of types to which it is instantiated.If this thesis were true, then it would, at least partially, answer the question about the relationshipbetween the object and ADT forms of data abstraction posed in Section 2. For, in Section 3 weoutlined the intimate connection between polymorphism and ADT-abstraction, and in Section 2we saw that (what we referred to as) the object form of data abstraction can be seen as arisingfrom a combination of procedures and local state.To support their proposal, O'Hearn and Tennent developed a model for a small imperativelanguage, Idealized Algol [33], in which relational parametricity was used to govern the interactionbetween non-local procedures and local state. The main idea can be understood in terms of amapping from programs in the imperative language into the polymorphic �-calculus. We will notgive the complete semantics here, but instead consider an extended example, which we hope conveysthe essential ideas.Consider the following program for a counter objectnewx : x := 0; P (x := x+ 1; x)Here, a \client" procedure P is passed two \methods," a command for incrementing the localvariable and an expression thunk for reading its value. (If we �-abstract on P we obtain a counterclass, that is, a way to generate counters for arbitrary clients.) Since x is local, the client can neveraccess it directly, but only through using the two arguments.The semantics works by using the traditional idea of state transformations, but where polymor-phism is employed to give more detailed types to the state. The client P is a procedure that acceptsa command (or parameterless procedure) and an expression thunk (or parameterless, integer-valued,procedure) as arguments, and produces a command. It corresponds to a polymorphic functionp : 8� : (�� �! �� �)� (�� �! �� � � nat)! (�� �! �� �)Here, we regard � as the portion of the store that p knows about directly, and � as ranging overpieces of local state in other objects, of which p can only have indirect knowledge. So, we read thetype as follows:for all pieces of local state �, p accepts a command and an expression that work over �and �, and produces a command over � and �.The block in which the counter object is declared is then a transformation on the non-local state �6



�s : � : let [s0; n0] be p[nat]hid� � succ ; id� � copyi [s; 0]in s0: �! �The key point here is that the � component in the type of p is instantiated with nat, the type ofthe local variable.This way of arranging the semantics gives a direct connection between parametric polymorphismand local state. The idea that p cannot access the local variable, except through provided methods,is modelled by the relational parametricity property of 8. As with the encodings of ADT's, thisgives rise to a collection of relational principles for reasoning about local state.4.2 Linearity and PolymorphismThe parametricity semantics of state is successful in many respects, but for one problem: It does notaccount well for the irreversible nature of state change, where an assignment statement destroys thestate of the store rather than producing a new copy. This problem has been addressed by O'Hearnand Reynolds [20], by moving to a form of polymorphism based on linear logic [7].As an example, consider a procedure that accepts a command as an argument, and producesa command as a result. In the linear version of the parametricity semantics such a procedure hastype 8� : (�
 ����
 �)! (�
 ����
 �)For the reader unfamiliar with linear logic, the basic idea is that the linear function type �� isfor functions that use their arguments exactly once [7, 37]. After a function uses its argument, itcan never do so again because that would constitute two uses; this corresponds to the destructivenature of state change. The 
 is a kind of product where the elements are tightly coupled, where,to use an element of such a product, you must use both components exactly once. In the type wehave just given the state is the only part subject to this linearity. The role of ! is to enable thewhole command argument, of type (� 
 ���� 
 �), to be used many times, as is common in animperative language.This move to linear typing enables a representation theorem, analogous to the characterizationof the type of Church Numerals discussed in Section 3. For instance, the polymorphic type justpictured is a (least) solution to the domain equation for deterministic resumptions [27]D �= S��S � (S 
D)This result is formulated for a model where �� is the strict function space construct from domaintheory, 
 is smash product, and � is coalesced sum. In the domain equation, S is a 
at cpo whichinterprets �.This representation result connects up two very di�erent readings of imperative procedures.The polymorphic type suggests a reading wherefor all possible pieces of local state �, p accepts a command acting on � and � andproduces a command acting on the same state sets.The domain equation suggests a completely di�erent reading, wherep starts by possibly changing the state. It then either halts, or uses its argument onceand resumes. 7



The polymorphic reading is \internal," in that it mentions the local states, but with parametricitygoverning the way that local state is accessed. The resumption reading, on the other hand, is\external," in that local states are not mentioned at all. We may regard the representation resultconnecting the \internal" and \external" readings as providing evidence in favour of the thesisconcerning parametricity and local variables stated at the beginning of this section.5 Object EncodingsThe polymorphic �-calculus has played a central role in research on the foundations of object-oriented languages. In this section we look at two object encodings from that work.5.1 Two EncodingsThe �rst encoding is \objects as packages," as put forth by Pierce and Turner [24]. They describethe basic idea thus:Both the state of an object and the methods acting upon it are visible... with theexistential type protecting the state from external access.For example, a counter object would be given the type9� : �� (�! nat� �)Here, the leftmost � component of � � (� ! nat � �) is where the state resides, and the (� !nat��) component breaks down into a function of type �! nat for extracting the current valueof a counter and a function of type �! � for incrementing the local state.This encoding of objects appears to rest on a similar conception of local state to that discussedin the last section, except that 9 is used instead of 8. It was presented by Pierce and Turner viaexamples, and then further analyzed over a period of time.First, Hofmann and Pierce [12] provided a source language for the encodings, an extension ofthe polymorphic �-calculus with a new type-forming operatorObject� : T�For the counter type T� is nat� �. It gives the \interface type information" for a counter.In addition to the package encoding, Hofmann and Pierce provided a di�erent encoding, basedon recursive records, which (they indicated) was a synthesis of ideas implicit in previous works.Objects as Packages P [[Object� : T�]] = 9� : �� (�! T�)Objects as Recursive RecordsRR[[Object� : T�]] = �� : T�Here, �� : T� is a (least) solution to the equation D �= TD.It is useful to revisit the type of a counter object, from the point of view of recursive records.�� :nat� �This gives rise to the following reading: 8



If p is an object of counter type, you can read its current value �0p, or you can applythe increment method and obtain an updated object �1p.We call this view \external" because it characterizes an object behaviour in terms of a pattern ofinteractions with it, instead of in terms of a hidden internal state. Similarly, we call the packagesview \internal."These encodings were compared recently by Bruce, Cardelli and Pierce [3]. They consideredtwo other encodings as well, and made their comparison along a number of dimensions, includingsuitability for inheritance, method update, and binary methods. For our present concerns, however,one of their observations is especially important. They remarked that, if recursion is present inthe language, the two encodings give di�erent results. And one certainly does want recursion,particularly since this is the means of modelling the \self" construct [30].The authors of [3] seem annoyed. The reason could be that computational intuition suggeststhat the internal and external views, given by the package and recursive record encodings, shouldamount two ways of describing the same thing. So the disagreement of the two encodings isdisappointing.However, as with the work on local state, the situation can be improved by using a linearpolymorphic �-calculus as the target of the encodings.5.2 Objects as Packages, LinearlyWe can de�ne a modi�ed package encoding, as follows.Objects as Packages P [[Object : � : T�]] = 9� : �
 !(��� T�)The reader not familiar with linear logic might enjoy the following, somewhat fanciful, readingof the new package interpretation. As before, an object has some state, which is protected fromaccess by an existential type. But now, when using an object the state must be given to one of themethods, since the occurrence of � to the left of 
 has no \!". The methods, however, need to beavailable for reuse on subsequent invocations; that's the reason for the \!" in !(��� T�).As a consequence of general observations of Plotkin [28], the linear package encoding is equiv-alent to that for recursive records. More precisely, the two encodings will be isomorphic, if wepresume a relational parametricity property for 8, and hence 9 (and if T is positive in �, as re-quired by Hofmann and Pierce). This seems to be a satisfying result, connecting the \internal"objects-as-packages and \external" objects-as-recursive-records views. Just as was the case withlocal state, it provides support for Pierce and Turner's viewpoint, as expressed in the quote at thebeginning of this section.6 ConclusionThroughout the course of the paper we have tried to give an idea of how the polymorphic �-calculus,and relational parametricity, provide a powerful account of data abstraction.Along the way we also collected evidence in favour of the idea that the hiding aspect of theobject and ADT forms of data abstraction are based on the same underlying semantic mechanism.However, despite this positive evidence, the jury is still out on whether they are actually the same.9



Consider the following block, where P is a non-local procedure that accepts a storage cell as anargument and Q is a parameterless non-local procedure.newx :P (x); x := 1; Q; if (x = 1) then diverge else x := 1Does this block diverge if control gets beyond Q? It depends. If the language does not allow thecell denoted by x (as opposed to its contents) to be stored by P , then Q will have no access to xand the conditional test will succeed. But if P can store x, say in a global variable z, then Q couldsubsequently read x out of z and set its contents to 2. In this case, the test would fail.The latter case is a form of the phenomenon that Milner has labelled extrusion [17]. Extrusionoccurrs when a locally declared entity is passed out to a non-local procedure or process, whichremembers the local entity, in order to use it again in the future. This phenomenon arises in thepresence of storable procedures, as in Scheme or ML, �-calculus channels, Pascal-style pointers,or storable object identities. Extrusion is so fundamental in object-oriented programming that itforms the basis for Hewitt's Actor model [10], and even shows up at an early stage in beginner'sJava programs (as in the procedure call AddActionListener(this)).The problem, as far as our \evidence" is concerned, is that it is not evident how to modelthis form of extrusion satisfactorily in polymorphic �-calculus. In terms of the semantics of localstate from Section 4, the type of P quanti�es over all possible pieces of local state, and these areregarded as being completely independent of non-local state. In contrast, if P can store x thenthere is a potential dependency between the local and non-local state. Similar remarks apply tothe objects-as-packages encoding from Section 5.One reaction to this situation is simply that the answer to our question of Section 2 is no:The hiding aspects of the ADT and object forms of data abstraction are di�erent. There does notappear to be any way to achieve the kind of behaviour exhibited by extrusion with ADT's, unlessone includes extra primitives (such as pointers) that go beyond the ADT concept.Another reaction is that it does not constitute a di�erence; rather, extrusion breaks the ab-stractness of local state. In the program block above, notice how knowledge of x passed from P toQ, behind the scenes so to speak. In the worst case, a locally declared reference can leak through anentire system, whereby it ceases to be local in any reasonable sense. This second reaction is summedup well by Hogg's [13] colorful declaration that \The big lie of object-oriented programming is thatobjects provide encapsulation."I do not know which of these reactions, if either, is right. But I do believe that we would bene�tfrom a better understanding of data abstraction, in the presence of pointers.Acknowledgements. This note is based on a lecture \Objects, Local State and Linear Poly-morphism" I gave at the Foundations of Object-Oriented Languages workshop in San Diego, inJanuary 1998. Thanks to Jon Riecke for helpful comments on the presentation. The support bythe UK EPSRC is gratefully acknowledged.References[1] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. Theoretical ComputerScience, 121(1-2):9{58, December 1993.[2] S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism. Theoretical ComputerScience, 70(10):35{64, 1990. Corrigendum in 71(3):431, 1990.10



[3] K.B. Bruce, L. Cardelli, and B.C. Pierce. Comparing object encodings. In Invited lecture at ThirdWorkshop on Foundations of Object Oriented Languages (FOOL 3), July 1996. Available electronicallyin informal workshop proceedings.[4] W. Cook. Object-oriented programming versus abstract data types. In J. W. de Bakker, W. P. de Roever,and G. Rozenberg, editors, Foundations of Object-Oriented Languages, volume 489 of Lecture Notes inComputer Science, pages 151{178. Springer-Verlag, Berlin, 1991.[5] M. P. Fiore, A. Jung, E. Moggi, P. O'Hearn, J. Riecke, G. Rosolini, and I. Stark. Domains anddenotational semantics: History, accomplishments and open problems. In number 59 of Bulletin of theEuropean Association for Theoretical Computer Science, pager 227{256, 1996.[6] J.-Y. Girard. Interpr�etation Fonctionnelle et Elimination des Coupures de l'Arithm�etique d'OrdreSup�erieur. Th�ese de doctorat d'�etat, Universit�e Paris VII, June 1972.[7] J.-Y. Girard. Linear logic. Theoretical Computer Science, pages 1{102, 1987.[8] D. Gries, editor. Programming Methodology, A Collection of Articles by IFIP WG 2.3. Springer-Verlag,New York, 1978.[9] R. Hasegawa. Categorical data types in parametric polymorphism. Mathematical Structures in Com-puter Science, 4(1):71{109, March 1994.[10] C. Hewitt. Viewing control structures as patterns of passing messages. Arti�cial Intelligence, 8(3):107{118, 1977.[11] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271{281, 1972.Reprinted in [8], pages 269-281.[12] M. Hofmann and B. Pierce. A unifying type-theoretic framework for objects. Journal of FunctionalProgramming, 5(4):593{635, October 1995.[13] J. Hogg. Islands: aliasing protection in object-oriented languages. OOPSLA 91 Proceedings, 1991.[14] QingMing Ma and J. C. Reynolds. Types, abstraction, and parametric polymorphism, part 2. InS. Brookes et al., editors, Mathematical Foundations of Programming Semantics, Proceedings of the7th International Conference, volume 598 of Lecture Notes in Computer Science, pages 1{40. Springer-Verlag, Berlin, 1992, Pittsburgh, PA, March 1991.[15] D. B. MacQueen. Using dependent types to express modular structure. In Conference Record of theThirteenth ACM Symposium on Principles of Programming Languages, pages 277{286, St. PetersburgBeach, Florida, 1986.[16] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables: preliminary report. InPOPL [29], pages 191{203.[17] R. Milner. The polyadic �-calculus: a tutorial. Technical Report ECS{LFCS{91{180, Laboratory forFoundations of Computer Science, Department of Computer Science, University of Edinburgh, UK,October 1991. Proceedings of the International Summer School on Logic and Algebra of Speci�cation,Marktoberdorf, August 1991. Reprinted in Logic and Algebra of Speci�cation, ed. F. L. Bauer, W.Brauer, and H. Schwichtenberg, Springer-Verlag, 1993.[18] J. C. Mitchell and R. Harper. The essence of ml. In POPL [29], pages 28{46.[19] J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. ACM Trans. ProgrammingLanguages and Systems, 10(3):470{502, 1988.[20] P. W. O'Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-calculus. J. ACM, 1998.To appear.[21] P. W. O'Hearn and R. D. Tennent. Parametricity and local variables. J. ACM, 42(3):658{709, May1995. Also in [22], pages 109{164. 11



[22] P. W. O'Hearn and R. D. Tennent, editors. Algol-like Languages, volume 2. Birkhauser, Boston, 1997.[23] P. W. O'Hearn and R. D. Tennent, editors. Algol-like Languages, volume 1. Birkhauser, Boston, 1997.[24] B.C. Pierce and D.N. Turner. Simple type-theoretic foundations for object-oriented programming.Journal of Functional Programming, 4(2):207{247, April 1994.[25] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In M. Bezen and J. F. Groote,editors, Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science,pages 361{375, Utrecht, The Netherlands, March 1993. Springer-Verlag, Berlin.[26] G. D. Plotkin. Lambda-de�nability in the full type hierarchy. In J. P. Seldin and J. R. Hindley,editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pages 363{373. Academic Press, 1980.[27] G. D. Plotkin. Domains. Lecture notes. Available from ftp://ftp.dcs.ed.ac.uk/pub/gdp/dom.ps.Z,1983.[28] G.D. Plotkin. Type theory and recursion. Slides from ScottFest talk, 1993.[29] Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages,San Diego, California, 1988. ACM, New York.[30] Uday S. Reddy. Objects as closures: Abstract semantics of object oriented languages. In Proceedings ofthe 1988 ACM Symposium on Lisp and Functional Programming, pages 289{297, Snowbird, Utah, jul1988.[31] J. C. Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation, volume 19of Lecture Notes in Computer Science, pages 408{425, Berlin, 1974. Springer-Verlag.[32] J. C. Reynolds. User-de�ned types and procedural data structures as complementary approaches todata abstraction. In S. A. Schuman, editor, New Advances in Algorithmic Languages 1975, pages 157{168. Inst. de Reserche d'Informatique et d'Automatique, Rocquencourt, France, 1975. Reprinted in [8],pages 309-317.[33] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet, editors, AlgorithmicLanguages, pages 345{372, Amsterdam, October 1981. North-Holland, Amsterdam. Also in [23], pages67-88.[34] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor, Infor-mation Processing 83, pages 513{523. North Holland, Amsterdam, 1983.[35] E. P. Robinson and G. Rosolini. Re
exive graphs and parametric polymorphism. In Proceedings, 9thAnnual IEEE Symposium on Logic in Computer Science, Paris, 1994. IEEE Computer Society Press,Los Alamitos, California.[36] P. Wadler. Theorems for free! In Functional Programming Languages and Computer Architecture, pages347{359, 4th International Symposium, Imperial College, London, September 1989. ACM, New York.[37] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, IFIP TC-2 WorkingConference on Programming Concepts and Methods, pages 347{359, Sea of Galilee, Israel, April 1990.North Holland, Amsterdam.
12


