
Refinement and Separation Contexts

Ivana Mijajlović1, Noah Torp-Smith2, and Peter O’Hearn1

1 Queen Mary, University of London {ivanam, ohearn}@dcs.qmul.ac.uk
2 IT University of Copenhagen noah@itu.dk

Abstract. A separation context is a client program which does not
dereference internals of a module with which it interacts. We use certain
“precise” relations to unambiguously describe the storage of a module
and prove that separation contexts preserve such relations. We also show
that a simulation theorem holds for separation contexts, while this is not
the case for arbitrary client programs.

1 Introduction

Pointers wreak havoc with data abstractions [1–4]. To see why, suppose that a
data abstraction uses a linked list in its internal representation; for example,
an implementation of resource manager will use a free list. If a client program
dereferences or otherwise accesses a pointer into this representation, then it
will be sensitive to changes to the internal representation of the module. In
theoretical terms, this havoc is manifest in the failure of classical “abstraction,
logical relation, simulation” theorems for data abstraction. For example, the
client program will behave differently if, say, the first rather than the second
field in a cons cell is used to link together elements of a free list.

Data refinement is a method where one starts with an abstract specification of
a data type and derives its concrete representation. Hoare introduced a method
of refinement for imperative programs [5, 6]. His treatment of refinement assumes
a static-scope based separation between the abstract data type and variables of
the client. Pointers break those assumptions, as described above.

Previous approaches to abstraction in the presence of pointers [1, 3, 4, 7, 8]
typically work by restricting what can point across certain boundaries. These
solutions are limited and complex, and have difficulty coping with situations
where pointers transfer between program components or where pointers across
boundaries do exist without being dereferenced at the wrong time.

Separation logic [9], on the other hand, enables us to check code of a client
for safety, even if there are pointers into the internals of a module [12]. It just
ensures that pointers not be dereferenced at the wrong time, without permission.

This paper takes a first step towards bringing the ideas from separation
logic into refinement. We present a model, but not yet a logic, which ensures
separation between a client and a module, throughout the process of refinement
of the module. Our conditions for abstraction, based on a notion of “separation
context”, are considerably simpler than ones developed by Banerjee et al [3]
and Reddy et al [4], and can easily handle examples with dangling pointers and

examples of dynamic ownership transfer. We illustrate this with the nastiest
problem we know of – toy versions of malloc and free.

The paper is organized as follows: we give some basic ideas and motivation in
Section 2. In Section 3, we give relevant definitions regarding the programming
language and relations on states. This enables us to define unary separation
contexts in Section 4, and to prove properties about them. A separation context
is a client program that does not dereference pointers into module internals. The
idea that a module owns a part of the heap is described by a precise relation,
which is a special kind of relation that unambiguously identifies a specific portion
of the heap. We show that separation contexts respect these unary relations,
where arbitrary contexts do not. Finally, in Section 5, we prove a simulation
theorem which is a cousin of a classic logical relations or abstraction theorem,
and which fails when a context is not a separation context. We also give a
condition which ensures that a separation context for an abstract module is
automatically a separation context for all its refinements.

2 Basic Ideas

We will discuss two simple examples in which we consider two different pieces of
client code. In both programs we assume that the client code interacts with the
memory manager module through two provided operations, new() and dispose(),
for allocating and disposing memory, respectively. Suppose the module keeps
locations available for allocating to a client, in a singly linked list.

To begin with we regard the program state as being separated into two
parts, one of which belongs to a client, and the other which belongs to the
module. The module’s part always contains the free list. The statement new(x);
takes a location from the free list puts it into x; at this point we regard the
boundary between the client and module states as shifting: the ownership of the
cell has transferred from the module to the client, so that the separation between
client and module states is dynamic rather than determined once-and-for-all
before a program runs. Similarly, when a client disposes a location we regard the
ownership of that location as transferring from the client to the module. The
concept of “ownership” here is simple: at any program point we regard the state
as being separated into two parts, and ownership is just membership in one or
the other component of the separated states.

Now, some programs respect this concept of separation while others do not.
Consider the following client code.

new(x); do something with x; dispose(x); dispose(x)

This simple program behaves very badly – it disposes the same location twice.
This is possible because after disposing the location pointed to by x the first time,
x holds the value of the location. Depending on the implementation of dispose,
this code could destroy the structure of the free list, and might eventually cause
a program crash. This program contradicts our assumption of separation: the

second dispose(x) statement accesses a cell which the client does not own, since
it was previously transferred to the module.

In fact, any attempt to use the location after first dispose will contradict
separation, say if we replace the second dispose by a statement [x] := 42 that
mutates x’s location. And both cases contradict abstraction. For instance, if
the manager uses the [x] field as a pointer to the next node in the free list,
then [x] := 42 will corrupt the free list, but if the manager uses a different
representation of the free list, corruption might not occur: depends whether or
not it is representation-dependent.

In contrast, the following code obeys separation: the client code reads and
writes to its own part, and disposes only a location which belongs to it.

new(x); [x] := 15; y := [x]; dispose(x)

The issue here is not exclusive to low-level programming languages. In a
garbage collected language thread and connection pools are sometimes used to
avoid the overhead of creating and destroying threads and database connections
(such as when in a web server). Then, a thread or connection id should not be
used after it has been returned to a pool, until it has been doled out again.

In the formal development to follow a “separation contexts” will be a piece
of client code together with a precondition which ensures respect for separation.

3 Preliminary Definitions

In this section, we give relevant definitions regarding the storage model and
relations in it. We give a programming language and its semantics.

Storage Model. We describe our models in an abstract way, which will allow
various realizations of “heaps”. We assume a countably infinite set Var of vari-
ables given. Let S : Var → Val be the set of stacks (that is, finite, partial maps
from variables to values), and let H be a set of heaps, where we just assume
that we have a set with a partial commutative monoid structure (H, ∗, e). In
effect, our development is on the level of the abstract model theory of BI [10],
rather than the single model used in separation logic [11, 9]. We assume that ∗
is injective in the sense that for each h, the partial function h ∗ − : H ⇀ H is
injective. The set of states is the set of stack-heap pairs.

The subheap order v is induced by ∗ in the following way

h1 v h2 ⇐⇒ ∃h3.h1 ∗ h3h2.

Two heaps h1 and h2 are disjoint, denoted h1#h2, if h1 ∗ h2 is defined.
We will often take H to be a set of finite partial functions

H = Ptr ⇀fin Val, where Ptr = {0, 1, 2, . . .} Val = {. . . ,−1, 0, 1, . . .}.

The combination h∗h′ of two such heaps is defined only when they have disjoint
domains, in which case it is the union of the graphs of the two functions. We
will not restrict ourselves to this (RAM) model, but will assume it in examples
unless stated differently.

Separation logic. Separation logic is an extension of Hoare logic, where heaps
have been added to the storage model. The usual assertion language of Hoare
logic is extended with assertions that express properties about heaps

A,B ::= emp | e1 7→ e2 | A ∗B | T | ∀∗p ∈ m. A | · · · .

The first asserts that the heap is empty, the second says that the current heap
has exactly one pointer in its domain, and the third is the separating conjunction
and means that the current heap can be split into two disjoint parts for which A
and B hold, respectively. The fourth is true for any state, and the last assertion
form is an iterated separating conjunction over a finite set. The semantics of
assertions is given by a judgement s, h |= A which asserts that the assertion A
holds in the state (s, h). More about separation logic can be found in [9].

Unary relations. Certain special properties are used to identify the heap por-
tion owned by a module [12].

Definition 1. A relation M ⊆ S ×H is precise if for any state s, h there is at
most one subheap h0 v h, such that (s, h0) ∈ M .

We illustrate precise unary relations with an example. Let α be a sequence
of integers. The predicate list(α, x) is defined inductively on the sequence α by

list(ε, x) def= x = nil ∧ emp, list(a · α, x) def= x = a ∧ ∃y. x 7→ y ∗ list(α, y)

where ε represents the empty sequence and · conses an element a onto the front
of a sequence α. This predicate says that x points to a non-circular singly-linked
list whose addresses are the sequence α (this is called a “Bornat list” in [9]).
For any given s, h, there can be at most one subheap which satisfies list(α, x),
consisting of the cells in α. Generally, a precise relation gives you a way to “pick
out the relevant cells”.

We define the separating conjunction of unary relations M,M ′ ⊆ S ×H by

M ∗M ′ = {(s, h) | ∃h0, h1.h0#h1 ∧ h = h0 ∗ h1 ∧ (s, h0) ∈ M ∧ (s, h1) ∈ M ′}.

Taking into account that ∗ is injective, a precise relation M induces a unique
splitting of a state (s, h). We write (s, hM) for the substate of (s, h) uniquely
described by M , if it exists. Otherwise, (s, hM) = e, the unit.

The Model. Our model will use a simple language with two kinds of atomic
operations: the client operations and the module operations. The denotation of
client commands will be given by functions f : (S ×H) → (S ×H)] {wrong},
and the denotation of module operations will be given by binary relations t ⊆
(S ×H)× (S ×H)] {wrong}. The special state wrong results when a program
illegally accesses storage beyond the current heap. We presume there is a fixed
set of module variables VarM , which are never changed by the client:

∀x ∈ VarM .
f(s, h) = wrong ⇔ ∀v.f(s\{x 7→ v}, h) = wrong and
f(s, h) = (s′, h′) ⇔ ∀v.f(s\{x 7→ v}, h) = (s′\{x 7→ v}, h′).

For a unary relation on states M , we write Mwrong to denote M ∪ {wrong}.
We will write (s, h)[t](s′, h′) to denote that the states (s, h) and (s′, h′) are in
the binary relation t.

The relation M ⊆ S×H is said to be preserved by a function f (respectively
relation t) on states, if for all (s, h), (s′, h′), such that state (s, h) is in M and
f(s, h) = (s′, h′) (respectively (s, h)[t](s′, h′)), imply (s′, h′) ∈ Mwrong .

The reader will have recognized an asymmetry in our model: client primitive
operations are required to be deterministic, while in module operations non-
determinism is allowed. One effect of this is that, when frame conditions are
imposed later, the client operations will not be able to do any allocation; alloca-
tion will have to be viewed as a module operation. Technically, the determinism
restriction is needed for our simple simulation theorem.

Local Functions and Relations. We will consider functions and relations on
states that access resources in a local way. More formally, we say that a function
f : (S ×H) → (S ×H)] {wrong} (relation t ⊆ (S ×H)× (S ×H)] {wrong})
is local [12] if it satisfies the following properties

– Safety Monotonicity: For all states (s, h) and heaps h1 such that h#h1,
if f(s, h) 6= wrong (respectively ¬(s, h)[t]wrong), then f(s, h ∗ h1) 6= wrong
(respectively ¬(s, h ∗ h1)[t]wrong).

– Frame Property: For all states (s, h) and heaps h1 with h#h1, if f(s, h) 6=
wrong (respectively ¬(s, h)[t]wrong) and f(s, h ∗ h1) = (s′, h′), (respectively
(s, h∗h1)[t](s′, h′)) then there is a subheap h′0 v h′ such that h′0#h1, h′0∗h1 =
h′ and f(s, h) = (s′, h′0) (respectively (s, h)[t](s′, h′0)).

The properties are the ones needed for soundness of the Frame Rule of separation
logic; see [13]. We will only consider local functions and relations.

Programming Language. The programming language is an extension of the
simple while-language with a finite set of atomic client operations fj (j ∈ J) and
a finite set of module operations operi, i ∈ I. The syntax of the user language is

cuser ::= fj , j ∈ J | operi, i ∈ I | c1; c2 | if e then c else c | while e do c,
e ::= int | var | e + e | e× e | e− e, int ∈ Int, var ∈ Var,

Int = {. . .− 1, 0, 1, . . .}, Var = {x, y, . . .}, I, J − finite indexing sets.

The expressions used in the language do not access heap storage. Commands
such as x := e, [e1] := e2, x := [e], etc. are examples of atomic operations.

The semantics of the language is parameterized by a precise relation M and
a collection (oper i)i∈I of binary relations that preserve M ∗ T. It defines a big-
step transition relation ⊆ (cuser × (S × H)) × ((S × H)] {wrong , av}) on
configurations, where av denotes a state in which client code illegally accesses the
heap storage owned by the module, and will be referred to as “access violation”.
The operational semantics of the language is given in Table 1. State (s, hM) ∈ M
denotes the substate of (s, h) uniquely determined by relation M in the second
rule. What is left over, (s, hU), is the client’s state. K denotes an element of
(S ×H)] {av ,wrong}.

Table 1. Operational semantics

fj(s, h) = (s′, h′)

fj , s, h s′, h′

(s, h) = (s, hM) ∗ (s, hU)
fj(s, h) 6= wrong fj(s, hU) = wrong

fj , s, h av

fj(s, h) = wrong

fj , s, h wrong

(s, h)[oper i](s
′, h′)

operi, s, h s′, h′
(s, h)[oper i]wrong

operi, s, h wrong

c1, s, h s′, h′ c2, s
′, h′ K

c1; c2, s, h K

c1, s, h wrong

c1; c2, s, h wrong

[[e]]s = 0

while e do c, s, h s, h

[[e]]s 6= 0 c;while e do c, s, h K

while e do c, s, h K

c1, s, h av

c1; c2, s, h av

[[e]]s 6= 0 c1, s, h K

if e then c1 else c2, s, h K

[[e]]s = 0 c2, s, h K

if e then c1 else c2, s, h K

4 Unary Separation Contexts

An essential point in the semantics in Table 1 is the way that module state is
subtracted when client operations fj are performed. If a client operation does not
go wrong in a global state, but goes wrong when the module state is subtracted,
we judge that this was due to an attempt to access the module’s state; in the
semantics this is rendered as an access violation, and a separation context is
then a program (with a precondition) that does not lead to access violation.

Definition 2. Let M ⊆ S × H be a precise unary relation, let P be a unary
predicate on states, and for i ∈ I let oper i ⊆ (S × H) × (S × H)] {wrong}
preserve relation M ∗ T. A program c is a unary separation context for M,P
and (oper i)i∈I if for all executions and all (s, h) ∈ M ∗ P c, s, h 6 av.

The idea is that M describes the heap storage owned by the module, and a
separation context will never access that storage. Separation contexts preserve
the resource invariant of a module because they change storage owned by the
module only through the provided operations.

Theorem 1. Let M ⊆ S ×H be a precise relation, let P be a unary predicate
on states, and for (i ∈ I) let oper i ⊆ S × H × (S × H)] {wrong} preserve
M ∗ T, and let c be a separation context for M,P and (oper i)i∈I . Then for all
such P and all states (s, h) and (s′, h′), if (s, h) ∈ M ∗ P , and c, s, h s′, h′,
then (s′, h′) ∈ (M ∗ T)wrong .

Separation Context Examples. We now revisit the ideas discussed in Section
2 in our more formal setting. In order to specify the operations of the memory
manager module, we make use of the “greatest relation” for the specification
{P}oper{Q}[X], which is the largest local relation satisfying a triple {P}−{Q}
and changing only the variables in the set X. It is similar to the “generic com-
mands” introduced by Schwarz [14] and the “specification statements” studied
in the refinement literature, but adapted to work with locality conditions in [12].

The predicate ∃α.list(α, ls) describes the free list, and we choose it as the M
component in the definition of a separation context. The operations new(x) and
dispose(x) are the greatest relations satisfying the following specifications.

newC(x) : {list(a · α, ls)} − {list(α, ls) ∗ x 7→ a}[x, ls]
{list(ε, ls)} − {list(ε, ls) ∗ x 7→ −}[x, ls]

disposeC(x) : {list(α, ls) ∗ x 7→ a} − {list(a · α, ls)}[ls]

For future reference, we will call this the concrete interpretation of the mem-
ory manager module. With these definitions we can judge whether a program
(together with a precondition) is a separation context.

Consider the following three programs

Program1 : Program2 : Program3 :
new(x); dispose(x); [81] := 42
[x] := 47; [x] := 47;
dispose(x);

We indicate whether a program, together with a precondition, is a separation
context in the following table.

Context Separation context?

{emp} Program1

√

{x 7→ −} Program2

√

{emp} Program2 ×
{81 7→ −} Program3

√

{emp} Program3 ×

Most of the entries are easy to explain, and correspond to our informal discussion
from earlier. The last one, though, requires some care. For, how do we know that
[81] := 42 interferes with the free list? The answer is that we do not. It might or
might not be the case that location 81 is in the free list, at any given point in
time. But, the notion of separation context is fail-safe: if there is any possibility
that 81 is in the free list, on any run, then the program is judged not to be a
separation context. And we can easily construct an example state where 81 is
indeed in the free list. On the other hand in the second-last entry the precondition
81 7→ − ensures that 81 cannot be in the free list. This is because of the use of
∗ to separate the module and client states.

5 Refinement and Separation

In this section we first introduce precise binary relations and the separating
conjunction of binary relations. We give a definition of refinement and prove a
binary relation-preservation theorem.

Let R ⊆ (S0×H0)×(S1×H1) be a binary relation. We say that R is precise, if
each of its two projections on the corresponding set of states is precise. Formally,
for any state (si, hi) ∈ (Si×Hi) there is at most one h′i v hi such that there exists
a state (s1−i, h1−i) ∈ (S1−i ×H1−i) such that (si, h

′
i)[R](s1−i, h1−i), for i=0,1.

We illustrate precise binary relations with an example. Suppose we have two
different implementations of a memory manager module. In the first implementa-
tion we assume that f is a set variable, which keeps track of all owned locations.
In the second implementation, we let this information be kept in a list. We use
the list predicate list(α, ls), defined in Section 3. Now, a precise binary relation

R =
{

((s, h), (s′, h′))
∣∣∣∣ (s, h |= ∀∗p ∈ f. p 7→ −) ∧ (s′, h′ |= list(α, ls)) ∧
set(α) = s(f)

}
,

where set(α) is defined as the set of pointers in the sequence α, relates these two
implementations. Relation R relates pairs of states, such that one state can be
described as a set of different pointers, while the other is determined by the list
of exactly the pointers that appear in the mentioned set.

For two binary relations R,R′ ⊆ (S1 ×H1)× (S2 ×H2) on states, we define
their separating conjunction [4] as

R ∗R′ =
{

((s1, h1), (s2, h2))
∣∣∣∣∃h′1, h′′1 , h′2, h

′′
2 . h1 = h′1 ∗ h′′1 ∧ h2 = h′2 ∗ h′′2 ∧

(s1, h
′
1)[R](s2, h

′
2) ∧ (s1, h

′′
1)[R′](s2, h

′′
2)

}
Similarly to the unary case, for a binary relation on states R we will write

Rwrong to denote R ∪ {(wrong ,wrong)}.

5.1 Refinement and Separation Contexts

In this section, we formally express what it means for one module to be a refine-
ment (or an implementation) of another. For simplicity, we assume that there is
only one operation of the module, i.e., that the index set I from the syntax of
the user language is singleton. In previous work on refinement [6], our definition
of refinement is called an upward simulation.

In the following, we will take H1, H2 and H3 to be three (in general differ-
ent, but possibly equal) heap models, assuming that (H1, ∗1, e1), (H2, ∗2, e2) and
(H3, ∗3, e3) have partial commutative monoid structure.

Definition 3. Let Z ⊆ (S1 ×H1) × (S2 ×H2) be a binary relation. We define
oper2 ⊆ (S2 ×H2)× (S2 ×H2)] {wrong} to be a refinement of oper1 ⊆ (S1 ×
H1)× (S1 ×H1)] {wrong} with respect to Z, if

– for all states (s1, h1), (s2, h2), (s′2, h
′
2), such that (s1, h1)[Z](s2, h2) and (s2, h2)

[oper2](s′2, h
′
2) there exists a state (s′1, h

′
1), such that (s1, h1)[oper1](s′1, h

′
1),

and (s′1, h
′
1)[Z](s′2, h

′
2), and

– for all states (s1, h1), (s2, h2), such that (s1, h1)[Z](s2, h2) if
(s2, h2)[oper2]wrong then (s1, h1)[oper1]wrong.

In order to prove the relation preservation theorem, we need to instantiate
the refinement relation to a separating conjunction of binary relations, R,Q ⊆
(S1 ×H1)× (S2 ×H2). We assume that the following properties hold:

– R is precise

– Q is such that for any two states (s1, h1), (s2, h2) related by Q and a guard
(condition of if and while statements) b, s1(b) ⇔ s2(b)

– oper2 ⊆ (S2 ×H2)× (S2 ×H2)] {wrong} is a refinement of oper1 ⊆ (S1 ×
H1)× (S1 ×H1)] {wrong} with respect to R ∗Q

– We denote a pair (f1
j , f2

j) by fj . Pair fj ,is such that it maps Q-related states
to Qwrong -related states.

The role of R is to relate abstract and concrete subheaps which belong to
the module, while Q relates the clients’ parts of the heaps.

Simulation Theorem (Informally): Suppose we have two instantia-
tions of a client program, which use calls to concrete and abstract module
operations respectively, related by a refinement relation. Then, provided
both of these two instantiations are separation contexts with respect to
the corresponding modules, the effect of the concrete computation can
be tracked by the abstract.

Stating this more formally requires some notation. For a program c, let ci ⊆
(Si ×Hi) × (Si ×Hi)] {wrong} be a relation denoted by c in the operational
semantics defined by Ri and oper i, i = 1, 2, where Ri is the projection of R onto
(Si ×Hi). QP denotes Q ∩ (P ×Q(P)), where Q is a binary relation on states,
P is a unary relation on states, and Q(P) is their composition.

Theorem 2 (Simulation Theorem). Let R, Q, oper i, c, ci for i = 1, 2, be
as above, and let P ⊆ Q1 be a unary relation on states. Let c1 be a separation
context for R1, P and oper1, and let c2 be a separation context for R2, Q(P)
and oper2. Then for all such P and all (s1, h1), (s2, h2), (s′2, h

′
2) if (s1, h1) [R ∗

QP] (s2, h2) and (s2, h2)[c2](s′2, h
′
2) then there exists a state (s′1, h

′
1) such that

(s1, h1)[c1](s′1, h
′
1) and (s′1, h

′
1)[R ∗Q](s′2, h

′
2).

The crucial assumption is that c1 and c2 are separation contexts for the given
modules and preconditions, and without this condition the theorem fails.

One shortcoming is that we have to check whether both c1 and c2 are sepa-
ration contexts to apply Theorem 2. From the point of view of program devel-
opment it would be better if we knew that when we had a separation context
for an abstract module then it would automatically remain a separation context
for all its refinements. Then the check could be done once and for all. In order
to realize this aim, an extra concept is needed: safety. A safe separation context
is a client which does not touch any storage not in its possession.

Definition 4 (Safe Separation Context). Let c be a separation context for
the precise relation M , precondition P and family of operations (oper i)i∈I . Pro-
gram c is a safe separation context for M , P , (oper i)i∈I if for all executions
and all states (s, h) ∈ M ∗ P , c, s, h 6 wrong.

Theorem 3. Let R, Q, oper i, c, ci for i = 1, 2 be as in Theorem 2, and let
P ⊆ Q1 be a unary relation on states. If c1 is a safe separation context for R1, P
and oper1, then c2 is a safe separation context for R2, Q(P) and oper2.

Safe Separation Context Example. To see the role of the concept of safety,
consider an abstract version of the memory manager procedures, the“magical
malloc module”. It is magical in that the module does not own any locations at
all, producing them as if out of thin air. (In implementation terms, the thin air
is like a call to a system routine such as sbrk.) Therefore, the resource invariant
of the module, M in our formal setup, is the predicate emp. Now, we define the
abstract operations newA(x) and disposeA(x) as the greatest relations satisfying
the following specifications.

newA(x) : {emp} − {x 7→ −}[x], disposeA(x) : {x 7→ −} − {emp}[]

This is the meaning of allocation and disposal that is usually presumed in sepa-
ration logic. Because the manager owns no storage whatsoever, there is no way
for a client to trample on it. As a result, every client program is a separation
context for this abstract module.

But, not every context is safe. Consider the context

{emp} [81] := 42

from the Separation Context Examples in Section 4. It immediately goes wrong,
and so is not safe. Recall also that in the more concrete semantics, from the
same section, this is not even an ordinary separation context.

This shows the import of Theorem 3. If we know that our context is safe in
the abstract setting, then this ensures that module internals will not be tam-
pered with in refinements. Put another way, module tampering in a concrete
implementation can show up as going wrong in the abstract, and the concept of
safe separation context protects against this.

Refinement Examples. Here, we illustrate refinement relations between dif-
ferent interpretations of the memory manager module with two examples.

To define the refinement relations we borrow some notation from relational
separation logic [15]. Let S1 × H1 and S2 × H2 be two state spaces. Let P ⊆
S1 ×H1, Q ⊆ S2 ×H2 and R ⊆ (S1 ×H1)× (S2 ×H2) be predicates. We let(

P
Q

)
∧R denote {(s1, h1), (s2, h2) | (s1, h1 |= P ∧ s2, h2 |= Q) ∧ R}.

The first example involves refinement between the abstract and the concrete
interpretations of the memory manager module. We have already specified both
interpretations, the abstract – in the Safe Separation Context Example above,
and the concrete – in the ordinary Separation Context Example from Section 4.

The refinement relation ZAC between these two interpretations is a separat-
ing conjunction of binary relations RAC and QAC . These are given by

RAI =
(

emp
∃α. list(α, ls)

)
QAI = Id.

Relation RAI relates modules’ states of the two interpretations and is basically
the relation between their resource invariants. Relation QAC relates the clients’
states and is the identity relation.

In the second example, we introduce the intermediate version of the memory
manager module. We do this for two reasons. First, this illustrates the use of
two different heap models, as allowed in our formal setting. Second, considering
refinement between the intermediate and the concrete interpretations requires a
subtler refinement relation.

On the intermediate level, the intention is to keep locations owned by the
module in a set, without committing to the representation of the set. If this set
becomes empty, we call a “system routine” (like sbrk) to get a new location.

For this interpretation, we assume the following heap model. Let Loc be
an infinite set of locations. A heap will be an element of the Cartesian prod-
uct Pfin(Loc) × H1, where (H1, ∗1, e1) is the partial commutative monoid of
the RAM model. We say that a pair (N,h) from this product is well-defined
if N ∩ dom(h) = ∅. The intermediate heap model H consists of these well-
defined elements. Two intermediate heaps (N1, h1) and (N2, h2) are disjoint,
(N1, h1)#1(N2, h2), whenever N1 ∩ N2 = ∅ and N1 ∩ dom(h2) = ∅ and N2 ∩
dom(h1) = ∅ and dom(h1) ∩ dom(h2) = ∅. We define ∗ between two heaps by

(N1, h1) ∗ (N2, h2) =

 (N1 ∪N2, h1 ∗1 h2), if (N1, h1)#1(N2, h2) and
(N1, h1), (N2, h2) well defined

undefined, otherwise

We say that s, (N,h) |= act(p) if and only if p ∈ N . The resource invariant
can be described with ∀∗p ∈ f. act(p), where f is a set variable. We now de-
fine operations newI(x) and disposeI(x) as the greatest relations satisfying the
specifications

newI(x) : {∀∗p ∈ f. act(p) ∧ f = Y 6= ∅} − {(∀∗p ∈ f. act(p) ∧ f = Y \ {x})∗
x 7→ −}[x, f]
{∀∗p ∈ f. act(p) ∧ f = ∅} − {(∀∗p ∈ f. act(p) ∧ f = ∅) ∗ x 7→ −}[x]

disposeI(x) :{(∀∗p ∈ f. act(p) ∧ f = Y) ∗ x 7→ −} − {∀∗p ∈ f. act(p)∧
f = Y ∪ {x}}[f]

The variable Y is used to keep track of the initial contents of f , similarly to
how α was used in the concrete interpretation. Note that it is not altered because
it is not in the modifies set, a set of actual locations owned by the module. We
intend that newI(x) is the greatest relation satisfying both stated specifications.

Now, the refinement relation ZIC between intermediate and concrete rela-
tions is a separating conjunction of binary relations RIC and QIC given by

RIC =
(

f
list(α, ls)

)
∧ set(α)val(f) QIC = Id,

where val(f) is the value of set variable f . It can be verified that the operations
preserve these relations as required in the definition of refinement.

In these two examples we have not exercised the possibility of using a non-
identity relation to relate the abstract and concrete client states. A good such
example compares two implementations of a buffer, one of which copies two
values where the other passes a single pointer to the two values. It is omitted
here for space reasons.

Directions for future work. There are several directions for further work.
First, we have, for simplicity, considered the interaction between a client and
a single module; in the future we plan on investigating independence between
modules. Second, it would be worthwhile to consider multiple-instance classes
(e.g. [3]); here we have, in effect, a single single-instance class. It would also
be important to remove the restriction of determinism, imposed to the client
operations. Finally, we would like to use the model to make the connection
back to logic. Perhaps a relational version of the hypothetical frame rule, or the
modular procedure rule, from [12] can be formulated, borrowing from Yang’s
relational separation logic [15].

Acknowledgements We would like to thank Hongseok Yang, Josh Berdine,
Richard Bornat and Cristiano Calcagno for invaluable discussions and anony-
mous referees for their careful comments. Torp-Smith’s research was partially
supported by Danish Natural Science Research Council Grant 51–00–0315 and
Danish Technical Research Council Grant 56–00–0309. Mijajlović and O’Hearn
were supported by the EPSRC.

References

1. Hogg, J.: Islands: Aliasing Protection In Object-Oriented Languages. OOPSLA’91
2. Hogg, J., Lea, D., Wills, A., deChampeaux, D., Holt, R.: The Geneva Convention

On The Treatment of Object Aliasing. OOPS Messenger (1992)
3. Banerjee, A., Naumann, D. A.: Representation Independence, Confinement and

Access Control [extended abstract]. 29th POPL. (2002)
4. Reddy, U. S., Yang, H.: Correctness of Data Representations involving Heap Data

Structures. Proceedings of ESOP .Springer Verlag (2003) 223–237
5. Hoare, C. A. R.: Proof of Correctness of Data Representations. Acta Informatica.

Vol. 1. (1972) 271–281
6. He, J., Hoare, C. A. R., Sanders, J. W.: Data Refinement Refined (Resume). Pro-

ceedings of ESOP . LNCS. Vol. 213. Springer Verlag (1986) 187–196
7. Clarke, D. G., Noble, J., Potter, J. M.: Simple Ownership Types for Object Con-

tainment. Proceedings of ECOOP . (2001)
8. Boyapati, C., Liskov, B., Shrira, L.: Ownership Types for Object Encapsulation.

30th POPL. (2003)
9. Reynolds, J. C.: Separation Logic: A Logic for Shared Mutable Data Structures.

Proceedings of 17th LICS. (2002) 55–74
10. D. Pym, P. O’Hearn, H. Yang.: Possible Worlds and Resources: The Semantics of

BI. Theoretical Computer Science 313(1) (2004) 257-305
11. Ishtiaq, S., O’Hearn, P. W.: BI as an Assertion Language for Mutable Data Struc-

tures. 28th POPL (2001) 14-26
12. O’Hearn, P., Yang, H., Reynolds, J. C.: Separation and information hiding. 31st

POPL. (2004) 268–280
13. H. Yang, P. O’Hearn.: A semantic basis for local reasoning. In Proceedings of

FOSSACS’02 (2002) 402–416
14. J. Schwarz.: Generic Commands - A Tool for Partial Correctness Formalisms.

Comput. J. 20(2) (1977) 151-155
15. Yang, H.: Relational Separation Logic. Theoretical Computer Science (to appear)

