Semantic Analysis of Pointer Aliasing, Allocation and
Disposal in Hoare Logic

Cristiano Calcagno
Department of Computer

Samin Ishtiaq
Department of Computer

Peter W. O’'Hearn
Department of Computer

Science Science Science
QMW College Queen Mary & Westfield Queen Mary & Westfield
and College College

DISI, University of Genova
ccris@dcs.gmw.ac.uk

ABSTRACT

Bornat has recently described an approach to reasoning about
pointers, building on work of Morris. Here we describe a se-
mantics that validates the approach, and use it to help devise
axioms for operations that allocate and dispose of memory.

1. INTRODUCTION

It is widely acknowledged that pointers cause problems for
program-proving formalisms (e.g. [8, 17, 13, 16, 9, 1, 14, 7]),
but there is less agreement on precisely what the problems
are. So, before describing our own work, we first discuss
where we believe the difficulties lie.

The first issue that must be faced is aliasing, where distinct
expressions can denote the same l-value. The problem here
can be seen by reference to Hoare logic, where assignment
is treated using substitution on the object-language level:

{P[E/z]} z == E {P}.

For this treatment of assignment to be sound it is necessary
that different identifiers are not aliases. With pointers the
problem is that aliasing is not an exceptional circumstance:
for example, it will often be the case that distinct derefer-
encing expressions, references x.a and y.a to records in the
heap, are aliases even if pointers z and y are not. As a re-
sult, an assignment to x.a might alter the value of seemingly
unrelated expressions.

There are a number of ways to deal with aliasing. One is by
“dropping down a level,” and including an explicit store pa-
rameter in assertions. Although this approach works techni-
cally, it is essentially compiling to another language, and as a
result comes with a price: assertions become more complex,
due to a proliferation of occurrences of store parameters.

To appear in the proceedings of the second International Conference on
Principles and Practice of Declarative Programmming (PPDP 2000).
©2000 by ACM.

si@dcs.gmw.ac.uk

ohearn@dcs.gmw.ac.uk

An interesting approach was taken by Morris in the early
eighties [15]: it extends the notion of substitution to apply
to object components as well as to simple variables. The idea
is that the store is organized as records, whose components
contain data as well as pointers to other records.

The intent is then that the substitution E[E’'/V.a] behaves
as if the l-value corresponding to a record component V.a is
overwritten. The crucial case is when FE is itself of the form
V'.a, in which case the l-values of V.a and V’.a might be
aliases. This is dealt, informally, by defining substitution as
follows:

z.a[17/y.a] — if x ==y then 17 else z.a.

The idea here is that if x.a and y.a are aliases, then assigning
17 to y.a changes the value of x.a to be 17. However, if they
are not aliases, then the value of z.a will remain unchanged.

Uday Reddy has pointed out an equivalent way to present
component substitution, which dates at least as far back as
some early work of Burstall [4]. In this view, a component
name a is considered as a global array, and V.a as a[V];
Morris’ treatment simply resolves some of the if clauses
in the treatment of arrays as early as possible. The above
definition is then written as

z.a[17/y.a] — z.(a Dy — 17)

This is read as follows: the global array a is as it was ex-
cept that the y component is now assigned to 17. This
component-as-array trick is theoretically simpler than Mor-
ris’ because it removes the need to define a new notion of
substitution: it arises by composing two known ideas, ordi-
nary substitution and the Hoare logic treatment of arrays.
The idea to treat components as arrays, semantically, is com-
monplace; the point, however, is that it fits particularly well
with program logic, where it has a pleasant simplifying ef-
fect. The main value of component substitution, be it in
the Morris or components-as-arrays style, is that it works
on the same syntactic level as the programming language,
thus obviating the need to carry around a store parameter
in assertions to resolve aliasing. It deserves to be better
known.

Comparing to a more recent work, this component-as-array
view can also be thought of as a specialization of work of

Leino [12], where a pointer type is viewed as a global array.
The specialization is also a simplification, made possible by
a semantic choice, where records are objects in the heap that
can only be accessed by pointers.

Although component substitution handles pointer aliasing
properly (under some programming language restrictions,
discussed in the conclusion), it does not, in and of itself,
help with a more significant problem: the local reasoning
problem. In fact, it actually draws attention to the problem.
The mechanism works “globally”, where assignment to V.a
induces substitutions for all occurrences of a in an assertion.
Conceptually, this is at odds with computational intuition
regarding pointer assignment: On a basic operational level,
an assignment to V.a changes only a single location, not a
large array.

A similar criticism can be lodged of the standard Hoare logic
treatment of arrays, but in pointer programs the problem is
more acute. It is common to work with a number of data
structures at one time in the heap, where the records used
share component names, but where the data structures are
distinct (or distinct in certain logical senses). For example,
linked structures might be used to keep track of the files in
several directories, and adding a new file to one does not
require a global update of all the directories. The problem
is to transfer this programming intuition to program logic,
by allowing reasoning about programs that act on one area
of storage, without having that reasoning affect assertions
that describe other areas of storage.

This local reasoning problem has not been solved as of yet,
but there have recently been two promising developments.
One is in the work of Reynolds [18], extending early work of
Burstall. The other is in the work of Bornat [3]. Both ap-
proaches rely on what Bornat calls “spatial separation.” In
the Reynolds approach, this is accomplished using a spatial
form of conjunction, which splits the heap into components;
in [10] it is shown how this enables certain frame axioms,
which describe invariants of the heap, to be inferred auto-
matically. In the Bornat approach, which builds on work of
Morris, the idea is to use a stylized form of inductive def-
inition for predicates that talk about data structures; the
definitions are arranged so as to reveal the portion of stor-
age relevant to the data structure in question, which gives
rise to what Bornat calls spatial separation properties. This
enables substitutions for components in formulas to be re-
solved early, without descending into a definition, when that
formula is describing a data structure that is distinct from
the one being updated.

With this as background, we now describe the contents of
the present paper, which studies the semantics of the com-
ponent-substitution approach. Our first purpose is modest:
to give a model that shows its soundness with respect to
a standard operational semantics that works with l-values.
Though modest, a semantic analysis is called for, especially
since substitution has been a notoriously delicate area. Also,
a semantics makes the assumptions underlying the approach
especially clear, and provides a basis for extension or mod-
ification of it. So, our first task will be to formulate an
appropriate Substitution Lemma, and use it to validate an
axiom for assignment statements. In doing this, we use a

logic of partial functions to account for expressions (such as
z.a where x denotes nil) that cause run-time errors. The
semantics of Hoare triples we adopt is one that adheres to
the slogan wverified programs don’t go wrong.

Neither Bornat nor Morris treats definedness in detail; in
the case of assignment this is perhaps reasonable, but we
find that close attention to definedness (or run-time errors)
actually helps in the consideration of storage allocation. Our
second purpose, then, is to use the semantics to help devise
axioms for operations new(z) and dispose(E), for allocating
and disposing of memory; these have been almost as prob-
lematic as assignment. For new the difficulty is to find a
way of talking about “unallocated locations” which do not
have any contents in the precondition, but which will have
contents in the postcondition. For dispose the problem is
dual: in the precondition a location will have contents, but
we must arrange that in the postcondition any attempt to
dereference a disposed location is “undefined.” For both we
use component substitution in a crucial way, and in the case
of disposal there is a surprising interaction between unde-
finedness and substitution.

Our axioms for new and dispose are both simpler than,
and theoretically superior to, most versions that have ap-
peared in the literature. Often, additional predicates are
introduced to keep track of which locations have been al-
located, but in our treatment these are not necessary. The
reason is that pointers already necessitate a consideration of
a form of partiality, or run-time error, in expressions, for ex-
ample due to attempts to dereference nil. We find that, for
our operational semantics, the same assertional device used
to characterize definedness can also be used to account for
allocation, thus reducing the number of logical concepts in-
volved. Justification for this view is given by results showing
that the axioms for new and dispose express weakest pre-
conditions for our operational semantics, showing a sense in
which they are correct and complete.

In early work, Oppen and Cook [17] gave an axiom for
new (they did not consider dispose), which they proved ex-
pressed the weakest precondition. The formulation here is
considerably simpler, owing mainly to our use of component
substitution. When he introduced component substitution
Morris did not consider allocation or deallocation, and nei-
ther does Bornat. Leino [12] did consider both, in the con-
text of his array-like treatment of pointers, but he did not
show that his axioms express weakest preconditions; indeed,
they appear to be incomplete as stated.

In a series of papers, de Boer has investigated an approach
to new (but not dispose) which works by defining a substi-
tution form E[new/u] (see [6]). Intuitively, this behaves as
if each occurrence of v in E denotes the same new location.
The definition is subtle, and the relation to the work here
is not clear. One crucial point of difference is that de Boer
treats quantifiers in a varying domain style (where we use a
fixed domain of locations); again this is subtle, and it might
be useful to study the approach for a pared-down language,
stripped of object-oriented features.

Our final purpose will be to validate Bornat’s stylized use
of inductive definitions in one specific case: linked lists. We

state non-interference and substitution lemmas, which show
the soundness of the interaction between definitions and
component substitution, and a spatial separation property.
The treatment of lists is typical, and can be generalized to
many other data structures; however, this work is somewhat
preliminary. In particular, a systematic theory explaining
definitions that reveal storage remains to be worked out.

2. EXPRESSIONSAND COMPONENT
SUBSTITUTION

The language we consider distinguishes between the stack,
which holds the values of local variables, and the Aeap, which
contains data created and destroyed dynamically. The stack
can be extended by declarations of local variables, and mod-
ified by assignments. We assume that the heap can contain
only one type of data structure: records. For simplicity,
records have a fixed number of components, indexed by a
fixed finite set Tags = {a1, ..., an}. These tags may include
hd and tl for implementing lists, and generally will be indi-
cated with the letters a, b.

The syntax of expressions is given by the following grammar:

E T

N

BE

if BE then E else E
nil

E.k

N == 0]|1]2]---
BE

true | false
FE ==

K = a
| K®Ve—E

An expression can be a variable, natural number, boolean
expression, conditional, null pointer, or access to a record
component. A boolean expression can be a boolean con-
stant or a comparison of expressions. The syntax E.x means
“accessing the k-component pointed to by E”. k can be an
atomic tag, such as hd, in which case E.hd is the expres-
sion obtained by dereferencing the pointer and accessing the
record component. In a C-style syntax this would be written
(*E).a. K can also be a component extension of the form
K@V — E. Under the component-as-array notation, this
says that the specific index V has been recently updated to
E.

When dealing with pointers one has to face the problem of
aliasing: two pointers may point to the same element. The
difficulty arises because modifying the element pointed to
by one will affect what the other points to. For example
in our language if two variables z and y point to the same
record, then an assignment x.a := 7 will change also the
value of y.a. We say then that x.a and y.a have the same
l-value: essentially they are components of the same record
in the heap. It is important to note that distinct variables x
and y in our language cannot be aliased, because their values
depend only on the stack, and not on the heap. In particular

the l-values of z and y cannot be modified, because their 1-

values are essentially “x” and “y”.

We identify a class of expressions that have l-values, and
which appear on the left side of an assignment; they are
defined by the following grammar:

The substitution E'[E/V] is defined for arbitrary l-value
expressions V. If V is a variable x, then there cannot be
aliasing and we can proceed with the usual substitution.
But if V is of the form V'.a, it may be the case that V'.a
is an alias of a component of E’, hence this possibility must
be considered. Substitution is defined by a simultaneous
induction on E' and V. Some of the inductive cases have
subcases, indicated by side conditions; it is easy to see that
there is no overlap between cases. In the following we use
— to mean “reduces to”.

z[E/V] — x (whenx #V)
z[E/z] — E
k[E/V] — k (k a constant)

(BE1x == E»)[E/V] w— E1|E/V]==Es[E/V]
(if BE then E, else EZ)[E/V] —
if BE[E/V] then E1[E/V] else E3[E/V]
(E"®)E/V] = (E'[E/V]).(K[E/V])

alE/z] — a
a[E/V.b] +— a (when a#b)
alE/Va] = a®V —E
(k@®V'— E)E/V] = k[E/V]|®V'[E/V]— E'[E/V]

This is essentially Morris’s definition in component-as-array
form. We now describe a semantics that enables us to vali-
date the definition.

We use the notation X — Y to indicate the set of total
functions from X to Y, and X —y;, Y for the set of par-
tial functions with finite domain. The domain of a partial
function f is written dom(f). We write (f | ¢ — d) to in-
dicate the function defined like f but mapping ¢ to d. Our
semantics makes use of the following sets.

Nat 2 {0,1,..,17,..}
Bool 2 {false,true}
Tags 2 {hd,tl,a,b,..}
Variables 2 {z,y,...}
Locations = {¢,...}
Values 2 Nat + Bool + Locations + {nil}
Stacks 2 Variables —y;, Values
Heaps £ Locations —tin (Tags — Values)
States = Stacks X Heaps

A stack s is a partial function from variables to values, which
can be numbers, booleans, locations or nil. The domain of s

simply represents the set of variables in the scope, and can
be extended only with the declaration of a new variable.
We assume that the variables in an expression E are always
in the domain of the stack. A heap is a partial function
from locations to records, and a record is a tuple of values
indexed by Tags. The domain of a heap h is the set of
locations that have been allocated so far, and this set is
finite. We will use the notation (h | £.a — v) as a short for
(h|€— (h(0)] a—v)).

EXAMPLE 1. Suppose that we have only two tags hd and
tl, with dom(s) = {z}, and dom(h) = {€1,€2,¢3}, and s,h
are as follows:

s(z) = 4

h(£1) = [hd:4, tl: L]
h(EQ) = [hd : 7, tl : 83]
h(¢3) = [hd:5, tl: nil

The variable x holds a pointer to a record, which we can
think of as the first element of the list [4,7,5] terminated by
nal.

In general the evaluation of an expression will not produce a
defined result. For example, if z denotes nil then evaluation
of z.a would cause a run-time error. We represent these
errors as “undefined,” where the semantics of an expression
is a partial function:

[E] : States — Values

The function [E] is defined by cases. We use the notation
1 to indicate when a partial function is undefined.

[cls,h = s(z)

[k]s,h = k k € Nat U Bool
|[E1 == EQ]]S, h = T if |IE1]]S, h =T
0 if [E2]s, h =1
true if [Er]s, h = [Ez]s, h

false if [E1]s, h # [E2]s, h

[if BE then E; else Es]s, h 2
0 if [BE]s, h ¢ Bool

[Ei]s,h if [BE]s, h = true
[E2]s,h if [BE]s, h = false
[nil]s,h = mnil
[E.a]ls,h = 1 if [E]s, h ¢ dom(h)
h(€)(a) if [E]s,h=1£¢€ dom(h)
[E(s®V — E')]s,h 2
1 if [E]s, h ¢ Locations
T if [V]s, h ¢ Locations
[E'ls,h if[E]s,h=][V]s,h

[E.k]s,h if [E]s,h # [V]s, h

The semantics of a variable x is always defined: we assume
that the domain of s is fixed, and the variables occurring in
expressions range over that domain. There are three ways
in which [E.a]s, h can be undefined:

e [E]s, h is undefined;

e [E]s, h is defined but is not a location;

e [E]s, h is a location which is not in the domain of the
heap.

The substitution E'[E/V] produces an expression which, se-
mantically, speaks only of r-values. But, for this substitution
to be operationally compatible with assignment, it is impor-
tant to relate it to operations on l-values in the semantics.
This is the purpose of the Substitution Lemma.

LEMMA 2. Substitution.

1. [E'[E/z]]s,h = [E'](s | z — v),h; when [E]s,h =
v € Values.

2. [E'[E/V.a]]s,h =[E']s, (k| L.a = v); when [E]s, h =
v € Values and [V]s,h = £ € dom(h).

The separation of the Substitution Lemma into two parts re-
flects the existence of two kinds of substitution: substitution
for a variable x does not involve aliasing and is equivalent
to modifying the stack, while substitution for a component
V.a must deal with aliasing and affects the heap.

3. LOGIC OF ASSERTIONS

In this section we introduce a logic to reason about expres-
sions of the language. The only subtlety is the treatment
of undefinedness: because the semantics of expressions is
partial, we need to use a logic of partial functions.

There is something of a controversy over the proper way
to treat undefined expressions in program-proving forma-
lisms [2, 19, 11]. The simple-minded approach is to use the
usual two-valued logic. In this approach, quantifiers range
over only defined values, and definedness assumptions are
needed for substitution and quantifier laws. A more sophis-
ticated approach is to consider a logic in which assertions
can themselves be undefined. We choose the former here for
theoretical simplicity; we want to study rules for pointers
with a minimum of distraction. This choice does not con-
stitute an ideological commitment, and we believe that the
main points could be made in a many-valued logic approach
as well.

The logic is divided into two parts: atomic predicates, which
express assertions about expressions, and formulas of first
order logic built on atomic predicates. The two basic issues
related to expressions are partiality and absence of types.
This leads to a logic for partial objects with predicates to
test the type of objects. The syntax is given by the following
grammar:

A E=F
loc?(E)
num?(E)

bool?(E)

true
A
PAP
-P
Vz. P

Formulas P are those of first-order logic, with atoms A rang-
ing over equality (two expressions are defined and equal),
and predicates to test if an expression yields a location, a
number or a boolean.

We give an interpretation of formulas in the model.
s,h =P

means that formula P holds of stack s and heap h. The un-
definedness of expressions is dealt with in the interpretation
of atomic predicates A.

s,hEE=F YEN [E]s,h = [E']s,h = v € Values
s, h = loc?(E) PN [E]s, h € Locations

s, h = num?(E) =N [E]s, h € Nat

s,h |=bool?(E) <= [E]s, h € Bool

It is important to notice that, although the semantics of ex-
pressions is partial, the interpretation of an atomic predicate
in a given stack and heap is either true or false. In particu-
lar E = E' is true if both expressions are defined and yield
the same values, false otherwise. We use the symbols = and
== to distinguish E = E’, which is an atomic predicate,
from E == E’, which is an expression, and as such can be
undefined if either side is.

The interpretation of connectives and quantifiers is classical.

s, h | true always

sshEPAQ <& s hi=Pandsh=Q
s,h |E P PEN s,h jEP
s,h=EVz.P <= Vd€Values.(s|z—d),hj=P

(We use — and V for the induced implication and disjunc-
tion.)

The separation between atomic predicates and general for-
mulas is important because it allows us to deal with specific
features of the language with the first, and reason in a clas-
sical standard style with the second.

Definedness will play a central role, and we introduce a de-
rived predicate for it:

defN(E)2E=FE

Clearly s, h |= —def?(FE) if and only if [E]s, h =1. We also
use the notation

A

E\, =c E; = (E1 = E») V (—def?(E1) A —def?(E»))

Building on this, we consider some logical rules that will be
useful in proving formulas involving our predicates. These
rules are not meant to be complete in any sense, but are
given to highlight what has to be added to the usual rules

for first order logic.

E=FE
def7(E) A def?(E)

def?(E.a)
loc?(E)

p(E)
def?(E) A —p'(E)

p,p’ € {loc?, num?,bool?}; p #p’

p € {loc?, num?, bool?}

= p(nil) def?(x)
Vz.P def?(E)
7def?(k) k a constant PlE/a]

= loc?(E) V =loc?(V)
—def?l(E.(s®V — E"))

(E=V)Aloc?(E)
E(k®@V—FE)=.F

- (E=V)Aloc?(E) Aloc?(V)
E(keaV—E)=.Ex

The first two rules say that equality implies definedness,
and that we can only dereference locations. Note that the
reverse implication does not hold: it may be the case that
E denotes a location but E.a is undefined, when that lo-
cation is undefined in the heap. The third rule says that
locations, numbers and booleans are defined, and are mutu-
ally exclusive. The next two axioms say that nil is a special
constant distinct from locations, numbers and booleans, and
that variables are always defined (from the assumption that
all the variables we use belong to the domain of the stack).
The last three rules are about object-component extension:
the first one says that an expression is undefined if either
the object or the component is not a location; the second
and third define the behaviour of component updates.

Consider the abbreviation 2 nil.a. It is easy to de-
rive —def?(2) since —loc?(nil) is an axiom and implies
—def?(nil.a) using the second rule. We will use Q as canon-
ical undefined expression.

To understand the need for def?(E) in the V-elimination
rule, consider the formula Vz.def?(z). Clearly it holds in
every state, but of course we cannot derive def?((2).

3.1 HoareTriples

In order to interpret Hoare triples we presume an oper-
ational semantics ~ which specifies a transition between
configurations, where a configuration K is either a triple
(C, s,h), where C is a command, s a stack and h a heap;
or a pair (s,h). We will refer to the latter as a final con-
figuration. We will write ~* for the reflexive and transitive
closure of ~».

‘We make the following definitions.

e A configuration K is stuck when K is a triple and
there is no K’ such that C, s, h ~» K'. In particular, a
final configuration is never stuck.

e A configuration K is safe if, whenever K ~* K', K’
is not stuck.

Intuitively, a configuration C,s,h is stuck when C cannot
proceed from state s, h, for instance because it tries to deref-
erence nil. A safe configuration is one that will never get
stuck. Notice that in general a computation starting from
a safe configuration does not necessarily terminate, since it
may be an infinite loop which never reaches a stuck config-
uration. This allows us to distinguish non termination from
the occurrence of run-time errors.

With these presumed we can now set out the semantics of
triples.

We say that {P} C {Q} is true just when

If s,h | P then C,s,h is safe, and if
C,s,h~* s’ h then s, b E Q.

Notice that this is a partial correctness interpretation; the
total correctness variant is evident. Notice also that the
interpretation adheres to the slogan verified programs don’t
go wrong. For example, {x = nil}x.a := 17{true} is not a
true triple.

In order to judge the completeness of axioms for the state-
ments we use the notion of weakest precondition.

WEAKEST PRECONDITION.

wp(C, R) 2 {(s,h) | C, s, h is safe, and
C,s,h~* s A implies s', ' = R}

[Strictly speaking, we should refer to this as the weakest
liberal precondition, but for our main results involving as-
signment, new and dispose the two notions wlp and wp are
equivalent.]

We recall briefly syntax, semantics and Hoare axioms for
the basic constructs for commands. Specific commands of
our language will be treated in the following section. The
syntax is given by the following grammar:

C skip
01 H 02

while BE do Cod

As usual skip is the do-nothing command, Ci; C» is the
command that executes first C; and then Cy, and while is
a loop executing repeatedly command C' until condition E
becomes false. The semantics is standard:

skip, s,h~ s, h

CL~ C1,8 0
(C1; C2) ~ (C1;Ca), s,

Cl lad s',h'
(C1; Cz) s Cz, s', h’

[BE]s,h = false
while BE do C od, s,h~ s,h

[BE]s,h = true (C;while BE do Cod),s,h~ K
while BE do C'od, s,h~ K

We conclude this section with a standard set of axioms for

partial correctness.

{P} C1 {Q} {Q}C:>{R}
{P} C1;C2 {R}

{P} skip {P}

P — def?(BE) {P A (BE = true)} C {P}
{P} while BE do C'od {P A (BE = false)}

Po P {P}C{Q} Q@ —Q
{PC{Q}

The first three rules are those for the three constructs for
commands, and the fourth, the consequence rule, is needed
to strengthen the precondition or weaken the postcondition
of the triple.

(To extend consideration of completeness to loops would
require consideration of expressiveness [5]; this, however, is
outside the scope of our concerns here.)

4. ASSIGNMENT

The first command we consider is assignment
V:=E.

To define the relation ~» we need to distinguish between vari-
able assignment z := E and component assignment V.a :=
E. In the first case we update the stack and in the second
the heap.

[Els,h=v
z:=E,s,h ~ (s|z—v),h

[E]ls,h=v [V]s,h=1¢{€ dom(h)
Vaa:=E,s,h ~ s,(h|la—v)

The weakest precondition in both cases follows from this
description:

(s,h) € wp(x := E,R) iff
[E]s,h=v and (s|z—v),h ER

(s,h) €Ewp(Via:=E,R) iff [E]s,h=v and
[V]s,h =€ € dom(h) and s,(h | L.a—v) ER

An assignment statement is “stuck” when the antecedent of
the rule cannot be satisfied. For example, x.a := 17 is stuck
when the domain of h is empty.

In order to express the weakest precondition with a formula,
we have to extend the definition of substitution to formulas.

true[E'/V] — true
(Ey = E»)[E'/V] — Ei\[E'|V]= E5[E'|V]

p(E)E'/V] — p(E[E'/V])
where p € {loc?, num?,bool?}

(PAQ)E/V] = P[E/VIAQIE/V]
(~P)IE/V] = ~(P[E/V])
(Vz.P)[E/V] — Vz.(P[E/V]) =z ¢&var(E,V)

In the V case we are using a freshness assumption; we could
alternatively use the standard device of a-renaming.

LEMMA 3. Substitution IT

1. s,h = P[E/z] iff (s | ® — v),h = P; when [E]s,h =
v € Values.

2. s,h |= P[E/V.a] iff s,(h | L.a — v) = P; when
[E]s, h = v € Values and [V]s,h = £ € dom(h).

We now have a natural way to give Hoare-style axioms.

AXIOMS FOR ASSIGNMENT
{def?(E) A R[E/x]}
x:=F
{R}

{def?(V.a) Ndef?(E) A R[E/V.a]}
Va:=FE
{R}

In the axiom for V.a := E the precondition asks that V.a be
defined. Logically, this is a statement about an r-value but,
in our semantics, it implies that the corresponding l-value
exists.

PROPOSITION 4. The aztoms for variable and component
assignment express the weakest preconditions.

ExAMPLE 5. Consider the program x := nil; x.a := 42.
Intuitively in every state it will try to dereference nil and
will crash. We can ask on which states it will terminate,
i.e. what is the weakest precondition with respect to true:

wp(x = nil; z.a:= 42, true) =

wp(z := nil, def?(z.a) A def?(42) A true[42/z.a]) =
wp(z = nil, def?(zr.a)) =

def?(nil) A def?(z.a)[nil/z] = def?(nil.a)

Note that we have freely eliminated def?(42) and def?(nil)
since they are azioms. The resulting formula def?(nil.a) is
always false, and matches the intuition that there is no state
on which the program above can terminate.

5. NEW AND DISPOSE

In this section we consider two commands for allocating and
de-allocating memory. The syntax is the following:

new(z) | dispose(E)

new(z) finds an unused location £ of the heap and assigns
a new record to it, filling the components with any values.
dispose(E) will, on the other hand, de-allocate the record
pointed to by E. The domain of the heap represents the
locations that are currently allocated, and new will non-
deterministically choose a location outside the domain of
the heap and will non-deterministically initialise the corre-
sponding record. The effect of dispose will be to simply
remove the location from the domain of the heap.

We recall the syntactic sugar used so far and extend it:

e def?(E) is short for E = E.

) is short for nil.a.

def?7(E.x) is short for def?(E.a1) A--- Adef?(E.az),
with a1, ..., a, a repetition-free enumeration of Tags.

Vz. is short for Vzg,,...,Vz,, .

[E«/z.%] is short for [Eq4, /x.a1, ..., Ea, [T.an).

e v, € X is short for ve, € X, ..., vq, € X.

(h | l.% = v,) is short for (A |l [Vay,-- - ,Van])-

Here is the semantics of new .
£ ¢ dom(h) [€ Locations w.« € Values
new(z),s,h ~ (s|z—£),(h|Lx— v.)

(s,h) € wp(new(z), R) iff
V¢ € Locations — dom(h). Vv. € Values.
(s|lz—0),(h|lx—v.)ER

new(z) is never stuck.

To formulate an axiom for new, the first point to consider
is that we want to say that the location selected is not in
the domain of the current heap. This can be mimicked in
the logic by asking that the r-value of an expression z.a be
undefined.

But then we face a conundrum: if z.a is undefined how can
we speak of the values it might have in the postcondition?
For example, in the postcondition we might want to say
def?(x.a), which would be used in the precondition in a
subsequent assignment to z.a, but it seems hard to talk
about this if z.a is undefined. (Also, if we were to consider
a version of new which initialized the components or took an
initialization as an argument, then we would want to speak
of specific values, as in z.a = y.)

The way to resolve this conundrum is to use component sub-
stitution: We use a substitution R[z./v.*] in the precondi-
tion, which implicitly makes a statement about the compo-
nents in the postcondition R: this neatly solves the problem
of having z.a be undefined in the precondition, while still
being able to speak about values it takes in the postcondi-
tion.

AXI10M FOR NEW

{Vz.Vz..~ def?(z.a) A loc?(z) = Rlz./z.%]}
new(z)

{R}

Formally, the above is actually a family of axioms parametric
in a. The choice of a particular component a does not change
the truth of def?(x.a) since either all the components are
defined or nomne is. So, throughout this section a may be
considered to be some fixed component name (though it
doesn’t matter which one).

REMARK 6 (WARNING ON DEFINED NOTATION).

It is tempting to introduce a definition A(x) 2 def?(x.a),
and to formulate the aziom using this defined notation in-
stead of def?(x.a). However, A(x) has different substitution

behaviour than def?(x.a) because a is not free in it: a com-
ponent substitution for a has no effect on A(x). Because
of this, the reformulation of the new aziom using A(x) is
unsound; the notation A(zx) hides an access to the a compo-
nent, hence aliases to x would not be captured by component
substitution.

There are two points to be made here. First, the def?(z.a)
notation is speaking directly about an r-value: the contents
of x.a. Of course, it implies that the location denoted by x
is in the domain of the current heap, but by phrasing this
in terms of r-values and not l-values we are able to stay
in a substitution-friendly setup, which is crucial for Hoare
logic. Second, we stress that, when introducing definitions,
one must be very careful to ensure that they behave correctly
with respect to substitution; and this goes for component as
well as ordinary substitution.

A
Notice that our use of the abbreviation Q = nil.a is justi-
fied, by the fact that any substitution into nil.a results in an
expression nil.k, which must be undefined.

An initializing version of new can be axiomatized by substi-
tuting specific values, (say, 0) for z.*, instead of quantifying
over all possible values.

The further subtlety here is that the substitution R[z./x.%]
is a stmultaneous component substitution, which substitutes
for all the components of records. The definition is similar
to that of normal substitution:

z[E. V%] — =z
k[E,/V.#] — k (k a constant)
(E1 == EQ)[E*/V*] — El[E*/V*] == EQ[E*/V*]

(if BE then E; else Ep)[E./V.x] +—
if BE[E,/V.x] then Ei[E,/V.x] else Es|E,[V.%]

E'a[E./Vx] — FE'[E./Vx].(a®V — E,)

(B".(K V' — E))E.JVA]
E"[E.[VA].(K [Es/V.%]| @ V'[E./V.x] s E'[E.[V.4])

The extension to formulas is straightforward.
LEMMA 7. Simultaneous Component Substitution.
1. [E'[E«/V.*]]s,h = [E']s, (h | £x — vi); if [V]s,h =

{ € Locations and [E.]s,h = v. € Values.

2. s,h |= P[E./V.4] iff s,(h | {x — v.) |= P; when
[V]s,h = £ € Locations and [Es]s, h = v. € Values.

PROPOSITION 8. The aziom for new ezpresses the weakest
precondition.

EXAMPLE 9. As a first example of the use of new, we want
to show that genuinely new locations are generated. To ez-
press this, we may ask what are the conditions that guarantee

x # y after the command new(z). We can use the logic to
derive the weakest precondition.

wp(new(z), © #y) =

Vz.VT«. = def?(x.a) Aloc?(z) = (x # y)[x«/z%] =
V.V, - def?(x.a) ANloc?(z) = (x £y) =

Vz.— def?(z.a) Aloc?(z) = (z #y) =

Vz.(z =y) = (def?(z.a) V = loc?(z)) =

def?(y.a) V — loc?(y)

The weakest precondition says that if y denotes a location ¢,
we can be sure that new(x) will generate a different location
only if £ is defined in the heap. This is because £ may have
been disposed, and in that case we want to be able to reuse
it.

We now do a similar analysis for dispose:

£ €dom(h) [E]s,h=1¢
dispose(E),s,h ~ s,(h —?)
(s,h) € wp(dispose(E), R) iff
[E]s,h = £ € dom(h) and s,h—¢|= R
Here, h — £ is the heap like h except that it is undefined on

{£. dispose(FE) is stuck when E is not a location, or when it
is a location but is not in the domain of h.

To represent the weakest precondition we should now say
that the location disposed is in the domain of the current
heap. This aspect is in a sense inverse to new, and we simply
have to require def?(F.a). A more subtle problem is that
we want to guarantee that subsequent attempts to derefer-
ence the disposed location will be undefined. This can be
modelled as a component substitution once again, where we
substitute “undefined” for each of the components of the dis-
posed record. Note that this does not replace the location
itself by undefined, but only the (r-values of the) compo-
nents.

AXIOM FOR DISPOSE
{def?(E.a) A R[Q2/E.%]}
dispose(E)
{R}

This substitution of an undefined expression is, at first sight,
worrying. For, in partial function logic rules for substitu-
tion usually require that the substituted expression is de-
fined. However, the definition of component substitution,
as opposed to ordinary substitution, is entirely happy with
substituting undefined. This, for us, came as a surprise, and
is what allows the treatment of dispose to work.

As an example, consider substituting Q for z.a in y.a:
y.alQ/z.al — y[Q/z.al(adz— Q)
= ya®z—Q)
This does not result in undefined if = and y are unequal.

And further, the Q is entirely bypassed when substituting
for different components:

z.b[Q/x.a] — z.b.

These examples give the flavour of how component substitu-
tion interacts with undefinedness: the following lemma sums
up the properties needed for analysis of the dispose axiom.

LEMMA 10. Component Substitution and Undefinedness.

1. [E[Q/V.«]]s,h = [E]s,(h — £); when [V]s,h = £ €
dom(h).

2. s,h |=P[Q/V.] iff s,(h—¥£) |= P; when [V]s,h =L ¢€
dom(h).

PROPOSITION 11. The aziom for dispose expresses the
weakest precondition.

EXAMPLE 12. We have seen that dispose has the effect
of making a location undefined in the heap. But what hap-
pens if we try, by mistake, to dispose the same location
twice? We can derive it!

wp(dispose(r);dispose(z), true) =
wp(dispose(x), def?(x.a) A true[Qd/z.%]) =
wp(dispose(z), def?(zr.a)) =

def?(z.a) Adef?(z.a)[Q/z.x] =

def?(z.a) Ndef?(z[Q/z.+].(a D x— Q)) =
def?(z.a) Ndef?(z.(a®x— Q)) =
def?(z.a) N def?(2)

Since ~def?(Q) is true, the weakest precondition is false.
This says that, whatever the initial state, dereferencing a
location twice is not safe.

6. INDUCTIVE DEFINITIONS THAT RE-
VEAL STORAGE

When reasoning about a data structure in memory, one usu-
ally wants to make high-level statements and proofs using
these definitions and some lemmas, without having to per-
form a new inductive proof for every use of a data structure.
In particular, inductive definitions are useful for reasoning
about lists, trees, and the like.

In the approach of Morris and Bornat there are a few sur-
prises in the way that definitions are treated, owing to their
interaction with component substitution. We explain this by
going through a few putative definitions of properties involv-
ing lists, finally arriving at an example of the stylized form
of definition that Morris and Bornat rely on. We then show
two lemmas, a Substitution Lemma which verifies correct-
ness, and a non-interference lemma which, to some extent,
enables the global nature of component substitution to be
controlled.

We confine our attention to a single kind of data structure
here: linked lists. Much of the material can apply to other
data structures, but we do not yet have a general theory to
account for inductive data structures.

6.1 Definitions for Lists

We first define a predicate which says “E points to a non-
circular linked list in storage,” which means that we get to
nil by following a finite number of tail links. We are not
concerned with the contents of other components just now,
only that the list exists. (From now on we will drop the
qualification “non-circular.”)

First attempt

E =il
loc?(E) A list(n, E.tl)

list(0, E)
list(n+ 1, E)

1>

We will not be completely formal about inductive defini-
tions, but the intent should be clear. (In particular, we
regard E and n as schematic metavariables, which are sub-
stituted for on the meta-level.)

Using this definition, we can say that E points to a list by
quantifying over numbers: 3n.list(n,). This definition is
fine semantically, as it says just what we want. But it is
incorrect for the program logic we have been using, for two
reasons.

The first problem is that the definition interacts badly with
component substitution. We cannot substitute just into the
parameters, since an unrolling of the list predicate may hide
aliases. Consider the following example.

list(1,p)[7/q.t]

If we apply the component substitution now, we obtain
list(1,p), but unrolling the definition first, we have

(loc?(p) A list?(0, p.tl))[7/q.tl]
which expands to
(loc?(p) A list?(0, (p.(tHL & g — T7))).

This second formula is equivalent to the first only if p # q.
The reason for this unsoundness is that the expansion of the
list predicates reveals an access to the ¢t/ component. The
definition needs to allow this substitution to be captured.

There are a couple of ways around this. One is to intro-
duce a notion of substitutions which block on the predicate
list(n, E) and then use induction to unroll the list predi-
cate n times, to prove properties about substitution. The
semantics of the predicate in this case is given, essentially,
by an infinite unrolling of the definition. This can be made
to work but, due to the need to define new syntactic cate-
gories and substitution mechanisms, is perhaps technically
inelegant. Another solution, which we use here, is to make
the component name ¢/ a parameter of the definition, and
to substitute for that. The definition of the list predicate is
then both stack-variable and object-component closed.

Second attempt

E = nil
loc?(E) A list(n, E .k, K)

list(0, E, k)
list(n+1, E, k)

1> 1>

We can instantiate x with ¢l to obtain the desired predicate.
Now a substitution

list(1,p,t])[7/q.tl]
results in
list(1,p, (l ® q — T7)).

We are now left with some work to resolve the updated com-
ponent, but the problem with substitution above has been
successfully dealt with. (We will verify this claim below.)

Although making the component a parameter allows us to
treat substitution properly, there is a further problem: the
definition hides all of the cells in the data structure (even
though it does not hide component names). To see what
we mean, suppose that we are specifying a program that
disposes any node in a list pointed to by g that appears in a
list pointed to by p. For correctness of the evident algorithm,
we might require that the lists associated with p and ¢ do
not overlap in the store, as deleting from ¢’s list would alter
p. How, then, can we state the precondition?

In. list(n,p,tl) A Im.list(m,q,tl) A there is no overlap.

This idea of non-overlapping is typical. For example, if we
were to specify a program that disposes of all nodes in a
list p whose head components are equal to those in a list q,
then we might want a similar non-overlapping precondition:
otherwise the dispose of an element in p might destroy the
“listness” of ¢, and lead to a run-time error.

To describe the appropriate precondition we might try to
introduce another inductively-defined predicate, which says
that two lists do not overlap. But if we were to adopt this
solution, then we would have to introduce similar predicates
for every pair of data structure definitions we were working
with: for non-overlap between two trees, between a tree and
a list, and so on.

Morris and Bornat instead use inductive definitions that ex-
plicitly reveal the cells in a data structure. To describe this
for list, we use a metavariable /s to range over sequences of
locations.

Third attempt

list([], E, k)
list(£:1s, E,K)

E = nil
E = Alist(ls, E.k, k)

> 1

Then, the desired precondition for the append program is
3ls, 18" list(Is,p, tl) A list(is',q,tl) A lsnis' =0

where the predicate Is NIs’ = () states that sequences Is and
Is' do not have any elements in common.

This third definition is not the first one that comes to mind,
so it is worth pausing to recount how we have arrived at
it. The most immediate definition, which said “p points
to a list,” was logically correct, but interacted badly with
component substitution. This led us to add a component
parameter. But then the second attempt did not allow us
to state, directly, when two lists overlap in the store, and we
altered the definition to make the cells encountered in the
linked list a parameter of the defined predicate.

This is perhaps the most interesting feature of the Mor-
ris/Bornat approach: they use inductive definitions that de-
scribe logical properties of a data structure, as one would
expect, but that also reveal the portion of storage relevant
to the data structure. Note that this is not the same as look-
ing at all reachable elements, as there is pruning: only those
reachable cells relevant to the property of interest are re-
vealed. Further, the case of lists is not special here. Bornat
proposes that for any sort of data structure — doubly-linked

lists, trees, etc. — there will be an associated formula that
describes the cells involved in it, and the suggestion is to
arrange logical definitions to be used in proofs in a stylized
manner, that purposely reveals these cells.

There is one other important point about these stylized defi-
nitions: they allow the global nature of component substitu-
tion to be short-circuited, in some instances. For example,
if we have a post-condition that says that two lists do not
overlap, and we know that a cell E is in the first list,

list(Is,p,tl) A list(ls’,q,t]) A lsnNls' =0 A E€ls

then when generating the substitution [E'/E.tl] associated
with an assignment E.tl := E’ there is no need to substi-
tute into the ¢l component of list(ls’,q,tl). Of course, we
still must do some work in p’s list to resolve the component
substitution in list(Is,p, (tl ® E — E')), but our work is
effectively localized to the list pointed to by p.

6.2 Lemmas

Now we state two lemmas about the list predicate, to vali-
date some of the previous discussion.

Substitution for the list predicate is as expected:
list(ls, E,k)[E' [V.a] — list(ls, E[E'[V.a],k[E'[V.a))

though as E will, in practice, be a pointer variable, the real
effect of substitution is on the component parameter. The
following lemma shows that substituting for the parameters
of list is sound.

LEMMA 13. Let P be the formula obtained expanding the
definition of list(ls,E, k), V an l-value expression and E’
an expression. Then the following are equivalent:

1. P[E'/V]
2. list(ls, E[E'/V],k[E'/V]).

The usual induction principle for lists is encoded in the def-
inition of the list predicate. While this principle is useful
for proving general properties about lists, in many typical
cases — for instance, in the example proofs that we will
consider in the following section — we can use spatial prop-
erties generated by the revealed cells to simplify the proofs.
The sense in which the revealed cells are correct is stated in
the following non-interference lemma.

LemMMmA 14. If (loc? (V) AV & 1s) holds, V & [l1,..., 1]
being short for \;_, V # l;, then the following are equivalent
for any expression E and component erpression K:

1. list(ls, E,K)
2. list(ls,E,k®V — E)

A variant of this non-interference lemma would, it appears,
have to be proven for each inductive definition one uses,
because it is easy to make a definition where the result is
false.

7. A WORKED EXAMPLE

In this section we consider a complete example: a program
which disposes a list. A detailed proof is given, using the
material of the previous section. Other examples, involving
the use of new, can be developed in a similar way.

We introduce some new notation: E # E' is short for
def?(E) ANdef?(E') A=(E = E'); [l1, ..., In] is the obvious
syntactic sugar for a sequence of locations of length n, and
E ¢ [l,...,ln] is short for A\?_, E # l;. The following lemma
shows that lists are repetition-free.

LEMMA 15. If list([l1, ..., 1n], E, k) holds and i # j then
L #£1;.

Consider the following definition of the program, together
with the specification in the form of a Hoare triple:

{liSt([lla et l"]apa tl)}
while p # nil do
q:=p;
p = p.tl;
dispose(q);

od
{ A=y ~def?(lith)}

The precondition says that at the beginning p points to a
list, given by the sequence [l1,...,l,]. The postcondition
says that at the end all the locations have been disposed.

The invariant INV of the loop is

3i. (list([Lis1, - -,], p,) A J\ = def?(lxt1))
k=1

where A is just a defined operator for a sequence of con-
junctions. We will do the proof backwards: many of the
intermediate steps are easy consequences of the definitions.

{ def?(ptl) A
3j- list([lj+1,- - -, ln], DL LS p = Q) A
Niey ~def?2(l. (11 & p = Q) }

q9:=Pp;
{ def?(ptl) Adef?(q.tl) A
Hj.'list([lj+1, L] pthtld g Q) A
J_1def?(le.((l g — Q)) }
p :=p.tl;
{ def?(q.tl)A

3j. list([lj+1,- -,], 0, LD g = Q) A
J_1def?(le.((l g — Q)) }

{ def?(q.tl) A
(3. list([lj41,- . -,], py tl) A
Ni=y ~def?(1k41))[Q/q.t1] }

dispose(q);

{ g list([ljt1,- -5 nlypy tD) ANL_, ~def?(letl) }

‘We have to prove that INV Ap # nil implies the calculated
weakest precondition (the top line in the above outline).
We can use p # nil to unroll the list once, and derive the
following.

{ p#mnil A

Fi list([lig1y -,], 0y t]) A Noy ~def?(lktl) }

by Lemma 15

{ p#nil NJi.p=lit1 ANlips ¢ [Lig2,s -5 10]
list([lisa, .., Inl, Dt 1) A N, ~def2(ltl))

by Lemma 14

{ p#nil NJ.p=lLix1 Nlix1 & [Lix2,...,1n]
list([lig2, .-, 1n],ptl, tl @ p = Q)A

Ny ~def?(li.tl) }

Here, by listing the assertions in sequence we are saying
that the first implies the second, and the second implies the
third. Notice how we have used Lemma 15 in the first step,
when unrolling the list once, to derive the spatial separation
liv1 & [li+2,...,!x], and used it for applying Lemma 14 in
the second step to resolve the component substitution into a
list assertion, without having to unroll the definition further.

Now we need to show that the third formula implies the
weakest precondition calculated for the body. To do this
we can take j = 7 + 1. Clearly def?(p-tl) holds since it ap-
pears inside the list predicate. We are left with the proof of

T —def?(lk.(Hl @ p > Q). When k < 4, li.(t1 @ p = Q)
reduces to l.tl since p # li, and we know —def?(lj.tl).
When k =i + 1, we have to show —~def?(Q) since p = li41,
and it always holds since it is an axiom. This completes the
proof of preservation of the invariant.

To complete the proof of the program, we first note that
the precondition implies INV: it is enough to take ¢ = 0.
Secondly, INV A p = nil implies i = n, hence the postcon-
dition.

So far we have seen how to prove that correct programs
meet the specification. The other side of this coin is show-
ing that incorrect programs do not meet the specification —
and highlighting where the error occurs. For instance, a typ-
ical error for the list disposal program would be to dispose
the current, rather than old, value of p.

while p # nil do
dispose(p);
p = p.tl;

od

Backwards reasoning in this case will help in finding the

mistake:

{ def2(ptl) A def?(Q) A
Elj..list([lHl, o lp]yptltldp = Q)A
i —def? (1 (B p s Q) }

{ def?(p-tl) A def?(p.(tLdp— Q))A
3j. list([lj+1,. ., W], pth tH O p = Q) A
Ny ~def?(le.(8l @ p — Q) }

{ def?(pth) A
(def?(ptl) A3j. List([lj41,-- .,], ptl tl) A

Ni_y ~def?(l.t1)[Q/p-tl] }

dispose(p);

{ def?(ptl) A 4
3j. list([ljs1,- - - bn), b1 1) A Ni_y ~def?(Itl) }
p :=p.tl;

{ Fjlist(Uit1y- -5 lal,ptl) ANL_, ~def?(letl))

The presence of def?(€2) indicates that the weakest precon-
dition is false, hence there is a mistake in the program at
this point.

8. CONCLUSION

There are two main limitations to the component substitu-
tion approach to reasoning about pointers. The first con-
cerns the assumptions required for the approach to work.
At present these include:

e distinct records in the heap must not overlap;

e the l-value of a component of a record cannot be ex-
tracted and manipulated as an r-value; and

o there is no parameter aliasing, which is to say aliasing
between stack variables, which may hold pointers to
records.

The main question is whether, or the extent to which, these
restrictions are necessary.

The second limitation concerns the global nature of the
mechanism, where each component is essentially treated as
a large array. As discussed in Section 6, some progress has
been made on this issue. Reynolds has also made good
progress [18] (also, [10]), using a completely different ap-
proach: a spatial form of conjunction is used, instead of the
method of revealing storage in inductive definitions. Both
cases are, however, first steps, and it appears that there is
much more to be learnt about local reasoning.

ACKNOWLEDGEMENTS. We are grateful to Richard Bornat,
especially for his contributions to the development of the
axioms for dispose and new. This research was supported
by EPSRC grant GR/L54578.

9. REFERENCES

[1] AMERICA, P. AND DE BOER, F. Reasoning about dyamically
evolving process structures. Formal Aspects of Computing
6 (1994), 269-316.

[2] BARRINGER, H., CHENG, J. H., AND JONES, C. B. A logic
covering undefinedness in program proofs. Acta Informatica
21 (1984), 251-269.

[3] BORNAT, R. Proving pointer programs in Hoare logic. To
appear in Mathematics of Program Construction, 2000.

[4] BURSTALL, R. Some techniques for proving correctness of
programs which alter data structures. Machine Intelligence
7 (1972), 23-50.

[5] CooK, S. A. Soundness and completeness of an axiomatic
system for program verification. SIAM J. on Computing 7
(1978), 70-90.

[6] DE BOER, F. A WP calculus for OO. In Proceedings of
FOSSACS’99 (1999).

[7] HoARE, C. AND HE, J. A trace model for pointers and
objects. In ECCOP’99 - Object-Oriented Programming,
18th European Conference (1999), R. Guerraoui, Ed.,
pp- 1-17. Lecture Notes in Computer Science, Vol. 1628,
Springer.

[8] HoARE, C. A. R. AND WIRTH, N. An axiomatic definition

of the programming language pascal. Acta Informatica 2
(1973), 335-355.

[9] HoNSELL, F., MAsoON, I. A., SMITH, S. AND TALCOTT, C. A
variable typed logic of effects. Information and
Computation 119, 1 (may 1995), 55-90.

ISHTIAQ, S. AND O’HEARN, P. BI as an assertion language
for mutable data structures. Manuscript, March 2000.

[10

[11] JonEs, C. Partial functions and logics: a warning. Inf.
Proc. Letters 54 (1995), 65-67.

[12] LENo, K. Toward Reliable Modular Programs. Ph.D.
thesis, California Institute of Technology, Pasadena,
California, 1995.

[13] LonDON, R. E. A. Proof rules for the programming
language Euclid. Acta Informatica 10 (1995), 1-26.

[14] MoOLLER, B. Calculating with pointer structures. In
Proceedings of Mathematics for Software Construction,
(1997), Chapman and Hall, pp. 24-48.

[15] MORRIS, J. A general axiom of assignment; Assignment and
linked data structure; A proof of the Schorr-Waite
algorithm. In Theoretical Foundations of Programming
Methodology (1982), M. Broy and G. Schmidt, Eds., Reidel,
pp- 25-51.

[16] NELSON, G. Verifying reachability invariants of linked
structures. In Conference Record of the Tenth ACM
Symposium on Principles of Programming Languages
(1983), pp. 38-47.

[17] OpPEN, D. C. AND COOK, S. A. Proving assertions about
programs that manipulate data structures. In Conference
Record of Seventh Annual ACM Symposium on Theory of
Computation (Albuquerque, New Mexico, 5-7 May 1975),
pp- 107-116.

[18] REYNOLDS, J. Intuitionistic reasoning about shared
mutable data structure. To appear in the Proceedings of the
Symposium in Celebration of the Work of C.A.R. Hoare,
2000.

[19] TENNENT, R. D. A note on undefined expression values in
programming logics. Inf. Proc. Letters 24 (1987), 331-333.

