
To appear in Theoretical Computer Science

Abstraction for Concurrent Objects

Ivana Filipović, Peter O’Hearn, Noam Rinetzky1, Hongseok Yang

Queen Mary University of London, UK

Abstract

Concurrent data structures are usually designed to satisfy correctness conditions such
as sequential consistency or linearizability. In this paper, we consider the following
fundamental question: what guarantees are provided by these conditions for client pro-
grams? We formally show that these conditions can be characterized in terms of obser-
vational refinement. Our study also provides a new understanding of sequential consis-
tency and linearizability in terms of abstraction of dependency between computation
steps of client programs.

Key words: linearizability, sequential consistency, observational equivalence,
observational refinement
2000 MSC: 68N19, 68N30

1. Introduction

The design and implementation of correct and efficient concurrent programs is a
challenging problem. Thus, when developing a critical concurrent application, pro-
grammers often prefer to reuse ready-made highly-optimized concurrent data struc-
tures that have been designed, implemented, and verified by experts, rather then im-
plementing these data structures by themselves. Unfortunately, there is an important
gap in our theoretical understanding here: Application programmers trained in formal
methods justify the integration of a ready-made data structure into their system, by
expecting the data structure to guarantee that it will not lead programs which use it
to behave in ways which cannot be inferred from its interface. However, ready-made
concurrent data structures are developed to guarantee correctness conditions proposed

Email addresses: ivanam@dcs.qmul.ac.uk (Ivana Filipović), ohearn@dcs.qmul.ac.uk
(Peter O’Hearn), maon@dcs.qmul.ac.uk (Noam Rinetzky), hyang@dcs.qmul.ac.uk (Hongseok
Yang)

1Corresponding author. Phone: +44 (0) 20 7882 5237. Fax: +44 (0) 20 8980 6533. Address: Department
of Computer Science, Queen Mary University of London, London, E1 4NS, UK.

by researchers in concurrent programming. Surprisingly, there are no known formal
connections between the expectations of the users of concurrent data structures and the
guarantees made by their providers. Bridging this gap is the aim of this paper.

We consider a program to be comprised of a (possibly multithreaded) application-
specific client program and a concurrent data structure. Usually, programmers expect
that the externally observable behaviour of their program does not change if they re-
place an inefficient, but obviously-correct, implementation of a data structure with a
highly-optimized one. In the programming language community, this expectation has
been formalized as observational refinement [10, 14, 21]. Informally, an implementa-
tion O of a data structure is an observational refinement of an implementation O′ of
the same data structure, if every observable behaviour of any client program using O
can also be observed when the program uses O′ instead. In this paper, for example, the
observable behaviour means the contents of the parts of final states that are not related
to the data structure implementation, e.g., the local variables or global variables defined
in the client program.

On the other hand, concurrent data structures are designed to fulfil correctness
conditions that were proposed by the concurrent-algorithm community, e.g., sequen-
tial consistency [17] or linearizability [12]. Informally, both conditions prescribe an
“atomic flavour” to the implementation of the data structure’s methods: Sequential
consistency requires that for every sequence of possibly overlapping method invoca-
tions by threads, there exists a sequence of non-overlapping invocations, where each
thread makes the same sequence of calls and receives the same sequence of responses
as in the original sequence. Linearizability adds to the above requirement that the or-
der of non-overlapping invocations in the former (original) sequence be preserved in
the latter one. Note that, formally, the definitions of neither sequential consistency nor
linearizability provide any guarantees regarding the behaviour of client code that uses
a sequentially consistent or a linearizable data structure.

The difference between the two viewpoints leads to the following natural question:
Do the correctness conditions that are used in the design and implementation of concur-
rent data structures, e.g., sequential consistency or linearizability, imply observational
refinement, which formalizes the expectations of the application programer who use
these data structures? In this paper, we give the first systematic answer (as far as we
are aware) to this question.

This paper contains three main results, which are stated more formally in Section 3.
Informally, the first result is that, in general, linearizability coincides with observational
refinement. The second result considers a special class of programs where the commu-
nication between threads is done only through invocations of methods of the concurrent
data structure (and thus, in a sense, exposed to the data structure). In this case, our re-
sult says, sequential consistency is equivalent to observational refinement. The third
result focuses on the notions/definitions of linearizability and sequential consistency
and provides a formal methods/programming language view of these notions. More
specifically, it shows how the definitions of linearizability and sequential consistency
can be understood in terms of the abstraction of all possible dependences between
computation steps.

For programmers using concurrent data structures, our first two results pinpoint
when it is possible to replace a data structure by another sequentially consistent or

2

linearizable one in their (client) programs, while preserving observable properties of
the programs. The soundness direction in this connection (that linearizability or, for
our special class of programs, sequential consistency implies observational refinement)
has been folklore amongst concurrent-algorithm researchers, and our results provide
the first formal confirmation of this folklore. On the other hand, as far as we know,
the completeness direction (when observational refinement implies linearizability or
sequential consistency) is not prefigured or otherwise suggested in the literature.

For programmers implementing concurrent data structures, our third result pro-
vides a new understanding of these correctness conditions—they are conservative over-
approximations of the dependencies between method invocations that may arise due to
operations from a (client) program using the data structure.

Outline. In Section 2, we start with an informal description of our mathematical model
and the notions of linearizability, sequential consistency and observational refinement
through a series of examples. In Section 3, we state our main results regarding the re-
lationship between correctness conditions and observational refinement. In Section 4,
we describe the formal setting, such as syntax and semantics of the programming lan-
guage, and in Section 5.1, we prove our main results in this setting. In Section 6, we
revisit the definitions of sequential consistency and linearizability, and provide an anal-
ysis of them in terms of the dependency between computation steps. Section 7 contains
a discussion of related work, and Section 8 concludes.

Note. An extended abstract of this paper was published in the proceedings of the 18th
European Symposium on Programming (ESOP’09). This paper includes proofs that
were omitted from the conference version, new examples, and an extension of the
results of the conference paper to incomplete executions.

2. Background

This section provides an overview of the programming model that we use in the
paper, and explains the notions of linearizability, sequential consistency and observa-
tional refinement. The presentation is at a semi-technical level; a more formal treatment
of this material is presented in later sections of the paper.

2.1. Programs, Object Systems and Histories

A concurrent data structure provides a set of procedures, which may be invoked
by concurrently executing threads of a client program using the data structure. Thus,
procedure invocations may overlap. In our setting, we assume that a concurrent data
structure neither creates threads nor calls a procedure of a client program, a standard
assumption used in the concurrent-algorithm community. We refer to a collection of
concurrent data structures as an object system.

In this paper, we are not interested in the implementation of an object system; we
are only interested in the possible interactions between an object system and a client
program. Thus, we assume that an object system is represented by a set of histories.
Every history records a possible interaction between the object system and a client

3

H0 H1 H2 H3

(t1, call q.enq(1));
(t1, ret() q.enq);

(t2, call q.deq());
(t2, ret(1) q.deq)

(t1, call q.enq(1));
(t1, ret() q.enq);

(t2, call q.enq(2));
(t2, ret() q.enq)

(t2, call q.enq(2));
(t2, ret() q.enq);

(t1, call q.enq(1));
(t1, ret() q.enq)

(t1, call q.enq(1));
(t2, call q.enq(2));

(t1, ret() q.enq);
(t2, ret() q.enq)

Figure 1: Example histories. Histories are written top down. We use indentation to help distinguish visually
between actions made by thread t1 and actions made by thread t2.

τ1 τ2 τ
(t1, x:=11);
(t1, call q.enq(1));
(t1, ret() q.enq);
(t1, x:=10)

(t2, y:=x);
(t2, call q.enq(2));
(t2, ret() q.enq);
(t2, y:=x);
(t2, x:=0)

(t1, x:=11);
(t2, y:=x);

(t1, call q.enq(1));
(t2, call q.enq(2));

(t1, ret() q.enq);
(t1, x:=10);

(t2, ret() q.enq);
(t2, y:=x);
(t2, x:=0)

Figure 2: Example traces. Traces are written top down. We use indentation to help distinguish visually
between actions made by thread t1 and actions made by thread t2.

application program. The interaction is given in the form of sequences of procedure
invocations made by the client and the responses which it receives. A client program
can use an object system only by interacting with it according to one of the object
system’s histories.2

Example 1. The history H0, shown in Figure 1, records an interaction in which thread
t1 first enqueues 1 into the queue q and then thread t2 dequeues 1 from the queue.

Example 2. The histories H1, H2, and H3, shown in Figure 1, record interactions in
which thread t1 enqueues 1 and thread t2 enqueues 2, both to the same queue. In H1,
the invocation made by t1 happens before that of t2 (i.e., t1 gets a response before
t2 invokes its own procedure). In H2, it is the other way around. In H3, the two
invocations overlap.

While a history describes only the interaction of a client program with an object
system, a trace represents an entire computation of the client program.

Example 3. Trace τ1 in Figure 2 shows a sequence of actions performed by the thread
t1, which interacts with a concurrent queue object. The first and the last actions are
assignments to variables, which are independent of the queue object. The other two

2This is a standard assumption in concurrent algorithms work, which Herlihy and Shavit refer to as
interference freedom [11]: it is an assumption that would have to be verified by other means when applying
the theory to particular programming languages or programs. See also Section 7.

4

actions, on the other hand, record the interaction between the client and the queue.
They express that t1 enqueues 1 into queue q. Concretely, (t1, call q.enq(1)) denotes a
call of this enqueue operation and (t1, ret() q.enq) the response of the operation. Note
that the trace does not express the internal steps of the implementation of the queue
object. If we had not hidden these steps, the trace would have had object-internal
actions by the thread t1 between the call and return actions.

Trace τ1 can be parallel-composed (i.e., interleaved) with traces of other threads,
resulting in traces for concurrent execution of multiple threads. Trace τ , shown in
Figure 2, is an example of one such interleaving, where τ1 is parallel-composed with
trace τ2 of thread t2, also given in Figure 2, in which t2 enqueues the value 2. Note
that by overlapping the calls and returns of two enqueue operations, trace τ expresses
that the queue object named q is accessed concurrently by t1 and t2. Also, notice that
the interaction between these two threads and the queue object is captured precisely by
the history H3 in Figure 1.

2.2. Sequential Consistency and Linearizability

Informally, an object system OSC is sequentially consistent with respect to an ob-
ject system OSA if for every history HC in OSC , there exists a history HA in OSA
that is just another interleaving of threads’ actions in HC : in both HC and HA, the
same threads invoke the same sequences of operations (i.e., procedure invocations) and
receive the same sequences of responses. We say that such HC and HA are weakly
equivalent. We use the term weak equivalence to emphasis that the only relation be-
tweenHC andHA is that they are different interleavings of the same sequential threads.
OSC is linearizable with respect to OSA, if for every history HC in OSC , there is
some HA in OSA such that (i) HC and HA are weakly equivalent and (ii) the order
of non-overlapping procedure invocations of HC is preserved in HA.3 In the context
of this paper, the main difference between sequential consistency and linearizability
is, intuitively, that the former preserves the order of non-overlapping invocations of
the same thread only, not the order of invocations by different threads, while the latter
preserves the order of all the non-overlapping operations by all threads.

In both sequential consistency and linearizability, OSA is a part of a specification,
describing the expected behaviour of data structures. Hence, the weak equivalence
between OSC and OSA usually implies that OSC shows the expected behaviour of
data structures with respect to the order of method invocations. For example, if a
concurrent queue OSC is sequentially consistent or linearizable with respect to the
standard sequential queue OSA, every enqueue of a value in the concurrent queue
must take effect before the dequeue of the value.

Example 4. The historiesH1, H2 andH3 in Figure 1 are weakly equivalent. But none
of them is weakly equivalent to H0 in the same figure.

3It is common to require that OSA be comprised of sequential histories, i.e., ones in which invocations
do not overlap. In this setting, linearizability intuitively means that every operation appears to happen in-
stantaneously between its invocation and its response. This requirement is not technically necessary for our
results, so we do not impose it. For details, see Section 7.

5

τ1a τ2a

(t1, call q.enq(1));
(t1, ret() q.enq);
(t1, x := 1);
(t1, skip)

(t2, assume(x = 1));
(t2, call q.enq(2));
(t2, ret() q.enq)

τa
′

τa
′′

τa
′′′

τa
′′′′

(t1, call q.enq(1));
(t1, ret() q.enq);
(t1, x := 1);
(t1, skip);

(t2, assume(x = 1));
(t2, call q.enq(2));
(t2, ret() q.enq)

(t1, call q.enq(1));
(t1, ret() q.enq);
(t1, x := 1);

(t2, assume(x = 1));
(t1, skip);

(t2, call q.enq(2));
(t2, ret() q.enq)

(t1, call q.enq(1));
(t1, ret() q.enq);
(t1, x := 1);

(t2, assume(x = 1));
(t2, call q.enq(2));

(t1, skip);
(t2, ret() q.enq)

(t1, call q.enq(1));
(t1, ret() q.enq);
(t1, x := 1);

(t2, assume(x = 1));
(t2, call q.enq(2));
(t2, ret() q.enq);

(t1, skip)

Figure 3: Example traces. Traces are written top down. We use indentation to help distinguish visually
between actions made by thread t1 and actions made by thread t2.

Example 5. The histories H1, H2, and H3, shown in Figure 1, record different inter-
actions between the concurrent queue object and a client program, which may result by,
e.g., different interleavings of traces τ1 and τ2 in Figure 2. However, no interleaving
of τ1 and τ2 may produce the interaction recorded by history H0 in Figure 1.

Example 6. The history H3 in Figure 1 is linearizable with respect to H1 and with
respect to H2, because H3 does not have non-overlapping invocations.

On the other hand, H1 is not linearizable with respect to H2; in H1, the enqueue
of t1 is completed before that of t2 even starts, but this order on these two enqueues is
reversed in H2.

The next example shows one consequence of history H1, shown in Figure 1, not
being linearizable with respect to H2, which also appears in the same figure.

Example 7. Consider all possible interleavings of traces τ1a and τ2a in Figure 3. In
trace τ1a, thread t1 enqueues 1 and then sets the global variable x to value 1. In trace
τ2a, thread t2 waits until assume(x = 1) is true, i.e., the global variable x has the
value 1. If x never becomes 1, thread t2 gets stuck in this waiting state. Assume
that x is initialised to 0. Then, in every interleaved trace τa between τ1a and τ2a, if
the execution of τa proceeds without t2 getting stuck, the enqueue by t1 should be
completed before the enqueue by t2. This means that in all such non-stuck traces, the
interaction with the queue is H1, not H2, although H1 and H2 are weakly equivalent.
In fact, traces τa

′
, τa

′′
, τa

′′′
and τa

′′′′
, shown in Figure 3, are the only interleavings of

τ1a and τ2a where thread t2 does not get stuck.

Example 7 illustrates that if histories are not related according to the notion of
linearizability, they can (sometimes) be distinguished by client programs, especially
when their threads synchronise without using methods from an object system; for in-
stance, the threads in Example 7 synchronise using the global variable x. Our results

6

in later sections imply that “sometimes” here is indeed “always”, and that if lineariz-
ability holds between two histories, we can never construct a similar example that
distinguishes the histories.

2.3. Observational Refinement

Our notion of observational refinement is based on observing the initial and final
values of variables of client programs. (One can think of the program as having a final
command “print all variables”.) We say that an object system OSC observationally
refines an object system OSA if for every program P with OSA, replacing OSA by
OSC does not generate new observations: for every initial state s, the execution of
P with OSC at s produces only those output states that can already be obtained by
running P with OSA at s.

Example 8. Consider a resource pool data structure, which manages a fixed finite
number of resources. Clients of the pool can obtain a resource by invoking a malloc-
like procedure and can release a resource by invoking a free-like procedure. Assume
that every resource has a unique identifier and consider the following three implemen-
tation of a resource pool: a stack, a queue and a set. In the set implementation, the
procedure for resource allocation nondeterministically chooses an available resource
in the pool.

If clients of the pool can compare resource identifiers (and thus may behave dif-
ferently according to the identifier of the resources they obtain), then the stack-based
pool and the queue-based pool observationally refine the set-based pool, but neither
vice versa nor each other.

3. Main Results

We can now state the main results of this paper, which are the characterization
of sequential consistency and linearizability in terms of observational refinement and
abstraction:

1. OSC observationally refines OSA iff OSC is sequentially consistent with respect
to OSA, assuming that client operations of different threads are independent (so
they commute). This assumption is met when each thread accesses only thread-
local variables or resources in its client operations.

2. OSC observationally refines OSA iff OSC is linearizable with respect to OSA,
assuming that client operations may use at least one shared global variable.4

3. We suggest a novel abstraction-based understanding of sequential consistency and
linearizability by presenting them as over-approximations of client-induced de-
pendencies.

4We assume that the shared global variables are sequentially consistent. However, being part of the client
code, the interaction between the client and the shared global variables is not recorded in the object system.

7

A Note Regarding the Assumed Programming Models. Although our technical results
are stated for particular programming models, we point out that this is mainly to make
our presentation concrete. The results rely on only certain features of the models, and
they can be generalised to more general models, as we discuss below.

The essence of the particular class of programs in our soundness result regarding
sequential consistency is that all the communication between threads is done through
the object system. We captured this condition by requiring that the client operations of
different threads be independent and commute, and we have given an example where
client operations of each thread access only thread-local variables or resources. A
possible generalisation is to allow threads to use shared resources, in addition to the
object system, that provide independent operation suites to different threads, e.g., a
shared log, where the log is not part of the observable behaviour of the system.

The essence of the particular class of programs in our completeness result regarding
linearizability is that threads have effective means of communication besides the object
system, i.e., there is inter-thread communication that is not expressed in histories of the
object system. We captured this condition by providing threads with at least one shared
(atomic) integer variable (in addition to the object system) for thread communication.
Our completeness result regarding linearizability can be easily adapted to different
models, as long as threads can communicate, (in addition to the object system) using
at least one shared sequentially consistent resource that has an unbounded number of
client-observable states, e.g., a 2-state binary semaphore together with a (possibly non-
atomic) unbounded integer object.

4. Formal Setting

In this section, we describe the formal setting where we will present our results.
In Section 4.1, we define the syntax of our programming language. In Sections 4.2
and 4.3, we define the semantics of our programming language: Following Brookes
[5], we define the semantics in two stages. In the first stage, which is shown in Sec-
tion 4.2, we define a trace model, where the traces are built from atomic actions. This
model resolves all concurrency by interleaving. In the second stage, which is shown
in Section 4.3, we define the evaluation of these action traces with initial states. In
Section 4.4, we give a formal definition of observational refinement for object systems.

4.1. Programming Language
We assume that we are given a fixed collection O of objects, with method calls

o.f(n). For simplicity, all methods will take one integer argument and return an integer
value. We will denote method calls by x:=o.f(e).

The syntax of sequential commands C and complete programs P is given below:

C ::= c | x:=o.f(e) | C;C | C + C | C? P ::= C1 ‖ · · · ‖ Cn

Here, c ranges over an unspecified collection PComm of primitive commands, + is non-
deterministic choice, ; is sequential composition, and (·)? is Kleene-star (iterated ;). We
use + and (·)? instead of conditionals and while loops for theoretical simplicity: given
appropriate primitive commands the conditionals and loops can be encoded. In this

8

paper, we assume that the primitive commands include assume statements assume(b)
and assignments x:=e not involving method calls.5

4.2. Action Trace Model

In this section, we develop the first stage of our semantics: We define a trace model,
where the traces are built from atomic actions, which resolves all concurrency by in-
terleaving.

Definition 9. An atomic action (in short, action) ϕ is a client operation or a call or
return action:

ϕ ::= (t, a) | (t, call o.f(n)) | (t, ret(n) o.f).

Here, t is a thread-id (i.e., a natural number), a in (t, a) is an atomic client operation
taken from an unspecified set Copt (parameterized by the thread-id t), and n is an
integer. An action trace (in short, trace) τ is a finite sequential composition of actions
(i.e., τ ::= ϕ; · · · ;ϕ).

We identify a special class of traces where calls to object methods run sequentially.

Definition 10. A trace τ is sequential when all calls in τ are immediately followed by
matching returns, that is, τ belongs to the set(⋃
t,a,o,f,n,m

{ (t, a), (t, call o.f(n)); (t, ret(m) o.f) }
)∗(⋃

t,o,f,n

{ ε, (t, call o.f(n)) }
)
.

Intuitively, sequentiality means that all method calls to objects run atomically. Sequen-
tiality ensures that method calls and returns are properly matched (possibly except the
last call), so that, for instance, no sequential traces start with a return action, such as
(t, ret(3) o.f).

Example 11. Traces τ1 and τ2, shown in Figure 2, are sequential, but Trace τ in the
same figure is not. When viewed as traces, histories H0, H1 and H2 in Figure 1 are
sequential, but history H3 in the same figure is not.

The execution of a program in this paper generates only well-formed traces.

Definition 12 (Executing Thread). The executing thread of an action ϕ, denoted
getTid(ϕ), is the thread-id (i.e., the first component) of ϕ.

Definition 13. The projection of a trace τ to thread id t, denoted τ |t, is the subse-
quence of τ comprised of the actions executed by thread t.

Definition 14. A trace τ is well-formed iff τ |t is sequential for all thread-ids t.

5The assume(b) statement acts as skip when the input state satisfies b. If b does not hold in the input
state, the statement deadlocks and does not produce any output states.

9

τnwf
1 τnwf

2 τnwf
3

(t2, call q.enq(2));
(t1, ret() q.enq);

(t2, ret() q.enq)

(t1, call q.enq(1));
(t1, call q.enq(3));
(t1, ret() q.enq);
(t1, ret() q.enq)

(t1, call q.enq(1));
(t1, x := 3);
(t1, ret() q.enq)

Figure 4: Example non well-formed traces. Traces are written top down. We use indentation to help distin-
guish visually between actions made by thread t1 and actions made by thread t2.

T (c)t = { (t, a1); (t, a2); . . . ; (t, ak) | a1; a2; . . . ; ak ∈ [[c]]t }
T (x:=o.f(e))t = { τ ; (t, call o.f(n)); (t, ret(n′) o.f); τ ′ |

n, n′ ∈ Integers ∧ τ ∈T (assume(e=n))t ∧ τ ′ ∈T (x:=n′)t }
T (C1;C2)t = { τ1; τ2 | τi ∈T (Ci)t }
T (C1+C2)t = T (C1)t ∪ T (C2)t

T (C?)t = (T (C)t)?

T (C1 ‖ · · · ‖Cn) =
⋃
{ interleave(τ1, ..., τn) | τi ∈ T (Ci)i ∧ 1 ≤ i ≤ n }

Figure 5: Action Trace Model. Here τ ∈ interleave(τ1, ..., τn) iff every action in τ is done by a thread
1 ≤ i ≤ n and τ |i = τi for every such thread i.

The well-formedness condition formalizes two properties of traces. Firstly, it ensures
that all the returns should have corresponding method calls. Secondly, it formalizes the
intuition that each thread is a sequential program, if it is considered in isolation. Thus,
when the thread calls a method o.f , it has to wait until the method returns, before doing
anything else. We denote the set of all well-formed traces by WTraces .

Example 15. All the traces shown in Figures 2 and 3 are well-formed. The traces
shown in Figure 4 are not well-formed: In trace τnwf

1 , thread t1 gets a response before it
invokes a procedure call on the object system. In trace τnwf

2 , thread t1 does not wait for
the response of the first procedure invocation before it makes a second invocation. In
trace τnwf

3 , thread t1 assigns a value to the global variable x after it invokes a procedure
on the object system and before it gets its response.

Our trace semantics T (−) defines the meaning of sequential commands and pro-
grams in terms of traces, and it is shown in Figure 5. In our model, a sequential
command C means a set T (C)t of well-formed traces, which is parametrized by the id
t of a thread running the command. The semantics of a complete program (a parallel
composition) P , on the other hand, is a non-parametrized set T (P) of well-formed
traces; instead of taking thread-ids as parameters, T (P) creates thread-ids.

Two cases of our semantics are slightly unusual and need further explanations. The
first case is for the primitive commands c. In this case, the semantics assumes that
we are given an interpretation [[c]]t of c, where c means finite sequences of atomic
client operations (i.e., [[c]]t ⊆ Cop+

t). By allowing sequences of length 2 or more,
this assumed interpretation allows the possibility that c is not atomic, but implemented

10

by a sequence of atomic operations. The second case is for method calls. Here the
semantics distinguishes calls and returns to objects, to be able to account for concur-
rency (overlapping operations). Given x:=o.f(e), the semantics non-deterministically
chooses two integers n and n′, and uses them to describe a call with input n and a re-
turn with result n′. In order to ensure that the argument e evaluates to n, the semantics
inserts the assume statement assume(e=n) before the call action, and to ensure that
x gets the return value n′, it adds the assignment x:=n′ after the return action. Note
that some of the choices here might not be feasible; for instance, the chosen n might
not be the value of the parameter expression e when the call action is invoked, or the
concurrent object never returns n′ when called with n. The next evaluation stage of our
semantics will filter out all these infeasible call/return pairs.

Lemma 16. For all sequential commandsC, programsP and thread-ids t, both T (C)t
and T (P) contain only well-formed traces.

4.2.1. Object Systems
The semantics of objects is given using histories, which are sequences of calls and

returns to objects. We first define precisely what the individual elements in the histories
are.

Definition 17. An object action is a call or return:

ψ ::= (t, call o.f(n)) | (t, ret(n) o.f).

A historyH is a finite sequence of object actions (i.e.,H ::= ψ;ψ; . . . ;ψ). If a history
H is well-formed when viewed as a trace, we say that H is well-formed.

Note that in contrast to traces, histories do not include atomic client operations (t, a).
We will use A for the set of all actions, Ao for the set of all object actions, and Ac for
A−Ao, i.e., the set of all client operations.

We follow Herlihy and Wing’s approach [12], and define object systems.

Definition 18. An object system OS is a set of well-formed histories.

Notice that OS is a collective notion, defined for all objects together rather than for
them independently. Sometimes, the traces of a system satisfy special properties.

Definition 19. The projection of a history H to object o, denoted H|o, is the subse-
quence of H comprised of the object actions (i.e., call and return actions) on object
o. The projection of a trace τ to object actions, denoted getHistory(τ), is the subse-
quence of τ that consists of all the object actions in τ . The projection of a trace τ to
client actions, denoted getClient(τ), is the subsequence of τ comprised of the atomic
client operations in τ .

Example 20. Consider the history H3 in Figure 1. The only object that appears in
history H3 is q. Thus, the projection of H3 on object q is H3|q = H3, and for objects
q′ 6= q, we have that H3|q′ = ε. The history H3 is the result of projecting trace τ in
Figure 2 on object actions: getHistory(τ) = H3.

11

Definition 21. Let OS be an object system. We say that OS is sequential iff it contains
only sequential traces; OS is local iff for any well-formed history H , H ∈ OS ⇐⇒
(∀o.H|o ∈ OS).

A local object system is one in which the set of histories for all the objects together
is determined by the set of histories for each object individually. Intuitively, locality
means that objects can be specified in isolation. Sequential and local object systems
are commonly used as specifications for concurrent objects in the work on concurrent
algorithms (see, e.g., [11]).3

4.3. Semantics of Programs
We move on to the second stage of our semantics, which defines the evaluation of

traces. Suppose we are given a trace τ and an initial state s, which is a function from
variables x, y, z, . . . to integers.6 The second stage is the evaluation of the trace τ with
s, and it is formally described by the evaluation function eval below:7

eval : States ×WTraces → P(States)
eval(s, τ ; (t, call o.f(n))) = eval(s, τ)
eval(s, τ ; (t, ret(n) o.f)) = eval(s, τ)

eval(s, τ ; (t, a)) =
⋃
s′∈eval(s,τ){s′′ | (s′, s′′) ∈ [[a]]}

eval(s, ε) = {s}

The semantic clause for atomic client operations (t, a) assumes that we already have an
interpretation [[a]] where a means a binary relation on States . Note that a state s does
not change during method calls and returns. This is because firstly, in the evaluation
map, a state describes the values of client variables only, not the internal status of
objects and secondly, the assignment of a return value n to a variable x in x:=o.f(e) is
handled by a separate client operation; see the definition of T (x:=o.f(e)) in Figure 5.

Now we combine the two stages, and give the semantics of programs P . Given a
specific object system OS , the formal semantics [[P]](OS) is defined as follows:

[[P]](OS) : States → P(States)
[[P]](OS)(s) =

⋃
{ eval(s, τ) | τ ∈ T (P) ∧ getHistory(τ) ∈ OS }

The semantics first calculates all traces T (P) for τ , and then selects only those traces
whose interactions with objects can be implemented by OS . Finally, the semantics
runs all the selected traces with the initial state s.

4.4. Observational Refinement
Our semantics observes the initial and final values of variables in threads, and ig-

nores the object histories. We use this notion of observation and compare two different
object systems OSA and OSC .

6All the results of the paper except the completeness can be developed without assuming any specific
form of s. Here we do not take this general approach, to avoid being too abstract.

7P(States) denotes the power set of States .

12

Definition 22. Let OSA and OSC be object systems. We say that

• OSC observationally refines OSA⇐⇒∀P, s. [[P]](OSC)(s) ⊆ [[P]](OSA)(s);

• OSC is observationally equivalent to OSA⇐⇒∀P. [[P]](OSC) = [[P]](OSA).

Usually, OSA is a sequential local object system that serves as a specification, and
OSC is a concurrent object system representing the implementation. Observational
refinement means that we can replace OSA by OSC in any programs without intro-
ducing new externally observable behaviours of those programs, and gives a sense that
OSC is a correct implementation of OSA. We note that to obtain our results, we do
not need to assume that the specification is either a sequential object system or a local
one.3

In the next section, we will focus on answering the question: how do correctness
conditions on concurrent objects, such as linearizability, relate to observational refine-
ment?

5. Relationship to Observational Refinement

In this section we give an answer to the question posed at the end of Section 4,
by relating sequential consistency and linearizability with observational refinement. In
Section 6, we use abstraction in an attempt to explain the reason that such a relation
exists.

This section is comprised of two parts. In the first part, Section 5.1, we describe a
general method for proving observational refinement. In the second part, Section 5.2,
we show that both linearizability and sequential consistency can be understood as spe-
cific instances of this method. For expository reasons, we first develop our results for
object systems comprised only of histories in which every call action has a matching
return and address the general case in Section 5.3.

Definition 23 (Pending Operations). Thread t has a pending operation in a well-
formed history H if the last action made by t in H is a call object action.

Definition 24 (Quiescent Histories and Object Systems). A well-formed history H
is quiescent if no thread has a pending action in H . An object system OS is qui-
escent if every history H ∈ OS is quiescent. Given an object system OS , we denote
by getQuiescent(OS) the maximal quiescent subset of OS .

Example 25. All the histories shown in Figure 1 are quiescent. All the odd-length
prefixes of histories H0, H1, and H2 and all the non-empty prefixes of history H3 are
not quiescent.

Note that, as intended, every call action in a quiescent history has a matching re-
turn. Also notice that the trace model, defined in Figure 5, produces only traces whose
projection on object actions yields quiescent histories.

13

5.1. Simulation Relations on Histories

Roughly speaking, our general method for proving observational refinement works
as follows. Suppose that we want to prove that OSC observationally refines OSA.
We first need to choose a binary relation R on histories. This relation has to be a
simulation, i.e., a relation that satisfies a specific requirement, which we will describe
shortly. Next, we should prove that every history H in OSC is R-related to some
history H ′ in OSA. Once we finish both steps, the soundness theorem of our method
lets us infer that OSC is an observational refinement of OSA.

The key part of the method, of course, lies in the requirement that the chosen binary
relation R be a simulation. If we were allowed to use any relation for R, we could
pick the relation that relates all pairs of histories, and this would lead to the incorrect
conclusion that every OSC observationally refines OSA, as long as OSA is nonempty.

To describe our requirement on R and its consequences precisely, we need to for-
malize dependency between actions in a single trace, and define trace equivalence
based on this formalisation.

Definition 26 (Independent Actions). An action ϕ is independent of an action ϕ′,
denoted ϕ#ϕ′, iff (i) getTid(ϕ) 6= getTid(ϕ′) and (ii) eval(s, ϕϕ′) = eval(s, ϕ′ϕ) for
all s ∈ States .

Definition 27 (Dependency Relations). For each trace τ , we define the immediate
dependency relation <τ to be the following relation on actions in τ :8

τi <τ τj ⇐⇒ i < j ∧ ¬(τi#τj).

The dependency relation <+
τ on τ is the transitive closure of <τ .

Definition 28 (Trace Equivalence). Traces τ, τ ′ are equivalent, denoted τ ∼ τ ′, iff
there exists a bijection π : {1, . . . , |τ |} → {1, . . . , |τ ′|} such that

(∀i. τi = τ ′π(i)) ∧ (∀i, j. τi <+
τ τj ⇐⇒ τ ′π(i) <

+
τ ′ τ

′
π(j)).

Intuitively, our notion of independence of actions is based on commutativity. (In par-
ticular, by the definition of #, an object action ψ can depend on another action ψ′, only
when both actions are done by the same thread.) Thus, informally, τ ∼ τ ′ means that
τ ′ can be obtained by swapping independent actions in τ . Since we swap only inde-
pendent actions, we expect that τ ′ and τ essentially mean the same computation. The
lemma below justifies this expectation, by showing that our semantics cannot observe
the difference between equivalent traces.

Lemma 29. For all τ, τ ′ ∈ WTraces , if τ ∼ τ ′, then (∀P. τ ∈ T (P) ⇐⇒ τ ′ ∈
T (P)) and (∀s. eval(s, τ) = eval(s, τ ′)).

8Strictly speaking, <τ is a relation on the indices {1, . . . , |τ |} of τ so that we should have written
i <τ j. In this paper, we use a rather informal notation τi <τ τj instead, since we found this notation
easier to understand.

14

We are now ready to give the definition of simulation, which encapsulates our re-
quirement on relations on histories, and to prove the soundness of our proof method
based on simulation.

Definition 30 (Simulation). A binary relation R on well-formed histories is a simu-
lation iff for all well-formed histories H and H ′ such that (H,H ′) ∈ R,

∀τ ∈WTraces. getHistory(τ) =H
=⇒ ∃τ ′ ∈WTraces. τ ∼ τ ′ ∧ getHistory(τ ′) =H ′.

One way to understand this definition is to consider the function means defined by:

means : WHist→P(WTraces)
means(H) = {τ ∈WTraces | getHistory(τ) =H},

and to read a history H as a representation of the trace set means(H). Intuitively,
the trace set means(H) consists of the well-formed traces whose interactions with ob-
jects are precisely H . According to this reading, the requirement in the definition of
simulation simply means that means(H) is a subset of means(H ′) modulo trace equiv-
alence ∼. For every relation R on histories, we now define its lifting to a relation CR
on object systems.9

Definition 31 (Lifted Relations). LetR be a binary relation on well-formed histories.
The lifting of R to quiescent object systems OSA and OSC , denoted OSC CR OSA,
is

OSC CR OSA ⇐⇒ ∀H ∈ OSC . ∃H ′ ∈ OSA. (H,H ′) ∈ R.

Theorem 32 (Simulation). If OSC CROSA andR is a simulation, the object system
OSC observationally refines OSA.

Proof: Consider a program P and states s, s′ such that s′ ∈ [[P]](OSC)(s). Then, by
the definition of [[P]], there exist a well-formed trace τ ∈ T (P) and a historyH ∈ OSC
such that getHistory(τ) = H and s′ ∈ eval(s, τ). SinceH ∈ OSC and OSC CROSA
by our assumption, there exists H ′ ∈ OSA with (H,H ′) ∈ R. Furthermore, H and
H ′ are well-formed, because object systems contain only well-formed histories. Now,
since R is a simulation, τ is well-formed and getHistory(τ) = H , there exists a well-
formed trace τ ′ such that

τ ∼ τ ′ ∧ getHistory(τ ′) = H ′.

Note that because of Lemma 29, the first conjunct here implies that τ ′ ∈ T (P) and
s′ ∈ eval(s, τ ′). This and the second conjunct getHistory(τ ′) = H ′ together imply
s′ ∈ [[P]](OSA)(s) as desired.

9We remind the reader that in this section we assume that both OSA and OSC are quiescent object
systems.

15

5.2. Sequential Consistency, Linearizability and Observational Refinement
Now we explain the first two main results of this paper: (i) linearizability coincides

with observational refinement, if clients programs are allowed to use at least one global
variable; (ii) sequential consistency coincides with observational refinement, if client
operations of different threads are independent and so commutative.

It is not difficult to obtain a high-level understanding of why linearizability implies
observational refinement and why sequential consistency does the same under some
condition on client operations. Both linearizability and sequential consistency define
certain relationships between two object systems, one of which is normally assumed
sequential and local. Interestingly, in both cases, we can prove that these relationships
are generated by lifting some simulation relations. From this observation follows our
soundness results, because Theorem 32 says that all such simulation-generated rela-
tionships on object systems imply observational refinements.

In the rest of this section, we will spell out the details of the high-level proof
sketches just given. For this, we need to review the relations on histories used by
sequential consistency and linearizability [12].

Definition 33 (Weakly Equivalent Histories). Two histories are weakly equivalent,
denoted H ≡H ′, iff their projections to threads are equal:10

H ≡ H ′ ⇐⇒ ∀t. H|t = H ′|t.

As its name indicates, the weak equivalence is indeed a weak notion. It only says that
the two traces are both interleavings of the same sequential threads (but they could be
different interleavings).

Definition 34 (Happens-Before Order). For a well-formed history H , the happens-
before order ≺H is a binary relation on object actions in H defined by

Hi ≺H Hj ⇐⇒ ∃i′, j′. i ≤ i′ < j′ ≤ j ∧
retAct(Hi′) ∧ callAct(Hj′) ∧
getTid(Hi) = getTid(Hi′) ∧ getTid(Hj′) = getTid(Hj)

Here retAct(ψ) holds when ψ is a return and callAct(ψ) holds when ψ is a call.

This definition is intended to express that in the history H , the method call for Hi

is completed before the call for Hj starts. To see this intention, note that H is well-
formed. One important consequence of this well-formedness is that if an object action
ψ of some thread t is followed by some return action ψ′ of the same thread in the
history H (i.e., H = ...ψ...ψ′...), then the return for ψ itself appears before ψ′ or it
is ψ′. Thus, the existence of Hi′ in the definition ensures that the return action for Hi

appears before or at Hi′ in the history H . By a similar argument, we can see that the
call for Hj appears after or at Hj′ . Since i′ < j′, these two observations mean that
the return for Hi appears before the call for Hj , which is the intended meaning of the
definition. Using this happens-before order, we define the linearizability relation v:

10For the same definition, Herlihy and Wing [12] use the terminology “equivalence”.

16

Definition 35 (Linearizability Relation). The linearizability relation is a binary re-
lation v on histories defined as follows: H v H ′ iff (i) H ≡ H ′ and (ii) there is a
bijection π : {1, . . . , |H|} → {1, . . . , |H ′|} such that

(∀i.Hi = H ′π(i)) ∧ (∀i, j.Hi ≺H Hj =⇒ H ′π(i) ≺H′ H
′
π(j)).

Recall that for each relation R on histories, its lifting CR to the relation on object
systems is defined by: OS CROS ′ ⇐⇒ ∀H ∈OS .∃H ′ ∈OS ′. (H,H ′) ∈ R. Using
this lifting, we formally specify sequential consistency and linearizability for quiescent
object systems.11

Definition 36. Let OSA and OSC be quiescent object systems. We say that OSC is
sequentially consistent with respect to OSA iff OSC C≡ OSA.

Definition 37. Let OSA and OSC be quiescent object systems. We say that OSC is
linearizable with respect to OSA iff OSC Cv OSA.

Note that this definition does not assume the sequentiality and locality of OSA,
unlike Herlihy and Wing’s definitions. We use this more general definition here in
order to emphasize that the core ideas in the technical notions of sequential consistency
and linearizability lie in relations ≡ and v on histories, not in the use of a sequential
local object system (as a specification).

5.2.1. Soundness
In this section, we show that linearizability implies observational refinement, and

that if client operations of different threads are independent, and thus commute, se-
quential consistency implies observational refinement.

We first prove the theorem that connects linearizability and observational refine-
ment. Our proof uses the lemma below:

Lemma 38. Let H be a well-formed history and let i, j be indices in {1, . . . , |H|}.
Then,

(∃τ ∈WTraces. getHistory(τ) = H ∧ Hi <
+
τ Hj)

=⇒ (i < j) ∧ (getTid(Hi) = getTid(Hj) ∨ Hi≺H Hj).

Proof: Consider a well-formed history H , indices i, j of H and a well-formed trace τ
such that the assumptions of this lemma hold. Then, we have indices i1 < i2 < . . . <
in of τ such that

Hi = τi1 <τ τi2 <τ . . . <τ τin−1 <τ τin = Hj . (1)

One conclusion i < j of this lemma follows from this, because getHistory(τ) = H
means that the order of object actions in H are maintained in τ . To obtain the other

11We remind the reader that in this section we assume that both OSA and OSC are quiescent object
systems (Definition 24). We note, however, that both linearizability and sequential consistency are well
defined as relations on arbitrary well-formed histories.

17

conclusion of the lemma, let t = getTid(Hi) and t′ = getTid(Hj). Suppose that
t 6= t′. We will prove that for some ik, il ∈ {i1, . . . , in},

t= getTid(Hi) = getTid(τik) ∧ retAct(τik) ∧
ik <il ∧

t′= getTid(Hj) = getTid(τil) ∧ callAct(τil).
(2)

Note that this gives the conclusion we are looking for, because all object actions in τ
are from H and their relative positions in τ are the same as those in H . In the rest
of the proof, we focus on showing (2) for some ik, il. Recall that by the definition
of #, an object action ψ can depend on another action ϕ, only when both actions are
done by the same thread. Now note that the first and last actions in the chain in (1) are
object actions by different threads t and t′. Thus, the chain in (1) must contain client
operations τix and τiy such that getTid(τix) = t and getTid(τiy) = t′. Let τia be the
first client operation by the thread t in the chain and let τib be the last client operation
by t′. Then, ia < ib. This is because otherwise, the sequence τia τia+1 . . . τin
does not have any client operation of the thread t′, while τia is an action of the thread
t and τin is an action of the different thread t′; these facts make it impossible to have
τia <τ τia+1 <τ . . . <τ τin .

τi1 is an object action by the thread t and τia is a client operation by the same thread.
Thus, by the well-formedness of τ , there should exist some ik between i1 (including)
and ia such that τik is a return object action by the thread t. By a symmetric argument,
there should be some il between ib and in (including) such that τil is a call object
action by t′. We have just shown that ik and il satisfy (2), as desired.

Theorem 39. The linearizability relation v is a simulation.

Proof: For an action ϕ and a trace τ , define ϕ#τ to mean that ϕ#τj for all j ∈
{1, . . . , |τ |}. In this proof, we will use this ϕ#τ predicate and the following facts:

Fact 1. Trace equivalence ∼ is symmetric and transitive.

Fact 2. If τ ∼ τ ′ and τ is well-formed, τ ′ is also well-formed.

Fact 3. If ττ ′ is well-formed, its prefix τ is also well-formed.

Fact 4. If ϕ#τ ′, we have that τϕτ ′ ∼ ττ ′ϕ.

Fact 5. If τ ∼ τ ′, we have that τϕ ∼ τ ′ϕ.

Consider well-formed histories H,S and a well-formed trace τ such that H v S and
getHistory(τ) =H . We will prove the existence of a trace σ such that τ ∼ σ and
getHistory(σ) =S. This gives the desired conclusion of this theorem; the only missing
requirement for proving that v is a simulation is the well-formedness of σ, but it can
be inferred from τ ∼ σ and the well-formedness of τ by Fact 2.

Our proof is by induction on the length of S. If |S| = 0, H has to be the empty
sequence as well. Thus, we can choose τ as the required σ in this case. Now suppose
that |S| 6= 0. That is, S = S′ψ for some history S′ and object action ψ. Note that
since the well-formed traces are closed under prefix (Fact 3), S′ is also a well-formed

18

history. During the proof, we will use this fact, especially when applying induction on
S′.

Let δ be the projection of τ to client operations (i.e., δ = getClient(τ)). The starting
point of our proof is to split τ,H, δ. By assumption, H v S′ψ. By the definition of v,
this means that

∃H ′, H ′′. H = H ′ψH ′′ ∧ H ′H ′′ v S′
∧
(
∀j ∈ {1, . . . , |H ′′|}. ¬(ψ ≺H H ′′j) ∧ getTid(ψ) 6= getTid(H ′′j)

)
.

(3)

Here we use the bijection between indices ofH and S′ψ, which exists by the definition
of H v S′ψ. The action ψ in H ′ψH ′′ is what is mapped to the last action in S′ψ by
this bijection. The last conjunct of (3) says that the thread-id of every action of H ′′

is different from getTid(ψ). Thus, ψ#H ′′ (because an object action is independent
of all actions by different threads). From this independence and the well-formedness
of H , we can drive that H ′H ′′ψ is well-formed (Facts 2 and 4), and that its prefix
H ′H ′′ is also well-formed (Fact 3). Another important consequence of (3) is that since
τ ∈ interleave(δ,H), the splitting H ′ψH ′′ of H induces splittings of τ and δ as
follows: there exist τ ′, τ ′′, δ′, δ′′ such that

τ = τ ′ψτ ′′ ∧ δ = δ′δ′′ ∧ τ ′ ∈ interleave(δ′, H ′) ∧ τ ′′ ∈ interleave(δ′′, H ′′). (4)

The next step of our proof is to identify one short-cut for showing this theorem. The
short-cut is to prove ψ#τ ′′. To see why this short-cut is sound, suppose that ψ#τ ′′.
Then, by Fact 4,

τ = τ ′ψτ ′′ ∼ τ ′τ ′′ψ. (5)

Since τ is well-formed, this implies that τ ′τ ′′ψ and its prefix τ ′τ ′′ are well-formed
traces as well (Facts 2 and 3). Furthermore, getHistory(τ ′τ ′′) = H ′H ′′, because
of the last two conjuncts of (4). Thus, we can apply the induction hypothesis to
τ ′τ ′′, H ′H ′′, S′, and obtain σ with the property: τ ′τ ′′ ∼ σ ∧ getHistory(σ) = S′.
From this and Fact 5, it follows that

τ ′τ ′′ψ ∼ σψ ∧ getHistory(σψ) = getHistory(σ)ψ = S′ψ. (6)

Now, the formulas (5) and (6) and the transitivity of ∼ (Fact 1) imply that σψ is the
required trace by this theorem. In the remainder of the proof, we will use this short-cut,
without explicitly mentioning it.

The final step is to do the case analysis on δ′′. Specifically, we use the nested
induction on the length of δ′′. Suppose that |δ′′| = 0. Then, τ ′′ = H ′′, and by the last
conjunct of (3), i.e., the universal formula, we have that ψ#τ ′′; since ψ is an object
action, it is independent of actions by different threads. The theorem follows from
this. Now consider the inductive case of this nested induction: |δ′′| > 0. Note that
if ψ#δ′′, then ψ#τ ′′, which implies the theorem. So, we are going to assume that
¬(ψ#δ′′). Pick the greatest index i of τ ′′ such that ψ <+

τ τ ′′i . Let ϕ = τ ′′i . Because
of the last conjunct of (3) and Lemma 38, τ ′′i comes from δ, not H ′′. In particular, this
ensures that there are following further splittings of δ′′, τ ′′ and H ′′: for some traces
γ, γ′, κ, κ′, T, T ′,

δ′′ = γϕγ′ ∧ τ ′′ = κϕκ′ ∧ H ′′ = TT ′ ∧
κ ∈ interleave(γ, T) ∧ κ′ ∈ interleave(γ′, T ′) ∧ ϕ#κ′.

19

Here the last conjunct ϕ#κ′ comes from the fact that ϕ is the last element of τ ′′ with
ψ <+

τ ϕ. Since γ′ is a subsequence of κ′, the last conjunct ϕ#κ′ implies that ϕ#γ′.
Also, τ ′ψκϕκ′ ∼ τ ′ψκκ′ϕ by Fact 4. Now, since τ = τ ′ψκϕκ′ is well-formed, the
equivalent trace τ ′ψκκ′ϕ and its prefix τ ′ψκκ′ both are well-formed as well (Facts 2
and 3). Furthermore, τ ′ψκκ′ ∈ interleave(δ′γγ′, H ′ψH ′′). Since the length of γγ′ is
shorter than δ′′, we can apply the induction hypothesis of the nested induction, and get

∃σ. τ ′ψκκ′ ∼ σ ∧ getHistory(σ) = S′ψ. (7)

We will prove that σϕ is the trace desired for this theorem. Because of ϕ#κ′ and
Fact 4, τ = τ ′ψκϕκ′ ∼ τ ′ψκκ′ϕ. Also, because of Fact 5 and the first conjunct of
(7), τ ′ψκκ′ϕ ∼ σϕ. Thus, τ ∼ σϕ by the transitivity of ∼. Furthermore, since
ϕ is not an object action, the second conjunct of (7) implies that getHistory(σϕ) =
getHistory(σ) = S′ψ. We have just shown that σϕ is the desired trace.

Corollary 40. If OSC is linearizable with respect to OSA, then OSC observationally
refines OSA.

Next, we consider sequential consistency. For sequential consistency to imply ob-
servational refinement, we restrict programs such that client operations of different
threads are independent:

∀t, t′, a, a′. (t 6=t′ ∧ a ∈ Copt ∧ a′ ∈Copt′) =⇒ a# a′.

Lemma 41. Suppose that client operations of different threads are independent. Then,
for all well-formed histories H and indices i, j in {1, . . . , |H|},(

∃τ∈WTraces. getHistory(τ) = H ∧ Hi <
+
τ Hj

)
=⇒

(
i < j ∧ getTid(Hi) = getTid(Hj)

)
.

Proof: Consider a well-formed history H , indices i, j and a well-formed trace τ satis-
fying the assumptions of this lemma. Then, for some indices i1 < ... < in of τ ,

Hi = τi1 <τ τi2 <τ . . . <τ τin−1 <τ τin = Hj . (8)

One conclusion i < j of this lemma follows from this; the assumption getHistory(τ) =
H of this lemma means that the order of object actions in H are maintained in τ . To
obtain the other conclusion of the lemma, we point out one important property of #:
under the assumption of this lemma, ¬(ϕ#ϕ′) only when getTid(ϕ) = getTid(ϕ′).
(Here ϕ,ϕ′ are not necessarily object actions.) To see why this property holds, we
assume ¬(ϕ#ϕ′) and consider all possible cases of ϕ and ϕ′. If one of ϕ and ϕ′ is an
object action, the definition of # implies that ϕ and ϕ′ have to be actions by the same
thread. Otherwise, both ϕ and ϕ′ are atomic client operations. By our assumption,
two client operations are independent if they are performed by different threads. This
implies that ϕ and ϕ′ should be actions by the same thread. Now, note that τk <τ τl
implies ¬(τk#τl), which in turn entails getTid(τk) = getTid(τl) by what we have just
shown. Thus, we can derive the following desired equality from (8): getTid(Hi) =
getTid(τi1) = getTid(τi2) = . . . = getTid(τin) = getTid(Hj).

20

Theorem 42. If client operations of different threads are independent, the weak equiv-
alence ≡ is a simulation.

Proof: The proof is similar to the one for Theorem 39. Instead of repeating the com-
mon parts between these two proofs, we will explain what we need to change in the
proof of Theorem 39, so as to obtain the proof of this theorem. Firstly, we should re-
place linearizability relation v by weak equivalence ≡. Secondly, we need to change
the formula (3) to

∃H ′H ′′. H =H ′ψH ′′ ∧ H ′H ′′≡S′ ∧ ∀j ∈{1, ..., |H ′′|}. getTid(ψ) 6= getTid(H ′′j).

Finally, we should use Lemma 41 instead of Lemma 38. After these three changes have
been made, the result becomes the proof of this theorem.

Corollary 43. If OSC is sequentially consistent with respect to OSA and client op-
erations of different threads are independent, OSC is an observational refinement of
OSA.

5.2.2. Completeness
In this section, we show that under suitable assumptions on programming languages

and object systems, we can obtain the converse of Corollaries 40 and 43: observational
refinement implies linearizability and sequential consistency. Firstly, we remind the
reader that we assume that the object systems are quiescent (Definition 24). This as-
sumption is necessary at this point, because observational refinement considers only
terminating, completed computations. In particular, every call action should have a
matching return action. (In Section 5.3 we add the notion of completability, which
allows us to handle non-quiescent object systems.) Secondly, we assume that threads’
primitive commands include the skip statement. Finally, we consider specific assump-
tions for sequential consistency and linearizability, which will be described shortly.

Sequential Consistency. For sequential consistency, we suppose that the programming
language contains atomic assignments x:=n of constants n to thread-local variable x
and has atomic assume statements of the form assume(x=n) with thread-local vari-
able x.12 Under this supposition, observational refinement implies sequential consis-
tency. (Note that this supposition is consistent with the assumption of Corollary 43:
Client operations of different threads are independent. In particular, note that the use
of global variables, or any other kinds of thread-shared resources which allow for inter-
thread communication that can bypass the object system, is not allowed.)

Theorem 44. If OSC observationally refines OSA then OSC C≡ OSA.

The main idea of the proof is to create for every history H ∈ OSC a program PH
which records the interaction of every thread t with the object system using t’s local
variables. The detailed proof is given below.

12Technically, this assumption also means that T (x:=n)t and T (assume(x=n))t are singleton traces
(t, a) and (t, b), respectively, where [[a]](s)≡{s[x 7→n]} and [[b]](s)≡ if (s(x)=n) then {s} else {}.

21

Proof: The plan of the proof is to construct for every historyH ∈ OSC a program PH
that records the interactions of every thread with the object system from the point of
view of every thread. The goal is to make it possible to record this interaction at every
final state s′ of PH and thus be able to read H|t from s′.

Let H be a history in OSC . Let H|t be the projection of H on the object actions
executed by thread t. H , when viewed as a trace, is well-formed. Thus, H|t, is a
sequential trace. In particular, H|t is comprised of a sequence of pairs of call and
return object actions. (By our assumption, H|t is comprised only of matching pairs of
calls and returns.)

For every thread t that has an action in H , we construct a straight-line command
P tH = Ct1;Ct2; . . . ;Ctkt

, where kt = |(H|t)|/2 is the number of pairs of call and return
actions executed by thread t. Here Cti is a sequence of atomic commands, and it is
constructed according to the i-th pair of object actions in H|t. The definition of Cti
goes as follows. For i = 1, . . . , k, let (H|t)2i−1 = (t, call o.f(nti)) and (H|t)2i =
(t, ret(mt

i) o.f). The composed command that we construct for this pair is

Cti = xti:=n
t
i; yti :=o.f(xti); assume(yti=m

t
i).

Note that the composed command is constructed according to the values in H: Cti
invokes operation f on object o passing nti as the argument and expects that the return
value be mt

i. Furthermore, note that the argument to the command is recorded in xti
and the return value is recorded in yti . Both of these variables are local to thread t and
are never rewritten. Thus, starting from any state, the only trace τ ti ∈ T (Cti)t that can
be executed until completion for some initial state is

τ tnt
i,m

t
i

= (t, xti := nti); (t, assume(xti = nti));
(t, call o.f(nti)); (t, ret(mt

i));
(t, yti := mt

i); (t, assume(yti = mt
i))

Here we overload x := n and assume(x=n) to mean not primitive commands but
atomic client operations in Copt, with standard meanings. Let τ t be τ tnt

1,m
t
1
; τ tnt

2,m
t
2
;

The following claims are immediate:

Claim 1. For every trace τ , if τ |t ∈ T (P tH)t and τ can be evaluated until
completion for some initial state, then τ |t = τ t. Furthermore, if τ |t = τ t for all
threads t in τ , the evaluation of τ can be evaluated until completion for all states.

Claim 2. Since xti and yti are thread-local variables and they are never rewritten
by their owner thread, we have that xti = nti and yti = mt

i at every final state in
eval(s, τ), as long as τ |t ∈ T (P tH)t.

Claim 3. H|t = getHistory(τ t) .

We construct a program PH which corresponds to history H by a parallel compo-
sition of the commands for every thread: PH = P 1

H || . . . ||P
tmax

H , where tmax is the
maximal thread identifier in H . For technical reasons, in case 1 ≤ t < tmax does not
appear in H , we define P tH = skip. (Recall that H is a finite sequence, thus there is a

22

finite number of threads executing in H . Specifically, there is a finite number of such
commands).

Let τH be an interleaving of τ t1 , . . . , τ tmax such that getHistory(τH) = H . Such a
τH exists because of Claim 3 above and H ∈ interleave(H|t1 , . . . ,H|tmax

). Further-
more, τH ∈ T (PH) because τ ti ∈ T (P tiH)ti for every ti = t1, . . . , tmax.

Let n0 be a value that does not appear in H . Let s0 be a state where all (local)
variables xti’s and yti ’s are initialized to n0. Let s′ be the state where s′(xti) = nti and
s′(yti) = mt

i. Because getHistory(τH) = H ∈ OSC , the combination of Claims 1 and
2 and the definition of eval implies that s′ ∈ [[PH]](OSC)(s0).

Now, we have s′ ∈ [[PH]](OSA)(s0), because OSC observationally refines OSA.
Thus, there exists a trace τA ∈ T (PH) and history HA ∈ OSA such that s′ ∈
eval(τA, s0) and getHistory(τA) = HA. Since τA ∈ T (PH), we have that (τA)|t ∈
T (P tH). By Claim 1, this means that for every thread t, τA|t = τ t. By Claim 3, we get
that HA ≡ H , which implies that OSC is sequentially consistent with respect to OSA.

Linearizability. For linearizability, we further suppose that there is a single global vari-
able g shared by all threads. That is, threads can assign constants to g atomically, or
they can run the statement assume(g=n) for some constant n. Under this supposition,
observational refinement implies linearizability.

Theorem 45. If OSC observationally refines OSA, then OSC Cv OSA.

The core idea of the proof is, again, to create for every history H ∈ OSC one specific
program PH . This program uses a single global variable and satisfies that for every
(terminating) execution τ of PH , the object history of τ always has the same happens-
before relation as H . The details are described in the following proof.

Proof: The plan of the proof is similar to that for Theorem 44. We construct, for every
history H ∈ OSC , a program PH that records the interactions of every thread with
the object system. This recoding remains in the final state of PH and thus allows us to
see every step of H|t. We use a global variable g to enforce that every (terminating)
execution of the program has the same happens-before order between object operations.

Let H be a history in OSC . Let H|t be the projection of H to object operations
executed by thread t. Using the same argument as in the proof of Theorem 44, we con-
struct, for every thread t which has an action in H , a straight-line composite command

PLtH = CLt1; CLt2; . . . ; CLtkt
,

where kt = |(H|t)|/2 is the number of pairs of call and return actions executed by
thread t, as a sequence of composed commands and CLti is constructed according
to the i-th pair of object actions in H done by thread t. The construction of CLti
goes as follows. For i = 1, . . . , kt, let (H|t)2i−1 = (t, call o.f(nti)) and (H|t)2i =
(t, ret(mt

i) o.f). Let ic and ir be the indices of these actions in H , i.e., Hic =
(H|t)2i−1 and Hir = (H|t)2i. The corresponding command CLti is

CLti = assume(g=ic); g:=ic+1; Cti ; assume(g=ir); g:=ir+1 ,

23

where Cti is defined as in the proof of Theorem 44, i.e.,

Cti = xti:=n
t
i; y

t
i :=o.f(xti); assume(yti=m

t
i) .

Note that the command Cti in CLti can be executed only when g = ic, and that if
so, CLti increments g by 1 before running Cti . Similarly, after Cti terminates, the
computation of t can continue only when g = ir, and then again g is incremented.

By the same reason discussed in the proof of Theorem 44, the only trace αti ∈
T (CLti)t that can be executed until completion is

αtnt
i,m

t
i

= (t, assume(g=ic)); (t, g := ic+1);
τ tnt

i,m
t
i
;

(t, assume(g=ir)); (t, g := ir+1)

where τ tnt
i,m

t
i

is defined as in the proof of Theorem 44:

τ tnt
i,m

t
i

= (t, xti:=n
t
i); (t, assume(xti=n

t
i));

(t, call o.f(nti)); (t, ret(mt
i));

(t, yti :=m
t
i); (t, assume(yti=m

t
i))

We construct a program PLH , which corresponds to history H , by a parallel compo-
sition of the command for each thread:

PLH = PL1
H || . . . ||PL

tmax

H ,

where tmax is the maximal thread identifier in H . For technical reasons, in case that
some t with 1 ≤ t < tmax does not appear in H , we define PLtH = skip.

Let αH be an interleaving of α1, . . . , αtmax such that getHistory(αH) = H that can
be evaluated until completion. Again, such an αH exists for the same reason discussed
in the proof of Theorem 44. Furthermore, assume that αH is an interleaving of action
sequence fragments of the following two forms:

(t, assume(g=ic)); (t, g:=ic+1); (t, xti:=n
t
i); (t, assume(xti=n

t
i)); (t, call o.f(nti)) ,

(t, ret(mt
i)); (t, yti :=m

t
i); (t, assume(yti=m

t
i)); (t, assume(g=ir)); (t, g:=ir+1) .

Thus, once a thread runs assume(g=ic) in αH , it continues without being intervened
by different threads at least until it invokes the i-th (call) object action. Similarly, once
a thread runs the i-th (return) object action, it continues without being interrupted at
least until it assigns ir+1 to g. Note that in α, g is incremented and tested in the same
order as the object actions occur in H .

Let n0 be a value that does not appear in H . Let s0 be a state where all (local)
variables xti’s and yti ’s are initialized to n0 and g is initialized to 1. Note that our
construction of αH ensures that the trace αH can run until completion from the initial
state s0. Furthermore, since OSC observationally refines OSA, by the same arguments
as in the proof of Theorem 44, we can infer that there exists a history S ∈ OSA
such that S ≡ H , and also that there exists α ∈ T (PLH) with getHistory(α) = S ∧
eval(s0, α) 6= ∅. Using α, we will show that the bijection π implicit in H ≡ S

24

preserves the happens-before order. Let Hi be a return action in H and let Hj be a call
action. Let i and j be the indices ofHi andHj in S, respectively. By the choice of π, it
is sufficient to prove that if i < j, then ī < j̄. Suppose that i < j. Then, ir < jc. Since
α can run until completion, the definition of PLH implies that the assume statement for g
following the return of Sī should be run before the assume statement that comes before
the call of Sj̄ . This means that Sī occurs before Sj̄ in α. Since getHistory(α) = S, we
should have that ī < j̄ as desired. What we have shown implies that π preserves the
happens-before order. This in turn means H v HL

A . That is, OSC is linearizable with
respect to OSA.

5.3. The General Case: Non-Quiescent Object Systems
In Sections 5.1 and 5.2, we restricted our attention to quiescent object systems. We

now remove this restriction. We first show that it is possible to establish the sound-
ness result in the general case by, essentially, changing the definition of lifted relations
(Definition 31). We then discuss different ways to achieve completeness in the general
case.

5.3.1. Soundness
In Section 5.1, we proved that linearizability implies observational refinement in

two stages. First, we showed that the linearizability relation over well-formed histories
is a simulation relation (Theorem 39). Next, we used a general result on simulations
(Theorem 32), and derived the desired implication from linearizability to observational
refinement (Corollary 40). A similar approach was taken when we showed that sequen-
tial consistency implies observational refinement. (See Definition 33, Theorem 42, and
Corollary 43).

Interestingly, to establish soundness in the general case, we do not need to change
the definition of either the weak equivalence relation or linearizability relations. It suf-
fices to change the way these relations are lifted from histories to object systems.13

Specifically, instead of lifting these relations only to quiescent object systems, as done
in Definition 31, we can lift them to (possibly) non-quiescent object systems by, essen-
tially, ignoring the non-quiescent histories in the object systems.

Definition 46 (Lifted Relations by Restriction). Let R be a binary relation on well-
formed histories. The lifting by restriction of R to object systems OSA and OSC ,

denoted OSC
↓
CR OSA, is

OSC
↓
CR OSA ⇐⇒ getQuiescent(OSC) CR getQuiescent(OSA).

Changing the way we lift relations has no effect on our general approach for prov-

ing observational refinement presented in Section 5.2.1: Replacing C with
↓
C in The-

orem 32 does not require any changes to its proof. A similar replacement extends the

13Note that the weak equivalence relation, the linearizability relation, and, in general, any simulation
relation (Definition 30) are defined as relations between arbitrary (well-formed) histories, which are not
necessarily quiescent.

25

definitions of sequential consistency (Definition 36) and linearizability (Definition 37)
to allow for non-quiescent object systems. The main results regarding sequential con-
sistency and linearizability, such as Theorems 42 and 39 and their corollaries, remain
true, if we drop the restrictions to quiescent object systems in those results and allow
all object systems. The proofs of the results in Section 5.2.1 can be reused without any
modifications.

Intuitively, the reason that this simple adaptation works is that our notion of ob-
servational refinement considers only terminating, completed computations, i.e., ones
that can be produced by the trace semantics T (P) of programs P in Figure 5. (See
the proof of Theorem 32.) As we have already noted, the projection of such traces on
object actions results in quiescent histories.

5.3.2. Completeness

Replacing C with
↓
C in Theorems 44 and 45 allows us to establish the desired

completeness result without changing the proofs given in Section 5.2.2. Intuitively, this
simple adaptation works because (i) our notion of observational refinement considers

only terminating, completed computations, and (ii) the lifting operator
↓
C ignores non-

quiescent histories.
While formally correct, the second reason in the argument above does not seem

faithful to the original intentions of Herlihy and Wing [12]. Definition 46 does not place
any restrictions on the non-quiescent histories in the object systems, whereas Herlihy
and Wing imposed a condition on non-quiescent histories: Every non-quiescent his-
tory H in OSC should correspond to a quiescent history in OSA that can be obtained
by completing some pending calls in H with arbitrary responses and dropping the re-
maining pending calls in H . Stated differently, every non-quiescent history H in OSC
should correspond to a terminating history in OSA. Below, we define another lifting
of relations, which is more in line with the spirit of [12].

Definition 47 (Completable Histories). Given a well-formed history H , we denote
by complete(H) the maximal subsequence of H which contains no pending invo-
cations. We say that a quiescent well-formed history H ′ is a completion of H if
H ′ = complete(H;Hres), where Hres is a (possibly empty) sequence of response
actions. We denote the set of all possible completions of H by completions(H).

We now try to use the the notion of completable histories to modify the definition
of lifted relations.

Definition 48 (Lifted Relations by Completion). LetR be a binary relation on well-
formed histories. The lifting by completion of R to object systems OSA and OSC ,
denoted OSC

c
CR OSA, is

OSC
c
CR OSA ⇐⇒ ∀H ∈ OSC . ∃Hc ∈ completions(H).

∃H ′ ∈ getQuiescent(OSA). (Hc, H
′) ∈ R.

Note that if H is a quiescent history then H = complete(H). Also note that C,
↓
C,

and
c
C agree on the way the liftedR should behave concerning quiescent histories.

26

Unfortunately, replacing C with
c
C in Theorems 44 and 45 does not allow to estab-

lish the desired completeness result without changing the proofs given in Section 5.2.2.
Intuitively, the reason is that (i) our notion of observational refinement considers only
terminating, completed computations, and (ii) considering Hc ∈ completions(H) in-
stead ofH in the lifted relation does not add new behaviours to OSC . Finding a proper
remedy for this issue is a future work.

6. Abstraction-based Characterization

Section 5 gives a complete characterization of sequential consistency and lineariz-
ability. However, it does not explain where the relations ≡ and v in sequential consis-
tency and linearizability come from. In this section, we answer this question using an
abstraction-based approach.

Our answer complements a standard informal view of sequential consistency and
linearizability as conditions ensuring the illusion of atomicity. The answer provides an
alternative view where sequential consistency and linearizability are understood based
on conservative over-approximations of dependencies among object system actions that
may arise in some client programs.

The result of this section is based on a reading of a well-formed historyH , whereH
means not the single traceH itself but the set of all the well-formed traces whose object
actions are described by H . Formally, we let WHist be the set of all the well-formed
histories, and use function means, which is defined in Section 5.1.

Using means, we define a new relation on well-formed histories, which compare
possible dependencies between actions in the histories.

Definition 49 (Abstract Dependency). For each well-formed history H , the abstract
dependency <#

H for H is the binary relation on actions in H determined as follows:

Hi <
#
H Hj ⇐⇒ i < j ∧ ∃τ ∈means(H). Hi <

+
τ Hj .

Definition 50 (Causal Complexity Relation). The causal complexity relationv# is
a binary relation on well-formed histories, such thatH v# S iff there exists a bijection
π : {1, . . . , |H|} → {1, . . . , |S|} satisfying (i) ∀i ∈ {1, . . . , |H|}. Hi =Sπ(i) and (ii)
∀i, j ∈ {1, . . . , |H|}. Hi <

#
H Hj =⇒ Sπ(i) <

#
S Sπ(j).

Intuitively, H v# S means that S is a rearrangement of actions in H that preserves
all the abstract causal dependencies in H . Note that S might contain abstract causal
dependencies that are not present in H .

The results below show when sequential consistency or linearizability coincides
with causal complexity relation.

Theorem 51. If client operations of different threads are independent, we have that

∀H,S ∈WHist . H ≡ S ⇐⇒ H v# S.

27

Proof: For each well-formed history H , define a relation <′H on actions of H by

Hi <
′
H Hj ⇐⇒ (i < j ∧ getTid(Hi) = getTid(Hj)).

We will prove this theorem by showing two lemmas on well-formed histories. The first
lemma is that H ≡ S iff there exists a bijection π such that

∀i, j ∈ {1, . . . , |H|}. Hi =Sπ(i) ∧ (Hi <
′
H Hj =⇒ Sπ(i) <

′
S Sπ(j)). (9)

The second lemma is that for all well-formed histories H , the two relations <′H and
<#
H coincide. Note that the second lemma allows us to replace <′H and <′S in (9)

by <#
H and <#

S . This replacement would change the first lemma to the equivalence
claimed in this theorem. Thus, it is sufficient to prove these two lemmas.

To show the only-if direction of the first lemma, suppose that H ≡ S. Then,
|H| = |S| and H|t = S|t for all thread-ids t. Thus, we can define a bijection π :
{1, . . . , |H|} → {1, . . . , |S|} by setting π(i) to j where both Hi and Sj are the same
k-th action in H|t (= S|t) for some k and t. It is straightforward to show that π is the
required bijection in the first lemma. For the if direction, suppose that π is a bijection
satisfying (9). Choose an arbitrary thread-id t. We need to show that H|t = S|t. Since
S is a rearrangement of actions in H , we have |H|t| = |S|t|.14 Pick an index k of
H|t. It suffices to show that (H|t)k = (S|t)k. Let i be the index of H such that Hi

is the k-th element of H|t. Then, in the history H , exactly (k − 1)-many actions by
the thread t appear before i, and (|H|t| − k)-many actions by t appear after i. Now,
by the implication in (9), in the history S, at least k − 1 actions by the thread t should
appear before π(i), and at least |H|t| − k actions by t should appear after π(i). But,
|S|t| = |H|t|. Thus, π(i) is the k-th action by the thread t in S. Note that by the
equality in (9), Hi = Sπ(i), so that the k-th action of H|t is the same as the k-th action
of S|t.

Now, we move on to the second lemma: <#
H = <′H . Note that that the inclusion

<#
H⊆<′H is already proved in Lemma 41. To prove the other inclusion, suppose that

Hi <
′
H Hj . Then, i < j and ¬(Hi#Hj). Thus, Hi <

+
H Hj . Furthermore, since H is

well-formed, it belongs to means(H). By combining Hi <
+
H Hj and H ∈ means(H),

we can obtain Hi <
#
H Hj as desired.

Theorem 52. Assume that for every pair (t, t′) of thread-ids with t 6= t′, there exist
client operations a ∈ Copt and a′ ∈ Copt′ with ¬(a#a′). Under this assumption, we
have the following equivalence: ∀H,S ∈WHist . H v S ⇐⇒ H v# S.

Proof: For each well-formed history H , define a relation <′′H on actions of H by

Hi <
′′
H Hj ⇐⇒ (i < j ∧ (getTid(Hi) = getTid(Hj) ∨ Hi≺H Hj)). (10)

As in the proof of Theorem 51, we will prove this theorem by showing two lemmas
on well-formed histories. The first lemma is that H v S iff there is a bijection π on
{1, . . . , |H|} such that

∀i, j ∈ {1, . . . , |H|}. Hi =Sπ(i) ∧ (Hi <
′′
H Hj =⇒ Sπ(i) <

′′
S Sπ(j)). (11)

14|H|t| and |S|t| denote the length of the sequences H|t and S|t, respectively.

28

The second lemma is that for all well-formed histories H , the two relations <′′H and
<#
H coincide. To see how the conclusion of the theorem follows these lemmas, note

that the second lemma allows us to replace <′′H and <′′S in (11) by <#
H and <#

S . This
replacement would give the desired equivalence for this theorem. In the remainder of
the proof, we will show these two lemmas.

To show the only-if direction of the first lemma, suppose that H v S. Then, there
is a bijection π such that

∀i, j ∈ {1, . . . , |H|}. Hi =Sπ(i) ∧ (Hi ≺H Hj =⇒ Sπ(i) ≺S Sπ(j)). (12)

We will show that π satisfies (11). Suppose that Hi <
′′
H Hj for some i, j. Then, i < j.

Let t = getTid(Hi) and t′ = getTid(Hj). We do the case analysis on Hi ≺H Hj . If
Hi ≺H Hj , (12) implies that Sπ(i) ≺S Sπ(j), which in turn entails that π(i) < π(j)
(by the definition of ≺S). Thus, in this case, we have Sπ(i) <

′′
S Sπ(j) as desired. If

¬(Hi ≺H Hj), we should have that t = t′, because Hi <
′′
H Hj . Thus,

getTid(Sπ(i)) = getTid(Hi) = t = t′ = getTid(Hj) = getTid(Sπ(j)).

This means that we can complete the only-if direction by showing that π(i) < π(j).
Note that Hi and Hj should be the call and return actions of the same method call,
respectively; otherwise, due to the well-formedness of H , we can find a return for Hi

and a call for Hj between Hi and Hj , which entails that Hi ≺H Hj , contradicting our
assumption ¬(Hi ≺H Hj). Another fact to note is that since H is well-formed and Hj

is the return for Hi,

∀k. getTid(Hk) = t =⇒ (k < i =⇒ Hk ≺H Hi) ∧ (j < k =⇒ Hi ≺H Hk).

By (12) and the definition of ≺S ,

∀k. getTid(Hk) = t
=⇒ (k < i =⇒ π(k) < π(i)) ∧ (j < k =⇒ π(i) < π(k)). (13)

Letm be the number of t’s actions inH that appears before i and let n be the number of
t’s actions in H that occurs after j. Then, by what we have just shown, the number of
t’s actions in H is n+m+ 2. For the sake of contradiction, suppose that π(j) < π(i).
(They cannot be the same because π is bijective.) Then, because of (13) and this
supposition, at least (m + 1)-many actions by t occur before Sπ(i) in S. But, among
these m+ 1 actions, there are m/2 + 1 return actions, because Hj = Sπ(j) is a return
action and the half of the remaining m actions are return actions. Now, due to the well-
formedness of S, all these return actions should have matching call actions in S before
them, so that we can infer that there are (m + 2) actions by t in S before π(i). Since
n-many actions of t appear in H after j, (13) implies that there are at least n-many t’s
actions after π(i) in S. By collecting all these numbers, we can infer that S has at least
(m + 2) + 1 + n actions by t (where 1 comes from π(i)). Note that this number is
greater than m+ n+ 2, the number of t’s actions in H . This is contradictory, because
H|t = S|t.

For the if direction of the first lemma, suppose that π is a bijection satisfying (11).
To show that H ≡ S, we reuse the proof of Theorem 51. The key observation here is

29

that by the definitions of <′H and <′′H , (11) implies (9). Furthermore, while proving
Theorem 51, we already showed that (9) implies H ≡ S. Thus, H ≡ S holds here as
well. We now show that π satisfies the requirement in the definition of linearizability.
Suppose that Hi ≺H Hj . Then, Hi <

′′
H Hj by (10), and Sπ(i) <

′′
S Sπ(j) by (11). Let

t = getTid(Sπ(i)) and t′ = getTid(Sπ(j)). We do the case analysis on t = t′. Suppose
that t 6= t′. Then, by (10), Sπ(i) ≺S Sπ(j), as desired. Now, suppose t = t′. In this
case, we only need to show that Sπ(j) is not a return for Sπ(i), because that is the only
case that ¬(Sπ(i) ≺S Sπ(j)). Since t = t′,

getTid(Hi) = getTid(Sπ(i)) = t = t′ = getTid(Sπ(j)) = getTid(Hj).

Furthermore, Hi ≺H Hj by the choice of i, j. Thus, Hj is not a return for Hi. This
means that Hi is a return and Hj is a call, or there is some action by the thread t
between Hi and Hj . In both cases, (11) implies that Sπ(j) is not a return for Sπ(i), as
desired.

Now, we move on to the second lemma: <#
H = <′′H . The inclusion <#

H⊆<′′H is
already proved in Lemma 38. To prove the other inclusion, suppose that Hi <

′′
H Hj .

Then, i < j. Let t = getTid(Hi) and t′ = getTid(Hj). If t = t′, we have ¬(Hi#Hj).
This implies that Hi <

#
H Hj , because H is well-formed so that it is in means(H).

Now, consider the other case that t 6= t′. Then, Hi ≺H Hj . This means that for some
indices k, l of H ,

(i ≤ k < l ≤ j) ∧ getTid(Hk) = t ∧ getTid(Hl) = t′ ∧ retAct(Hk) ∧ callAct(Hl).

We use the assumption of this theorem, and get client operations a ∈ Copt and a′ ∈
Copt′ with ¬(a#a′). Using these a, a′, we define τ to be

H1; H2; . . . Hk; (t, a); Hk+1; . . . Hl−1; (t′, a′); Hl; . . . H|H|.

Since H is well-formed, Hk is a return by t and Hl is a call by t′, the trace τ is well-
formed as well. Furthermore,

Hi <τ Hk <τ (t, a) <τ (t′, a′) <τ Hl <τ Hj .

(Note that action (t, a) resp. (t′, a′) is never plugged into the trace in between a match-
ing call and return action of thread t resp. t′. Thus, it can be generated by having the
assumed action a resp. a′ follow resp. precedes the method invocation using sequential
composition). This shows that Hi <

+
τ Hj . From this follows the desired conclusion:

Hi <
#
H Hj .

7. Discussion and Related Work

Our soundness results exploit the fact that our semantics of programs cannot dis-
tinguish one trace from its dependency-preserving permutations. This fact was noticed
in the early days of concurrency research, and it was formalized in the various partial
order semantics of concurrency [29, 23, 18]. Indeed, the notions of independent actions
and trace equivalence in Section 5.1 are from the theory of Mazurkiewicz traces [18].

30

However, there is one major difference between our semantics and other partial
order semantics: in our semantics two events in a single trace can be related in three
ways — definitely dependent, definitely concurrent or unrelated. On the other hand,
in classic partial-order semantics, the second and third options are usually combined
into one, meaning “possibly concurrent”. Recall that our semantics splits the call and
the return of each method invocation. Thus, when each method call and correspond-
ing return is considered as a single event, traces in our semantics can specify both
dependency and concurrency relationships among events explicitly, the first by the de-
pendency relation <+

τ and the second by the overlapping call-returns of method invo-
cations. Furthermore, these dependency and concurrency relationships are preserved
when traces are combined in the semantics, say, by the interleaving operator, and this
preservation result plays a crucial role in our soundness results. This contrasts with the
standard approach in partial order semantics, such as Mazurkiewicz traces, where only
the dependency relationship is specified explicitly and the concurrency among events
is represented by the absence of dependency. This implicit concurrency relationship is
not preserved by these semantics. For instance, the parallel composition operator for
Mazurkiewicz traces can introduce new dependencies between existing events, thereby
invalidating implicit concurrency relationships among those events.

Our soundness proof relies on “definite concurrency” crucially. Roughly speaking,
“definite concurrency” prevents clients from creating arbitrary causal relationship be-
tween two method invocations. Hence, it allows us to have sound methods for proving
observational refinement.

We remark that the splitting of a single event into beginning and ending sub-events,
utilised in Herlihy and Wing’s definition of linearizability [12], also appeared in the
grainless semantics by Reynolds [25] and Brookes [4]. There they used the splitting
for a different goal, which is to show that the meanings of race-free programs are
independent of the atomicity assumption made by programming languages. Note that
the correctness conditions for racy data structures are the subject of this paper.

Our definition of histories is similar to that of Herlihy and Wing’s [12], up to a few
syntactical differences. However, our notion of object systems is more general than
their notion of concurrent objects. There, every object is specified separately and thus,
in our terminology, object systems are local. Furthermore, the specification of every
object is expected to be done using only sequential histories. While restricting objects
to have sequential behaviour allows using existing specification methods to describe its
behaviour, we found that, formally, it is not needed. Thus, we do not require that.

De Francesco et al. studied the connection [8, 26] between Petri nets and serializ-
ability, a commonly-used and important correctness condition for concurrent database
systems [20, 28, 3]. Informally, a concurrent database system is said to be serializable
if for every permitted interleaved execution of transactions (which consist of several
atomic steps), one can find equivalent sequential execution, by swapping independent
atomic operations of those transactions. Notice that serializability is concerned with
entire systems, not libraries or objects or other components that are intended to be
used inside bigger enclosing programs. On the other hand, the main concern of lin-
earizability is those libraries and objects. As our results show, linearizability implies a
refinement relationship that holds whenever an object is placed in any enclosing sys-
tem. The results of De Francesco et al., concerned as they are with serializability, are

31

not directly applicable for showing the connection between linearizability and obser-
vational refinement, as we did in this paper. However, they might provide new insights
for proving that the implementations of concurrent libraries are linearizable, since con-
current libraries are often designed from sequential ones by relaxing synchronisation
requirements.

In this paper, we have not considered the issue of obtaining object systems (sets
of histories) from concrete implementations of concurrent objects. One good place to
start to address this issue would be the work of Jeffrey and Rathke [15], where they
provided a fully abstract semantics of concurrent object systems and where they also
considered concurrent objects with more flexible features, such as callbacks, than those
assumed in the work on linearizability and this paper.

Shared memory consistency models have been extensively studied by the concur-
rent algorithms community. (See, e.g., [27]). Of particular interest to this paper, are
the works of Graf [9] and Jonsson et al. [16]. These works appeared in a special issue
dedicated to various approaches to verify sequential consistency of the lazy caching
algorithm of Afek et al. [1]. While the problem addressed in these works is different
and concerns, in our terminology, verifying that the data structure (i.e., the algorithm)
produces only sequentially consistent histories, it is still interesting to consider our
abstraction-based approach, discussed in Section 6 in the light of the abstract interpre-
tation [6] based approach of Graf [9]. It is also interesting to compare our simulation-
based approach, discussed in Section 5.1, with the transducers-based approach of Jon-
sson et al. [16]. The latter provides an interesting discussion regarding limitations of
the simulation approach in certain cases, e.g., when the implementation has a certain
non-deterministic flavour. We can utilise simulation because, unlike [16], we discuss
the ramifications of sequential consistency and linearizability from the point of view
of the client. In particular, we have a complete record of the history of the interaction
between the client program and the data structure.

8. Conclusions

Developing a theory of data abstraction in the presence of concurrency has been a
long-standing open question in the programming language community. In this paper,
we have shown that this open question can be attacked from a new perspective, by
carefully studying correctness conditions proposed by the concurrent-algorithm com-
munity, using the tools of programming language theory. We prove that linearizability
is a sound method for proving observational refinements for concurrent objects, which
is complete when threads are allowed to access shared global variables. When client
operations of different threads are independent, we have shown that sequential consis-
tency becomes a sound and complete proof method for observational refinements. We
hope that our new understanding on concurrent objects can facilitate the long-delayed
transfer of the rich existing theories of data-abstraction [13, 14, 24, 19, 22] from se-
quential programs to concurrent ones.

In the paper, we used a standard assumption on the programming language from
the concurrent-algorithm community. We assumed that the programming language did
not allow callbacks from concurrent objects to client programs, that all the concurrent

32

objects were properly encapsulated [2], and that programs were running under “sequen-
tially consistent” memory models. Although widely used by the concurrent-algorithm
experts, these assumptions limit the applicability of our results. In fact, they also limit
the use of linearizability in the design of concurrent data structures. Removing these
assumptions and extending our results is what we plan to do next.

Acknowledgements. We thank the anonymous referees of this paper and the anony-
mous referees of the ESOP’09 paper [7] for helping us to improve this work; Viktor
Vafeiadis and Matthew Parkinson for useful comments; and Ugo Montanari, Julian
Rathke and Matthew Hennessy for pointing out related work. We acknowledge the
support of the EPSRC. O’Hearn acknowledges the support of a Royal Society Wolfson
Research Merit Award.

References

[1] Afek, Y., Brown, G., Merritt, M., 1993. Lazy caching. ACM Trans. Program.
Lang. Syst. 15 (1), 182–205.

[2] Banerjee, A., Naumann, D. A., 2002. Representation independence, confinement
and access control. In: ACM Symposium on Principles of Programming Lan-
guages. pp. 166–177.

[3] Bernstein, P. A., Hadzilacos, V., Goodman, N., 1987. Concurrency Control and
Recovery in Database Systems. Addison-Wesley.

[4] Brookes, S., 2006. A grainless semantics for parallel programs with shared muta-
ble data. Electron. Notes Theor. Comput. Sci. 155, 277–307.

[5] Brookes, S. D., 2004. A semantics for concurrent separation logic. In: Interna-
tional Conference on Concurrency Theory. pp. 16–34.

[6] Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In:
ACM Symposium on Principles of Programming Languages. pp. 238–252.

[7] Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H., 2009. Abstraction for concur-
rent objects. In: European Symposium on Programming. pp. 252–266.

[8] Francesco, N. D., Montanari, U., Ristori, G., 1994. Modelling concurrent ac-
cesses to shared data via petri nets. In: Programming Concepts, Methods and
Calculi. pp. 403–422.

[9] Graf, S., 1999. Characterization of a sequentially consistent memory and verifi-
cation of a cache memory by abstraction. Distrib. Comput. 12 (2-3), 75–90.

[10] He, J., Hoare, C. A. R., Sanders, J. W., 1986. Data refinement refined. In: Euro-
pean Symposium on Programming. pp. 187–196.

[11] Herlihy, M., Shavit, N., 2008. The Art of Multiprocessor Programming. Morgan
Kaufmann.

33

[12] Herlihy, M., Wing, J. M., 1990. Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst. 12 (3), 463–492.

[13] Hoare, C. A. R., 1972. Proof of correctness of data representations. Acta Inf. 1,
271–281.

[14] Hoare, C. A. R., He, J., Sanders, J. W., May 1987. Prespecification in data refine-
ment. Inf. Proc. Letter 25 (2), 71–76.

[15] Jeffrey, A., Rathke, J., 2005. A fully abstract may testing semantics for concurrent
objects. Theor. Comput. Sci. 338 (1-3), 17–63.

[16] Jonsson, B., Pnueli, A., Rump, C., 1999. Proving refinement using transduction.
Distrib. Comput. 12 (2-3), 129–149.

[17] Lamport, L., 1979. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers 28 (9), 690–691.

[18] Mazurkiewicz, A. W., 1984. Traces, histories, graphs: Instances of a process
monoid. In: International Symposiums on Mathematical Foundations of Com-
puter Science. pp. 115–133.

[19] Mitchell, J., Plotkin, G., 1988. Abstract types have existential types. ACM Trans.
Program. Lang. Syst. 10 (3), 470–502.

[20] Papadimitriou, C. H., 1979. The serializability of concurrent database updates. J.
ACM 26 (4), 631–653.

[21] Plotkin, G., 1977. LCF considered as a programming language. Theor. Comput.
Sci. 5, 223–255.

[22] Plotkin, G., Abadi, M., 1993. A logic for parametric polymorphism. In: Interna-
tional Conference on Typed Lambda Calculi and Applications. pp. 361–375.

[23] Pratt, V., 1984. The pomset model of parallel processes: Unifying the temporal
and the spatial. In: Seminar on Concurrecy. pp. 180–196.

[24] Reynolds, J. C., 1983. Types, abstraction and parametric polymorphism. In: Ma-
son, R. E. A. (Ed.), Information Processing ’83. North-Holland, Amsterdam, pp.
513–523.

[25] Reynolds, J. C., 2004. Toward a grainless semantics for shared-variable concur-
rency. In: Foundations of Software Technology and Theoretical Computer Sci-
ence. pp. 35–48.

[26] Ristori, G., 1994. Modelling systems with shared resources via petri nets. Ph.D.
thesis, Dipartimento di Informatica, University of Pisa.

[27] Steinke, R. C., Nutt, G. J., 2004. A unified theory of shared memory consistency.
J. ACM 51 (5), 800–849.

34

[28] Weikum, G., Vossen, G., 2001. Transactional Information Systems: Theory, Al-
gorithms, and the Practice of Concurrency Control. Morgan Kaufmann.

[29] Winskel, G., Nielsen, M., 1995. Models for concurrency. In: Handbook of Logic
in Computer Science. Oxford University Press, pp. 1–148.

35

