
Abstraction for Concurrent Objects?

Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang

Queen Mary University of London, UK

Abstract. Concurrent data structures are usually designed to satisfy correctness
conditions such as sequential consistency and linearizability. In this paper, we
consider the following fundamental question: what guarantees are provided by
these conditions for client programs? We formally show that these conditions can
be characterized in terms of observational refinement. Our study also provides a
new understanding of sequential consistency and linearizability in terms of ab-
straction of dependency between computation steps of client programs.

1 Introduction

The design and implementation of correct and efficient concurrent programs is a chal-
lenging problem. Thus, it is not surprising that programmers prefer to develop concur-
rent software mainly by utilizing highly-optimized concurrent data structures that have
been implemented by experts.

Unfortunately, there is a gap in our theoretical understanding, which can have a se-
rious consequence on the correctness of client programs of those concurrent data struc-
tures. Usually, programmers expect that the behavior of their program does not change
whether they use experts’ data structures or less-optimized but obviously-correct data
structures. In the programming language community, this expectation has been formal-
ized as observational refinement [4, 8, 11]. On the other hand, concurrent data struc-
tures are designed with different correctness conditions proposed by the concurrent-
algorithm community, such as sequential consistency [9] and linearizability [6]. Can
these correctness conditions meet programmers’ expectation? In other words, what are
the relationships between these conditions and observational refinement? As far as we
know, no systematic studies have been done to answer this question.

The goal of this paper is to close the aforementioned gap. We show that (1) lin-
earizability coincides with observational refinement, and (2) as long as the threads are
non-interfering (except through experts’ concurrent data structures), sequential consis-
tency is equivalent to observational refinement. Our results pinpoint when it is possible
to replace a concurrent data structure by another sequentially consistent or lineariz-
able data structure in (client) programs, while preserving observable properties of the
programs. One direction in this connection (that linearizability implies observational re-
finement) has been folklore amongst concurrent-algorithm researchers, and our results
provide the first formal confirmation of this folklore. On the other hand, as far as we
are aware the other direction (when observational refinement implies linearizability or
sequential consistency) is not prefigured or otherwise suggested in the literature.
? We would like to thank anonymous referees, Viktor Vafeiadis and Matthew Parkinson for

useful comments. This work was supported by EPSRC.

Programs, Object Systems, and Histories. A concurrent data structure provides a set
of procedures, which may be invoked by concurrently executing threads of the client
program using the data structure. Thus, procedure invocations may overlap. (In our
setting, a data structure can neither create threads nor call a procedure of the client.) We
refer to a collection of concurrent data structures as an object system.

In this paper, we are not interested in the implementation of an object system; we
are only interested in the possible interactions between the client program and the ob-
ject system. Thus, we assume that an object system is represented by a set of histories.
Every history records a possible interaction between the client application program and
the object system. The interaction is given in the form of sequences of procedure in-
vocations made by the client and the responses which it receives. A program can use
an object system only by interacting with it according to one of the object system’s
histories. 1

Example 1. The history H0 = (t1, call q.enq(1)); (t1, ret() q.enq); (t2, call q.deq());
(t2, ret(1) q.deq) records an interaction in which thread t1 enqueues 1 into queue q
followed by a dequeue by thread t2. The histories

H1 = (t1, call q.enq(1))(t1, ret() q.enq)(t2, call q.enq(2))(t2, ret() q.enq)
H2 = (t2, call q.enq(2))(t2, ret() q.enq)(t1, call q.enq(1))(t1, ret() q.enq)
H3 = (t1, call q.enq(1))(t2, call q.enq(2))(t1, ret() q.enq)(t2, ret() q.enq)

record interactions in which thread t1 enqueues 1 into the queue and thread t2 enqueues
2. In H1, the invocation made by t1 happens before that of t2 (i.e., t1 gets a response
before t2 invokes its own procedure). In H2, it is the other way around. In H3, the two
invocations overlap.

Sequential Consistency and Linearizability. Informally, an object system OSC is se-
quentially consistent wrt. an object system OSA if for every history HC in OSC , there
exists a history HA in OSA that is just another interleaving of threads’ actions in HC :
in both HC and HA, the same threads invoke the same sequences of operations (i.e.,
procedure invocations) and receive the same sequences of responses. We say that such
HC and HA are weakly equivalent. (We use the term weak equivalence to emphasis
that the only relation between HC and HA is that they are different interleavings of
the same sequential threads.) OSC is linearizable wrt. OSA, if for every history HC

in OSC , there is some HA in OSA such that (1) HC and HA are weakly equivalent
and (2) the global order of non-overlapping invocations of HC is preserved in HA.2

In the context of this paper, the main difference between sequential consistency and
linearizability is, intuitively, that the former preserves only the happens-before relation

1 This is a standard assumption in concurrent algorithms work, which Herlihy and Shavit refer
to as interference freedom [5]: it is an assumption which would have to be verified by other
means when applying the theory to particular programming languages or programs.

2 It is common to require that OSA be comprised of sequential histories, i.e., ones in which
invocations do not overlap. (In this setting, linearizability intuitively means that every oper-
ation appears to happen atomically between its invocation and its response.) However, this
requirement is not technically necessary for our results, so we do not impose it.

between operations of the same thread while the latter preserves this relation between
the operations of all threads.

Example 2. The histories H1, H2, and H3 are weakly equivalent. None of them is
weakly equivalent to H0. The history H3 is linearizable wrt. H1 as well as H2, be-
cause H3 does not have non-overlapping invocations. On the other hand, H1 is not
linearizable with respect to H2; in H1, the enqueue of t1 is completed before that of t2
even starts, but this global order on these two enqueues is reversed in H2.

Observational Refinement. Our notion of observational refinement is based on observ-
ing the initial and final values of variables of client programs. (One can think of the
program as having a final command “print all variables”.) We say that an object sys-
tem OSC observationally refines an object system OSA if every program P with OSA,
replacing OSA by OSC does not generate new observations: for every initial state s,
the execution of P with OSC at s produces only those output states that can already be
obtained by running P with OSA at s.

The main results of this paper is the following characterization of sequential con-
sistency and linearizability in terms of observational refinement:

1. OSC observationally refines OSA iff OSC is sequential consistent with respect
to OSA, assuming client operations (e.g., assignments to variables) of each thread
access thread-local variables (or resources) only.

2. OSC observationally refines OSA iff OSC is linearizable with respect to OSA,
assuming that client operations may use at least one shared global variable.

We start the paper by defining a programming language and giving its semantics
together with the formal definition of observational refinement (Sections 2, 3, 4 and
5). Then, we describe a generic technique for proving observational refinement in Sec-
tion 6, and use this technique to prove the connection between observational refinement
and linearizability or sequential consistency in Section 7. The next section revisits the
definitions of sequential consistency and linearizability, and provides the analysis of
them in terms of the dependency between computation steps. Finally, we conclude the
paper in Section 9. For space reasons, some proofs are omitted. They can be found in
the full version of the paper [3].

2 Programming Language

We assume that we are given a fixed collection O of objects, with method calls o.f(n).
For simplicity, all methods will take one integer argument and return an integer value.
We will denote method calls by x:=o.f(e).

The syntax of sequential commands C and complete programs P is given below:

C ::= c | x:=o.f(e) | C;C | C + C | C? P ::= C1 ‖ · · · ‖ Cn

Here, c ranges over an unspecified collection PComm of primitive commands, + is non-
deterministic choice, ; is sequential composition, and (·)? is Kleene-star (iterated ;).
We use + and (·)? instead of conditionals and while loops for theoretical simplicity:

given appropriate primitive actions the conditionals and loops can be encoded. In this
paper, we assume that the primitive commands include assume statements assume(b)
and assignments x:=e not involving method calls.3

3 Action Trace Model

Following Brookes [2], we will define the semantics of our language in two stages. In
the first there will be a trace model, where the traces are built from atomic actions. This
model resolves all concurrency by interleaving. In the second stage, which is shown in
Section 5, we will define the evaluation of these action traces with initial states.

Definition 1. An atomic action (in short, action) ϕ is a client operation or a call or
return action: ϕ ::= (t, a) | (t, call o.f(n)) | (t, ret(n) o.f). Here, t is a thread-id
(i.e., a natural number), a in (t, a) is an atomic client operation taken from an unspec-
ified set Copt (parameterized by the thread-id t), and n is an integer. An action trace
(in short, trace) τ is a finite sequential composition of actions (i.e., τ ::= ϕ; · · · ;ϕ).

We identify a special class of traces where calls to object methods run sequentially.

Definition 2. A trace τ is sequential when all calls in τ are immediately followed by
matching returns, that is, τ belongs to the set(⋃
t,a,o,f,n,m

{ (t, a), (t, call o.f(n)); (t, ret(m) o.f) }
)∗(⋃

t,o,f,n

{ ε, (t, call o.f(n)) }
)
.

Intuitively, the sequentiality means that all method calls to objects run atomically. Note
that the sequentiality also ensures that method calls and returns are properly matched
(possibly except the last call), so that, for instance, no sequential traces start with a
return action, such as (t, ret(3) o.f).

The execution of a program in this paper generates only well-formed traces.

Definition 3. A trace τ is well-formed iff for all thread-ids t, the projection of τ to the
t-thread, τ |t, is sequential.

The well-formedness formalizes two properties of traces. Firstly, it ensures that all the
returns should have corresponding method calls. Secondly, it formalizes the intuition
that each thread is a sequential program, if it is considered in isolation. Thus, when the
thread calls a method o.f , it has to wait until the method returns, before doing anything
else. We denote the set of all well-formed traces by WTraces .

Our trace model T (−) defines the meaning of sequential commands and programs
in terms of traces, and it is shown in Figure 1. In our model, a sequential command C
means a set T (C)t of well-formed traces, which is parametrized by the id t of a thread
running the command. The semantics of a complete program (a parallel composition)
P , on the other hand, is a non-parametrized set T (P) of well-formed traces; instead of
taking thread-ids as parameters, T (P) creates thread-ids.

3 The assume(b) statement acts as skip when the input state satisfies b. If b does not hold in the
input state, the statement deadlocks and does not produce any output states.

T (c)t = { (t, a1); (t, a2); . . . ; (t, ak) | a1; a2; . . . ; ak ∈ [[c]]t }
T (x:=o.f(e))t = { τ ; (t, call o.f(n)); (t, ret(n′) o.f); τ ′ |

n, n′ ∈ Integers ∧ τ ∈ T (assume(e=n))t ∧ τ ′ ∈ T (x:=n′)t }
T (C1;C2)t= { τ1; τ2 | τi ∈T (Ci)t } T (C1+C2)t=T (C1)t∪T (C2)t T (C?)t=(T (C)t)?

T (C1 ‖ · · · ‖ Cn) =
S
{ interleave(τ1, ..., τn) | τi ∈ T (Ci)i ∧ 1 ≤ i ≤ n }

Fig. 1. Action Trace Model. Here τ ∈ interleave(τ1, ..., τn) iff every action in τ is done by a
thread 1 ≤ i ≤ n and τ |i = τi for every such thread i.

Two cases of our semantics are slightly unusual and need further explanations. The
first case is the primitive commands c. In this case, the semantics assumes that we
are given an interpretation [[c]]t of c, where c means finite sequences of atomic client
operations (i.e., [[c]]t ⊆ Cop+

t). By allowing sequences of length 2 or more, this as-
sumed interpretation allows the possibility that c is not atomic, but implemented by a
sequence of atomic operations. The second case is method calls. Here the semantics
distinguishes calls and returns to objects, to be able to account for concurrency (over-
lapping operations). Given x:=o.f(e), the semantics non-deterministically chooses two
integers n, n′, and uses them to describe a call with input n and a return with result n′.
In order to ensure that the argument e evaluates to n, the semantics inserts the assume
statement assume(e=n) before the call action, and to ensure that x gets the return value
n′, it adds the assignment x:=n′ after the return action. Note that some of the choices
here might not be feasible; for instance, the chosen n may not be the value of the pa-
rameter expression e when the call action is invoked, or the concurrent object never
returns n′ when called with n. The next evaluation stage of our semantics will filter out
all these infeasible call/return pairs.

Lemma 1. For all sequential commands C, programs P and thread-ids t, both T (C)t
and T (P) contain only well-formed traces.

4 Object Systems

The semantics of objects is given using histories, which are sequences of calls and
returns to objects. We first define precisely what the individual elements in the histories
are.

Definition 4. An object action is a call or return:ψ ::= (t, call o.f(n)) | (t, ret(n) o.f).
A historyH is a finite sequence of object actions (i.e.,H ::= ψ;ψ; . . . ;ψ). If a history
H is well-formed when viewed as a trace, we say that H is well-formed.

Note that in contrast to traces, histories do not include atomic client operations (t, a).
We will use A for the set of all actions, Ao for the set of all object actions, and Ac for
A−Ao, i.e., the set of all client operations.

We follow Herlihy and Wing’s approach [6], and define object systems.

Definition 5. An object system OS is a set of well-formed histories.

Notice that OS is a collective notion, defined for all objects together rather than for
them independently. Sometimes, the traces of a system satisfy special properties.

Definition 6. Let OS be an object system. We say that OS is sequential iff it contains
only sequential traces; OS is local iff for any well-formed history H , H ∈ OS ⇐⇒
(∀o.H|o ∈ OS).

A local object system is one in which the set of histories for all the objects together
is determined by the set of histories for each object individually. Intuitively, locality
means that objects can be specified in isolation. Sequential and local object systems
are commonly used as specifications for concurrent objects in the work on concurrent
algorithms. (See, e.g., [5]).

5 Semantics of Programs

We move on to the second stage of our semantics, which defines the evaluation of traces.
Suppose we are given a trace τ and an initial state s, which is a function from variables
x, y, z, . . . to integers.4 The second stage is the evaluation of the trace τ with s, and it
is formally described by the evaluation function eval below:

eval : States ×WTraces → P(States)
eval(s, (t, call o.f(n)); τ) = eval(s, τ) eval(s, (t, ret(n) o.f); τ) = eval(s, τ)

eval(s, (t, a); τ) =
⋃

(s,s′)∈[[a]] eval(s
′, τ) eval(s, ε) = {s}

The semantic clause for atomic client operations (t, a) assumes that we already have an
interpretation [[a]] where ameans a binary relation on States . Note that a state s does not
change during method calls and returns. This is because firstly, in the evaluation map, a
state describes the values of client variables only, not the internal status of objects and
secondly, the assignment of a return value n to a variable x in x:=o.f(e) is handled by
a separate client operation; see the definition of T (x:=o.f(e)) in Figure 1.

Now we combine the two stages, and give the semantics of programs P . Given a
specific object system OS , the formal semantics [[P]](OS) is defined as follows:

[[P]](OS) : States → P(States)
[[P]](OS)(s) =

⋃
{ eval(s, τ) | τ ∈ T (P) ∧ getHistory(τ) ∈ OS }

Here getHistory(τ) is the projection of τ to object actions. The semantics first calculates
all traces T (P) for τ , and then selects only those traces whose interactions with objects
can be implemented by OS . Finally, the semantics runs all the selected traces with the
initial state s.

Our semantics observes the initial and final values of variables in threads, and ig-
nores the object histories. One can think of the program as having a final command
“print all variables”, which gives us our observable. We use this notion of observation
and compare two different object systems OSA and OSC .

4 All the results of the paper except the completeness can be developed without assuming any
specific form of s. Here we do not take this general approach, to avoid being too abstract.

Definition 7. Let OSA and OSC be object systems. We say that

– OSC observationally refines OSA ⇐⇒ ∀P, s. [[P]](OSC)(s) ⊆ [[P]](OSA)(s);
– OSC is observationally equivalent to OSA ⇐⇒ ∀P. [[P]](OSC) = [[P]](OSA).

Usually, OSA is a sequential local object system that serves as a specification, and
OSC is a concurrent object system representing the implementation. The observational
refinement means that we can replace OSA by OSC in any programs without introduc-
ing new behaviors of those programs, and gives a sense that OSC is a correct imple-
mentation of OSA.

In the remainder of this paper, we will focus on answering the question: how do cor-
rectness conditions on concurrent objects, such as linearizability, relate to observational
refinement?

6 Simulation Relations on Histories

We start by describing a general method for proving observational refinement. Later,
in Section 7, we will show that both linearizability and sequential consistency can be
understood as specific instances of this method.

Roughly speaking, our method works as follows. Suppose that we want to prove that
OSC observationally refines OSA. According to our method, we first need to choose
a binary relation R on histories. This relation has to be a simulation, i.e., a relation
that satisfies a specific requirement, which we will describe shortly. Next, we should
prove that every history H in OSC is R-related to some history H ′ in OSA. Once we
finish both steps, the soundness theorem of our method lets us infer that OSC is an
observational refinement of OSA.

The key part of the method, of course, lies in the requirement that the chosen binary
relation R be a simulation. If we were allowed to use any relation for R, we could
pick the relation that relates all pairs of histories, and this would lead to the incorrect
conclusion that every OSC observationally refines OSA, as long as OSA is nonempty.

To describe our requirement onR and its consequence precisely, we need to formal-
ize dependency between actions in a single trace, and define trace equivalence based on
this formalization.

Definition 8 (Independent Actions). An action ϕ is independent of an action ϕ′, de-
noted ϕ#ϕ′, iff (1) getTid(ϕ) 6= getTid(ϕ′) and (2) for all s ∈ States , eval(s, ϕϕ′) =
eval(s, ϕ′ϕ). Here, getTid(ϕ) is the thread-id (i.e., the first component) of ϕ.

Definition 9 (Dependency Relations). For each trace τ , we define the immediate de-
pendency relation <τ to be the following relation on actions in τ :5 τi <τ τj ⇐⇒
i < j ∧ ¬(τi#τj). The dependency relation <+

τ on τ is the transitive closure of <τ .

5 Strictly speaking, <τ is a relation on the indices {1, . . . , |τ |} of τ so that we should have
written i <τ j. In this paper, we use a rather informal notation τi <τ τj instead, since we
found this notation easier to understand.

Definition 10 (Trace Equivalence). Traces τ, τ ′ are equivalent, denoted τ ∼ τ ′, iff
there exists a bijection π : {1, . . . , |τ |} → {1, . . . , |τ ′|} such that (∀i. τi = τ ′π(i)) and
(∀i, j. τi <+

τ τj ⇐⇒ τ ′π(i) <
+
τ ′ τ

′
π(j)).

Intuitively, τ ∼ τ ′ means that τ ′ can be obtained by swapping independent actions in
τ . Since we swap only independent actions, we expect that τ ′ and τ essentially mean
the same computation. The lemma below justifies this expectation, by showing that our
semantics cannot observe the difference between equivalent traces.

Lemma 2. For all τ, τ ′ ∈WTraces , if τ ∼ τ ′, then (∀P. τ ∈ T (P)⇐⇒ τ ′ ∈ T (P))
and (∀s. eval(s, τ) = eval(s, τ ′)).

We are now ready to give the definition of simulation, which encapsulates our re-
quirement on relations on histories, and to prove the soundness of our proof method
based on simulation.

Definition 11 (Simulation). A binary relationR on histories is a simulation iff for all
well-formed histories H and H ′ such that (H,H ′) ∈ R,

∀τ ∈WTraces. getHistory(τ) =H =⇒ ∃τ ′ ∈WTraces. τ ∼ τ ′ ∧ getHistory(τ ′) =H ′.

One way to understand this definition is to read a history H as a representation of
the trace set means(H) = {τ ∈ WTraces | getHistory(τ) = H}. Intuitively, this
set consists of the well-formed traces whose interactions with objects are precisely H .
According to this reading, the requirement in the definition of simulation simply means
that means(H) is a subset of means(H ′) modulo trace equivalence∼. For every relation
R on histories, we define its lifting to a relation CR on object systems as follows:
OSC CR OSA ⇐⇒ ∀H ∈ OSC . ∃H ′ ∈ OSA. (H,H ′) ∈ R.

Theorem 1. If OSC CROSA andR is a simulation, OSC observationally refines OSA.

Proof. Consider a program P and states s, s′ such that s′ ∈ [[P]](OSC)(s). Then, by the
definition of [[P]], there exist a well-formed trace τ ∈T (P) and a historyH ∈OSC such
that getHistory(τ) =H and s′ ∈ eval(s, τ). Since H ∈OSC and OSC CROSA by our
assumption, there existsH ′ ∈OSA with (H,H ′)∈R. Furthermore,H andH ′ are well-
formed, because object systems contain only well-formed histories. Now, since R is a
simulation, τ is well-formed and getHistory(τ) =H , there exists a well-formed trace
τ ′ such that (1) τ ∼ τ ′ and (2) getHistory(τ ′) =H ′. Note that because of Lemma 2,
the first conjunct here implies that τ ′ ∈T (P) and s′ ∈ eval(s, τ ′). This and the second
conjunct getHistory(τ ′) =H ′ together imply the desired s′ ∈ [[P]](OSA)(s). ut

7 Sequential Consistency, Linearizability and Refinement

Now we explain the first two main results of this paper: (1) linearizability implies ob-
servational refinement; (2) sequential consistency implies observational refinement if
client operations of each thread access thread-local variables (or resources) only.

It is not difficult to obtain high-level understanding about why our results hold. Both
linearizability and sequential consistency define certain relationships between two ob-
ject systems, one of which is normally assumed sequential and local. Interestingly, in

both cases, we can prove that these relationships are generated by lifting some sim-
ulation relations. From this observation follow our results, because Theorem 1 says
that all such simulation-generated relationships on object systems imply observational
refinements.

In the rest of this section, we will spell out the details of the high-level proof
sketches just given. For this, we need to review the relations on histories used by se-
quential consistency and linearizability [6].

Definition 12 (Weakly Equivalent Histories). Two histories are weakly equivalent,
denotedH ≡H ′, iff their projections to threads are equal:6 H ≡H ′ ⇐⇒ ∀t.H|t =H ′|t.

As its name indicates, the weak equivalence is indeed a weak notion. It only says that
the two traces are both interleavings of the same sequential threads (but they could be
different interleavings).

Definition 13 (Happen-Before Order). For each historyH , the happen-before order
≺H is a binary relation on object actions in H defined by

Hi ≺H Hj ⇐⇒ ∃i′, j′. i ≤ i′ < j′ ≤ j ∧ retAct(Hi′) ∧ callAct(Hj′) ∧
getTid(Hi) = getTid(Hi′) ∧ getTid(Hj′) = getTid(Hj)

Here retAct(ψ) holds when ψ is a return and callAct(ψ) holds when ψ is a call.

This definition is intended to express that in the history H , the method call for Hi is
completed before the call for Hj starts. To see this intention, assume that H is well-
formed. One important consequence of this assumption is that if an object action ψ of
some thread t is followed by some return action ψ′ of the same thread in the history
H (i.e., H = ...ψ...ψ′...), then the return for ψ itself appears before ψ′ or it is ψ′.
Thus, the existence of Hi′ in the definition ensures that the return action for Hi appears
before or at Hi′ in the history H . By a similar argument, we can see that the call for
Hj appears after or at Hj′ . Since i′ < j′, these two observations mean that the return
for Hi appears before the call for Hj , which is the intended meaning of the definition.
Using this happen-before order, we define the linearizability relation v:

Definition 14 (Linearizability Relation). The linearizability relation is a binary re-
lation v on histories defined as follows: H v H ′ iff (1) H ≡ H ′ and (2) there
is a bijection π : {1, . . . , |H|} → {1, . . . , |H ′|} such that 7 (∀i.Hi = H ′π(i)) and
(∀i, j.Hi ≺H Hj =⇒ H ′π(i) ≺H′ H

′
π(j)).

Recall that for each relation R on histories, its lifting CR to the relation on object
systems is defined by: OS CROS ′ ⇐⇒ ∀H ∈OS .∃H ′ ∈OS ′. (H,H ′) ∈ R. Using
this lifting, we formally specify sequential consistency and linearizability.

Definition 15. Let OSA and OSC be object systems. We say that OSC is sequentially
consistent wrt. OSA iff OSCC≡OSA. We also say that OSC is linearizable wrt. OSA
iff OSC Cv OSA.

6 For the same definition, Herlihy and Wing use the terminology “equivalence”.
7 In this paper, we consider only those histories that arise from complete terminating compu-

tations; see the definition of [[P]] in Section 5. Consequently, we do not have to worry about
completing or removing pending calls in histories, unlike Herlihy and Wing’s definition.

Note that this definition does not assume the sequentiality and locality of OSA, unlike
Herlihy and Wing’s definitions. We use this more general definition here in order to em-
phasize that the core ideas of sequential consistency and linearizability lie in relations≡
andv on histories, not in the use of a sequential local object system (as a specification).

We first prove the theorem that connects linearizability and observational refine-
ment. Our proof uses the lemma below:

Lemma 3. LetH be a well-formed history and let i, j be indices in {1, . . . , |H|}. Then,

(∃τ ∈WTraces. getHistory(τ) = H ∧ Hi <
+
τ Hj)

=⇒ (i < j) ∧ (getTid(Hi) = getTid(Hj) ∨ Hi≺H Hj).

Proof. Consider a well-formed history H , indices i, j of H and a well-formed trace τ
such that the assumptions of this lemma hold. Then, we have indices i1 < i2 < . . . < in
of τ such that

Hi = τi1 <τ τi2 <τ . . . <τ τin−1 <τ τin = Hj . (1)

One conclusion i < j of this lemma follows from this, because getHistory(τ) = H
means that the order of object actions in H are maintained in τ . To obtain the other
conclusion of the lemma, let t = getTid(Hi) and t′ = getTid(Hj). Suppose that
t 6= t′. We will prove that for some ik, il ∈ {i1, . . . , in},

ik <il ∧ t= getTid(τik) ∧ t′= getTid(τil) ∧ retAct(τik) ∧ callAct(τil). (2)

Note that this gives the conclusion we are looking for, because all object actions in τ
are from H and their relative positions in τ are the same as those in H . In the rest of the
proof, we focus on showing (2) for some ik, il. By the definition of #, an object action
ψ can depend on another action ϕ, only when both actions are done by the same thread.
Now note that the first and last actions in the chain in (1) are object actions by different
threads t and t′. Thus, the chain in (1) must contain client operations τix and τiy such
that getTid(τix) = t and getTid(τiy) = t′. Let τia be the first client operation by the
thread t in the chain and let τib be the last client operation by t′. Then, ia < ib. This is
because otherwise, the sequence τia τia+1 . . . τin does not have any client operation
of the thread t′, while τia is an action of the thread t and τin is an action of the different
thread t′; these facts make it impossible to have τia <τ τia+1 <τ . . . <τ τin . Since
τi1 is an object action by the thread t and τia is a client operation by the same thread,
by the well-formedness of τ , there should exist some ik between i1 (including) and ia
such that τik is a return object action by the thread t. By a symmetric argument, there
should be some il between ib and in (including) such that τil is a call object action by
t′. We have just shown that ik and il satisfy (2), as desired. ut

Theorem 2. The linearizability relation v is a simulation.

Proof. For an action ϕ and a trace τ , define ϕ#τ to mean that ϕ#τj for all j ∈
{1, . . . , |τ |}. In this proof, we will use this ϕ#τ predicate and the following facts:

Fact 1. Trace equivalence ∼ is symmetric and transitive.

Fact 2. If τ ∼ τ ′ and τ is well-formed, τ ′ is also well-formed.
Fact 3. If ττ ′ is well-formed, its prefix τ is also well-formed.
Fact 4. If ϕ#τ ′, we have that τϕτ ′ ∼ ττ ′ϕ.
Fact 5. If τ ∼ τ ′, we have that τϕ ∼ τ ′ϕ.

Consider well-formed histories H,S and a well-formed trace τ such that H v S and
getHistory(τ) =H . We will prove the existence of a trace σ such that τ ∼ σ and
getHistory(σ) =S. This gives the desired conclusion of this theorem; the only missing
requirement for proving that v is a simulation is the well-formedness of σ, but it can
be inferred from τ ∼ σ and the well-formedness of τ by Fact 2.

Our proof is by induction on the length of S. If |S| = 0, H has to the empty
sequence as well. Thus, we can choose τ as the required σ in this case. Now suppose
that |S| 6= 0. That is, S = S′ψ for some history S′ and object action ψ. Note that since
the well-formed traces are closed under prefix (Fact 3), S′ is also a well-formed history.
During the proof, we will use this fact, especially when applying induction on S′.

Let δ be the projection of τ to client operations (i.e., δ = τ |Ac
). The starting point

of our proof is to split τ,H, δ. By assumption, H v S′ψ. By the definition of v, this
means that

∃H ′, H ′′. H = H ′ψH ′′ ∧ H ′H ′′ v S′
∧
(
∀j ∈ {1, . . . , |H ′′|}. ¬(ψ ≺H H ′′j) ∧ getTid(ψ) 6= getTid(H ′′j)

)
.

(3)

Here we use the bijection between indices of H and S′ψ, which exists by the definition
of H v S′ψ. The action ψ in H ′ψH ′′ is what is mapped to the last action in S′ψ by
this bijection. The last conjunct of (3) says that the thread-id of every action of H ′′

is different from getTid(ψ). Thus, ψ#H ′′ (because an object action is independent of
all actions by different threads). From this independence and the well-formedness of
H , we can drive that H ′H ′′ψ is well-formed (Facts 2 and 4), and that its prefix H ′H ′′

is also well-formed (Fact 3). Another important consequence of (3) is that since τ ∈
interleave(δ,H), the splitting H ′ψH ′′ of H induces splittings of τ and δ as follows:
there exist τ ′, τ ′′, δ′, δ′′ such that

τ = τ ′ψτ ′′ ∧ δ = δ′δ′′ ∧ τ ′ ∈ interleave(δ′, H ′) ∧ τ ′′ ∈ interleave(δ′′, H ′′). (4)

The next step of our proof is to identify one short-cut for showing this theorem. The
short-cut is to prove ψ#τ ′′. To see why this short-cut is sound, suppose that ψ#τ ′′.
Then, by Fact 4,

τ = τ ′ψτ ′′ ∼ τ ′τ ′′ψ. (5)

Since τ is well-formed, this implies that τ ′τ ′′ψ and its prefix τ ′τ ′′ are well-formed
traces as well (Facts 2 and 3). Furthermore, getHistory(τ ′τ ′′) = H ′H ′′, because of the
last two conjuncts of (4). Thus, we can apply the induction hypothesis to τ ′τ ′′, H ′H ′′, S′,
and obtain σ with the property: τ ′τ ′′ ∼ σ ∧ getHistory(σ) = S′. From this and Fact
5, it follows that

τ ′τ ′′ψ ∼ σψ ∧ getHistory(σψ) = getHistory(σ)ψ = S′ψ. (6)

Now, the formulas (5) and (6) and the transitivity of ∼ (Fact 1) imply that σψ is the
required trace by this theorem. In the remainder of the proof, we will use this short-cut,
without explicitly mentioning it.

The final step is to do the case analysis on δ′′. Specifically, we use the nested in-
duction on the length of δ′′. Suppose that |δ′′| = 0. Then, τ ′′ = H ′′, and by the last
conjunct of (3) (the universal formula), we have that ψ#τ ′′; since ψ is an object action,
it is independent of actions by different threads. The theorem follows from this. Now
consider the inductive case of this nested induction: |δ′′| > 0. Note that if ψ#δ′′, then
ψ#τ ′′, which implies the theorem. So, we are going to assume that ¬(ψ#δ′′). Pick the
greatest index i of τ ′′ such that ψ <+

τ τ ′′i . Let ϕ = τ ′′i . Because of the last conjunct of
(3) and Lemma 3, τ ′′i comes from δ, not H ′′. In particular, this ensures that there are
following further splittings of δ′′, τ ′′ and H ′′: for some traces γ, γ′, κ, κ′, T, T ′,

δ′′ = γϕγ′ ∧ τ ′′ = κϕκ′ ∧ H ′′ = TT ′ ∧
κ ∈ interleave(γ, T) ∧ κ′ ∈ interleave(γ′, T ′) ∧ ϕ#κ′.

Here the last conjunct ϕ#κ′ comes from the fact that ϕ is the last element of τ ′′ with
ψ <+

τ ϕ. Since γ′ is a subsequence of κ′, the last conjunct ϕ#κ′ implies that ϕ#γ′.
Also, τ ′ψκϕκ′ ∼ τ ′ψκκ′ϕ by Fact 4. Now, since τ = τ ′ψκϕκ′ is well-formed, the
equivalent trace τ ′ψκκ′ϕ and its prefix τ ′ψκκ′ both are well-formed as well (Facts 2
and 3). Furthermore, τ ′ψκκ′ ∈ interleave(δ′γγ′, H ′ψH ′′). Since the length of γγ′ is
shorter than δ′′, we can apply the induction hypothesis of the nested induction, and get

∃σ. τ ′ψκκ′ ∼ σ ∧ getHistory(σ) = S′ψ. (7)

We will prove that σϕ is the trace desired for this theorem. Because of ϕ#κ′ and
Fact 4, τ = τ ′ψκϕκ′ ∼ τ ′ψκκ′ϕ. Also, because of Fact 5 and the first conjunct of
(7), τ ′ψκκ′ϕ ∼ σϕ. Thus, τ ∼ σϕ by the transitivity of ∼. Furthermore, since
ϕ is not an object action, the second conjunct of (7) implies that getHistory(σϕ) =
getHistory(σ) = S′ψ. We have just shown that σϕ is the desired trace. ut

Corollary 1. If OSC is linearizable wrt. OSA, then OSC observationally refines OSA.

Next, we consider sequential consistency. For sequential consistency to imply obser-
vational refinement, we need to restrict programs such that threads can access local vari-
ables only in their client operations: ∀t, t′, a, a′. (t6=t′ ∧ a ∈ Copt ∧ a′ ∈Copt′) =⇒
a# a′.

Lemma 4. Suppose that all threads can access local variables only in their client op-
erations. Then, for all well-formed histories H and indices i, j in {1, . . . , |H|},

(∃τ∈WTraces. getHistory(τ)=H ∧Hi<
+
τ Hj) =⇒ i<j ∧ getTid(Hi)=getTid(Hj).

Proof. Consider a well-formed history H , indices i, j and a well-formed trace τ satis-
fying the assumptions of this lemma. Then, for some indices i1 < ... < in of τ ,

Hi = τi1 <τ τi2 <τ . . . <τ τin−1 <τ τin = Hj . (8)

One conclusion i < j of this lemma follows from this; the assumption getHistory(τ) =
H of this lemma means that the order of object actions inH are maintained in τ . To ob-
tain the other conclusion of the lemma, we point out one important property of #: under

the assumption of this lemma, ¬(ϕ#ϕ′) only when getTid(ϕ) = getTid(ϕ′). (Here
ϕ,ϕ′ are not necessarily object actions.) To see why this property holds, we assume
¬(ϕ#ϕ′) and consider all possible cases of ϕ and ϕ′. If one of ϕ and ϕ′ is an object
action, the definition of # implies that ϕ and ϕ′ have to be actions by the same thread.
Otherwise, both ϕ and ϕ′ are atomic client operations. By our assumption, all threads
access only local variables in their client operations, so that two client operations are in-
dependent if they are performed by different threads. This implies that ϕ and ϕ′ should
be actions by the same thread. Now, note that τk <τ τl implies ¬(τk#τl), which in turn
entails getTid(τk) = getTid(τl) by what we have just shown. Thus, we can derive the
following desired equality from (8): getTid(Hi) = getTid(τi1) = getTid(τi2) = . . . =
getTid(τin) = getTid(Hj). ut

Theorem 3. If all threads access local variables only in their client actions, the weak
equivalence ≡ is a simulation.

Proof. The proof is similar to the one for Theorem 2. Instead of repeating the common
parts between these two proofs, we will explain what we need to change in the proof
of Theorem 2, so as to obtain the proof of this theorem. Firstly, we should replace
linearizability relation v by weak equivalence ≡. Secondly, we need to change the
formula (3) to

∃H ′H ′′. H =H ′ψH ′′ ∧ H ′H ′′≡S′ ∧ ∀j ∈{1, ..., |H ′′|}. getTid(ψ) 6= getTid(H ′′j).

Finally, we should use Lemma 4 instead of Lemma 3. After these three changes have
been made, the result becomes the proof of this theorem. ut

Corollary 2. If OSC is sequentially consistent wrt. OSA and all threads access local
variables only in their client actions, OSC is an observational refinement of OSA.

Completeness Under suitable assumptions on programming languages and object sys-
tems, we can obtain the converse of Corollaries 1 and 2: observational refinement im-
plies linearizability and sequential consistency. First, we assume that object systems OS
contain only those histories all of whose calls have matching returns. This assumption
is necessary, because observational refinement considers only terminating, completed
computations. Next, we assume that threads’ primitive commands include the skip
statement. Finally, we consider specific assumptions for sequential consistency and lin-
earizability, which will be described shortly.

For sequential consistency, we suppose that the programming language contains
atomic assignments x:=n of constants n to thread-local variable x and has atomic as-
sume statements of the form assume(x=n) with thread-local variable x.8 Note that this
supposition does not require the use of any global variables, so that it is consistent with
the assumption of Corollary 2. Under this supposition, observational refinement implies
sequential consistency.

Theorem 4. If OSC observationally refines OSA then OSC C≡ OSA.
8 Technically, this assumption also means that T (x:=n)t and T (assume(x=n))t are singleton

traces (t, a) and (t, b), where [[b]](s)≡ if (s(x)=n) then {s} else {} and [[a]](s)≡{s[x7→n]}.

The main idea of the proof is to create for every history H ∈ OSC a program PH that
records the interaction of every thread t with the object system using t’s local variables.
For the details of the proof, see the full version of this paper [3].

For linearizability, we further suppose that there is a single global variable g shared
by all threads. That is, threads can assign constants to g atomically, or they can run
the statement assume(g=n) for some constant n. Under this supposition, observational
refinement implies linearizability.

Theorem 5. If OSC observationally refines OSA, then OSC Cv OSA.

The core idea of the proof is, again, to create for every history H ∈ OSC one specific
program PH . This program uses a single global variable and satisfies that for every
(terminating) execution τ of PH , the object history of τ always has the same happen-
before relation as H . See the full paper [3] for the details.

8 Abstract Dependency

Although our results on observational refinements give complete characterization of
sequential consistency and linearizability, they still do not explain where the relations
≡ and v in sequential consistency and linearizability come from. In this section, we
will answer this question using the dependency between actions.

The result of this section is based on one reading of a well-formed history H . In
this reading, the history H means not the single trace H itself but the set of all the well-
formed traces whose object actions are described by H . Formally, we let WHist be the
set of all the well-formed histories, and define function means :WHist→P(WTraces)
by means(H) = {τ ∈WTraces | getHistory(τ) =H}.

Using means, we define a new relation on well-formed histories, which compare
possible dependencies between actions in the histories.

Definition 16 (Abstract Dependency). For each well-formed history H , the abstract
dependency <#

H for H is the binary relation on actions in H determined as follows:
Hi <

#
H Hj ⇐⇒ i < j ∧ ∃τ ∈means(H). Hi <

+
τ Hj .

Definition 17 (Causal Complexity Relation). The causal complexity relation v# is
a binary relation on well-formed histories, such thatH v# S iff there exists a bijection
π : {1, . . . , |H|} → {1, . . . , |S|} satisfying (1) ∀i ∈ {1, . . . , |H|}. Hi =Sπ(i) and (2)
∀i, j ∈ {1, . . . , |H|}. Hi <

#
H Hj =⇒ Sπ(i) <

#
S Sπ(j).

Intuitively, H v# S means that S is a rearrangement of actions in H that preserves
all the abstract causal dependencies in H . Note that S might contain abstract causal
dependencies that are not present in H .

The result below shows when sequential consistency or linearizability coincides
with causal complexity relation.

Theorem 6. If all threads access only local variables in their client operations, then
∀H,S ∈WHist . H ≡ S ⇐⇒ H v# S.

Theorem 7. Assume that for every pair (t, t′) of thread-ids with t 6= t′, there exist
client operations a ∈ Copt and a′ ∈ Copt′ with ¬(a#a′). Under this assumption, we
have the following equivalence: ∀H,S ∈WHist . H v S ⇐⇒ H v# S.

9 Conclusions

Developing a theory of data abstraction in the presence of concurrency has been a
long-standing open question in the programming language community. In this paper,
we have shown that this open question can be attacked from a new perspective, by
carefully studying correctness conditions proposed by the concurrent-algorithm com-
munity, using the tools of programming languages. We prove that linearizability is a
sound method for proving observational refinements for concurrent objects, which is
complete when threads are allowed to access shared global variables. When threads ac-
cess only thread-local variables, we have shown that sequential consistency becomes
a sound and complete proof method for observational refinements. We hope that our
new understanding on concurrent objects can facilitate the long-delayed transfer of the
rich existing theories of data-abstraction [7, 8, 13, 10, 12] from sequential programs to
concurrent ones.

In the paper, we used a standard assumption on a programming language from the
concurrent-algorithm community. We assumed that a programming language did not
allow callbacks from concurrent objects to client programs, that all the concurrent ob-
jects were properly encapsulated [1], and that programs were running under “sequen-
tially consistent” memory models. Although widely used by the concurrent-algorithm
experts, these assumptions limit the applicability of our results. In fact, they also limit
the use of linearizability in the design of concurrent data structures. Removing these
assumptions and extending our results is what we plan to do next.

References

1. A. Banerjee and D. A. Naumann. Representation independence, confinement and access
control. In POPL’02, 2002.

2. S. D. Brookes. A semantics for concurrent separation logic. In CONCUR’04, 2004.
3. I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.

Technical report, Queen Mary University of London, December 2008.
4. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In ESOP’86, 1986.
5. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,

2008.
6. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM TOPLAS, 12(3):463–492, 1990.
7. C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–281, 1972.
8. C. A. R. Hoare, J. He, and J. W. Sanders. Prespecification in data refinement. Inf. Proc.

Letter, 25(2):71–76, May 1987.
9. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Computers, 28(9):690–691, 1979.
10. J. Mitchell and G. Plotkin. Abstract types have existential types. ACM TOPLAS, 10(3):470–

502, 1988.
11. G. Plotkin. LCF considered as a programming language. TCS, 5:223–255, 1977.
12. G. Plotkin and M. Abadi. A logic for parametric polymorphism. In TLCA’93, 1993.
13. J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor,

Information Processing ’83, pages 513–523. North-Holland, Amsterdam, 1983.

