Resources, Concurrency and Local Reasoning

Peter W. O’Hearn

Queen Mary, University of London

Abstract. In this paper we show how a resource-oriented logic, sep-
aration logic, can be used to reason about the usage of resources in
concurrent programs.

1 Introduction

Resource has always been a central concern in concurrent programming. Often,
a number of processes share access to system resources such as memory, pro-
cessor time, or network bandwidth, and correct resource usage is essential for
the overall working of a system. In the 1960s and 1970s Dijkstra, Hoare and
Brinch Hansen attacked the problem of resource control in their basic works on
concurrent programming [8,9,11,12,1,2]. In addition to the use of synchroniza-
tion mechanisms to provide protection from inconsistent use, they stressed the
importance of resource separation as a means of controlling the complexity of
process interactions and reducing the possibility of time-dependent errors. This
paper revisits their ideas using the formalism of separation logic [22].

Our initial motivation was actually rather simple-minded. Separation logic
extends Hoare’s logic to programs that manipulate data structures with embed-
ded pointers. The main primitive of the logic is its separating conjunction, which
allows local reasoning about the mutation of one portion of state, in a way that
automatically guarantees that other portions of the system’s state remain unaf-
fected [16]. Thus far separation logic has been applied to sequential code but,
because of the way it breaks state into chunks, it seemed as if the formalism
might be well suited to shared-variable concurrency, where one would like to
assign different portions of state to different processes.

Another motivation for this work comes from the perspective of general
resource-oriented logics such as linear logic [10] and BI [17]. Given the develop-
ment of these logics it might seem natural to try to apply them to the problem
of reasoning about resources in concurrent programs. This paper is one attempt
to do so — separation logic’s assertion language is an instance of BI — but it is
certainly not a final story. Several directions for further work will be discussed
at the end of the paper.

There are a number of approaches to reasoning about imperative concurrent
programs (e.g., [19,21,14]), but the ideas in an early paper of Hoare on concur-
rency, “Towards a Theory of Parallel Programming [11]” (henceforth, TTPP),
fit particularly well with the viewpoint of separation logic. The approach there

revolves around a concept of “spatial separation” as a way to organize think-
ing about concurrent processes, and to simplify reasoning. Based on compiler-
enforceable syntactic constraints for ensuring separation, Hoare described formal
partial-correctness proof rules for shared-variable concurrency that were beau-
tifully modular: one could reason locally about a process, and simple syntactic
checks ensured that no other process could tamper with its state in a way that
invalidated the local reasoning.

So, the initial step in this work was just to insert the separating conjunction
in appropriate places in the TTPP proof rules, or rather, the extension of these
rules studied by Owicki and Gries [20]. Although the mere insertion of the sep-
arating conjunction was straightforward, we found we could handle a number of
daring, though valuable, programming idioms, and this opened up a number of
unexpected (for us) possibilities.

To describe the nature of the daring programs we suppose that there is a
way in the programming language to express groupings of mutual exclusion.
A “mutual exclusion group” is a class of commands whose elements (or their
occurrences) are required not to overlap in their executions. Notice that there
is no requirement of atomicity; execution of commands from a mutual exclu-
sion group might very well overlap with execution of a command not in that
group. In monitor-based concurrency each monitor determines a mutual exclu-
sion group, consisting of all calls to the monitor procedures. When program-
ming with semaphores each semaphore s determines a group, the pair of the
semaphore operations P(s) and V(s). In TTPP the collection of conditional
critical regions withr when B do C' with common resource name r forms a mu-
tual exclusion group. With this terminology we may now state one of the crucial
distinctions in the paper.

A program is cautious if, whenever concurrent processes access the same
piece of state, they do so only within commands from the same mutual
exclusion group. Otherwise, the program is daring.

Obviously, the nature of mutual exclusion is to guarantee that cautious programs
are not racy, where concurrent processes attempt to access the same portion of
state at the same time without explicit synchronization. The simplicity and
modularity of the TTPP proof rules is achieved by syntactic restrictions which
ensure caution; a main contribution of this paper is to take the method into the
realm of daring programs, while maintaining its modular nature.

Daring programs are many. Examples include: double-buffered I/O, such as
where one process renders an image represented in a buffer while a second process
is filling a second buffer, and the two buffers are switched when an image changes;
efficient message passing, where a pointer is passed from one process to another
to avoid redundant copying of large pieces of data; memory managers and other
resource managers such as thread and connection pools, which are used to avoid
the overhead of creating and destroying threads or connections to databases.
Indeed, almost all concurrent systems programs are daring, such as microkernel
OS designs, programs that manage network connectivity and routing, and even
many application programs such as web servers.

But to be daring is to court danger: If processes access the same portion of
state outside a common mutual exclusion grouping then they just might do so at
the same time, and we can very well get inconsistent results. Yet it is possible to
be safe, and to know it, when a program design observes a principle of resource
separation.

Separation Property. At any time, the state can be partitioned into that
“owned” by each process and each mutual exclusion group.

When combined with the principle that a program component only accesses state
that it owns, separation implies race-freedom.

Our proof system will be designed to ensure that any program that gets
past the proof rules satisfies the Separation Property. And because we use a
logical connective (the separating conjunction) rather than scoping constraints to
express separation, we are able to describe dynamically changing state partitions,
where ownership (the right to access) transfers between program components.
It is this that takes us safely into the territory of daring programs.

This paper is very much about fluency with the logic — how to reason with
it — rather than its metatheory; we refer the reader to the companion paper by
Stephen Brookes for a thorough theoretical analysis [4]. In addition to soundness,
Brookes shows that any proven program will not have a race in an execution
starting from a state satisfying its precondition.

After describing the proof rules we give two examples, one of a pointer-
transferring buffer and the other of a toy memory manager. These examples are
then combined to illustrate the modularity aspect. The point we will attempt
to demonstrate is that the specification for each program component is “local”
or “self contained”, in the sense that assertions make local remarks about the
portions of state used by program components, instead of global remarks about
the entire system state. Local specification and reasoning is essential if we are
ever to have reasoning methods that scale; of course, readers will have to judge
for themselves whether the specifications meet this aim.

This is a preliminary paper. In the long version we include several further
examples, including two semaphore programs and a proof of parallel mergesort.

2 The Programming Language

The presentation of the programming language and the proof rules in this section
and the next follows that of Owicki and Gries [20], with alterations to account for
the heap. As there, we will concentrate on programs of a special form, where we
have a single resource declaration, possibly prefixed by a sequence of assignments
to variables, and a single parallel composition of sequential commands.

mit;
resource 7 (variable list), ..., r,, (variable list)
Colf--- 1l Cn

C ut=gz:=F|z:=[E]|[E]:=F|x:=cons(El,.., E,)|dispose(E)
| skip| C;C | if B then C else C | while B do C
| withr when B do C

E,Fu=z,y,.|0|1|E+F|ExF|E—F
B :=false|B=>B|E=F|E<F

Table 1. Sequential Commands

It is possible to consider nested resource declarations and parallel compositions,
but the basic case will allow us to describe variable side conditions briefly in
an old-fashioned, wordy style. We restrict to this basic case mainly to get more
quickly to examples and the main point of this paper, which is exploration of
idioms (fluency). We refer to [4] for a more modern presentation of the program-
ming language, which does not observe this restricted form.

A grammar for the sequential processes is included in Table 1. They include
constructs for while programs as well as operators for accessing a program heap.
The operations [E] := F and x := [E] are for mutating and reading heap cells,
and the commands z := cons(E1, ..., E,,) and dispose(F) are for allocating and
deleting cells. Note that the integer expressions E are pure, in that they do not
themselves contain any heap dereferencing [-]. Also, although expressions range
over arbitrary integers, the heap is addressed by non-negative integers only; the
negative numbers can be used to represent data apart from the addresses, such
as atoms and truth values, and we will do this without comment in examples
like in Section 4 where we include true, false and nil amongst the expressions
E (meaning, say, —1, —2 and —3).

The command for accessing a resource is the conditional critical region:

with r when B do C .

Here, B ranges over (heap independent) boolean expressions and C over com-
mands. Each resource name determines a mutual exclusion group: two with
commands for the same resource name cannot overlap in their executions. Exe-
cution of with r when B do C' can proceed if no other region for r is currently
executing, and if the boolean condition B is true; otherwise, it must wait until
the conditions for it to proceed are fulfilled.

It would have been possible to found our study on monitors rather than
CCRs, but this would require us to include a procedure mechanism and it is
theoretically simpler not to do so.

Programs are subject to variable conditions for their well-formedness (from
[20]). We say that a variable belongs to resource r if it is in the associated variable
list in a resource declaration. We require that

1. a variable belongs to at most one resource;

SYNTAX
P,Q,R:=B|emp|E— F|PxQ|false | P=Q|Vz.P|---
ABBREVIATIONS
A A A
—-P = P = false; true = —(false); PVQ = (-P) = Q; PAQ =

=(=PV —Q); Jz. P 2 Vz.-P

E— Fy,....,F,
E— -

(B~ Fo)x--x(E4+n— F,)
Jy.Er—y (y ¢ Free(E))

e I

Table 2. Assertions

2. if variable x belongs to resource r, it cannot appear in a parallel process
except in a critical region for r; and

3. if variable x is changed in one process, it cannot appear in another unless it
belongs to a resource.

For the third condition note that a variable x is changed by an assignment
command z := —, but not by [z] := F; in the latter it is a heap cell, rather than
a variable, that is altered.

These conditions ensure that any variables accessed in two concurrent pro-
cesses must be protected by synchronization. For example, the racy program

z:=3|z=x+1

is ruled out by the conditions. In the presence of pointers these syntactic restric-
tions are not enough to avoid all races. In the legal program

[z] =3[[y] := 4

if x and y denote the same integer in the starting state then they will be aliases
and we will have a race, while if x and y are unequal then there will be no race.

3 Proof Rules

The proof rules below refer to assertions from separation logic; see Table 2. The
assertions include the points-to relation F +— F, the separating conjunction x,
the empty-heap predicate emp, and all of classical logic. The use of --- in the
grammar means we are being open-ended, in that we allow for the possibility
of other forms such as the — connective from BI or a predicate for describing
linked lists, as in Section 5. A semantics for these assertions has been included
in the appendix.

Familiarity with the basics of separation logic is assumed [22]. For now we
only remind the reader of two main points. First, P* (@ means that the (current,

or owned) heap can be split into two components, one of which makes P true
and the other of which makes @ true. Second, to reason about a dereferencing
operation we must know that a cell exists in a precondition. For instance, if
{P}[10] := 42{@} holds, where the statement mutates address 10, then P must
imply the assertion (10 — —) * true that 10 not be dangling. Thus, a precondition
confers the right to access certain cells, those that it guarantees are not dangling;
this provides the connection between program logic and the intuitive notion of
“ownership” discussed in the introduction.
To reason about a program

mit;
resource 7 (variable list), ..., r,, (variable list)
Colf-- I Cn

we first specify a formula RI,,, the resource invariant, for each resource name
r;. These formulae must satisfy

— any command x := - - - changing a variable x which is free in RI,, must occur
within a critical region for r;.

Owicki and Gries used a stronger condition, requiring that each variable free in
RI,, belong to resource r;. The weaker condition is due to Brookes, and allows
a resource invariant to connect the value of a protected variable with the value
of an unprotected one.

Also, for soundness we need to require that each resource invariant is “pre-
cise”. The definition of precision, and an example of Reynolds showing the need
to restrict the resource invariants, is postponed to Section 7; for now we will just
say that the invariants we use in examples will adhere to the restriction.

In a complete program the resource invariants must be separately established
by the initialization sequence, together with an additional portion of state that
is given to the parallel processes for access outside of critical regions. The re-
source invariants are then removed from the pieces of state accessed directly by
processes. This is embodied in the

RULE FOR COMPLETE PROGRAMS

{PYini{ Rl,, * - - * RL,, P’} {P}Cy |- | Cuf@}
{P}
mnit;
resource 7 (variable list), ..., 7, (variable list)
Culf-- 1[I Cn

{RI,, *---xRI. *Q}

For a parallel composition we simply give each process a separate piece of
state, and separately combine the postconditions for each process.

PARALLEL COMPOSITION RULE

{PCi{Qui} -+ {P} Cn{Qn} no variable free in P; or Q;
{(Prs- %P} CL - || Co Q1% - % Qn} is changed in C; when j # 4

Using this proof rule we can prove a program that has a potential race, as
long as that race is ruled out by the precondition.

{r =3} [z]:=4{z —4} {y—3}[y] :==5{y — 5}
{r—3xy—3}a]:=4|[y]:=5{r —4xy—5}

Here, the * in the precondition guarantees that = and y are not aliases.

It will be helpful to have an annotation notation for (the binary case of)
the parallel composition rule. We will use an annotation form where the overall
precondition and postcondition come first and last, vertically, and are broken up
for the annotated constituent processes; so the just-given proof is pictured

{r—3*y—3}

{z— 3} {y— 3}
[z] := 4 I lyl=5
{z — 4} {y — 5}

{z—4 %y 5}

The reasoning that establishes the triples {P;}C;{Q;} for sequential pro-
cesses in the parallel rule is done in the context of an assignment of invariants
RI,, to resource names ;. This contextual assumption is used in the

CRITICAL REGION RULE

{(P*RI;) NB}C{Q* RI;} No other process modifies
{P}with r when B do C {Q} variables free in P or Q

The idea of this rule is that when inside a critical region the code gets to see the
state associated with the resource name as well as that local to the process it is
part of, while when outside the region reasoning proceeds without knowledge of
the resource’s state.

The side condition “No other process...” refers to the form of a program as
composed of a fixed number of processes C1 || - || Cp, where an occurrence of
a with command will be in one of these processes C}.

Besides these proof rules we allow all of sequential separation logic; see the
appendix. The soundness of proof rules for sequential constructs is delicate in
the presence of concurrency. For instance, we can readily derive

7

{10 — 3}z := [10];z := [10]{(10 — 3) Az = 3}

in separation logic, but if there was interference from another process, say alter-
ing the contents of 10 between the first and second statements, then the triple
would not be true.

The essential point is that proofs in our system build in the assumption
that there is “no interference from the outside”, in that processes only affect
one another at explicit synchronization points. This mirrors a classic program
design principle of Dijkstra, that “apart from the (rare) moments of explicit
intercommunication, the individual processes are to be regarded as completely

independent of each other” [8]. It allows us to ignore the minute details of po-
tential interleavings of sequential programming constructs, thus greatly reducing
the number of process interactions that must be accounted for in a verification.

In sloganeering terms we might say that well specified processes mind their
own business: proven processes only dereference those cells that they own, those
known to exist in a precondition for a program point. This, combined with the
use of * to partition program states, implements Dijkstra’s principle.

These intuitive statements about interference and ownership receive formal
underpinning in Brookes’s semantic model [4]. The most remarkable part of his
analysis is an interplay between an interleaving semantics based on traces of
actions and a “local enabling” relation that “executes” a trace in a portion of
state owned by a process. The enabling relation skips over intermediate states
and explains the “no interference from the outside” idea.

4 Example: Pointer-transferring Buffer

For efficient message passing it is often better to pass a pointer to a value from
one process to another, rather than passing the value itself; this avoids unneeded
copying of data. For example, in packet-processing systems a packet is written to
storage by one process, which then inserts a pointer to the packet into a message
queue. The receiving process, after finishing with the packet, returns the pointer
to a pool for subsequent reuse. Similarly, if a large file is to be transmitted
from one process to another it can be better to pass a pointer than to copy its
contents. This section considers a pared-down version of this scenario, using a
one-place buffer.

In this section we use operations cons and dispose for allocating and deleting
binary cons cells. (To be more literal, dispose(F) in this section would be
expanded into dispose(FE); dispose(F + 1) in the syntax of Section 2.)

The initialization and resource declaration are

full == false;
resource buf(c, full)

and we have code for putting a value into the buffer and for reading it out.
put(z) 2 uith buf when —full do
c:=z; full := true;
A
get(y) = with bufwhen full do
y:=c; full:=false;
For presentational convenience we are using definitions of the form
name(x) 2 withr when B do C

to encapsulate operations on a resource. In this we are not introducing a proce-
dure mechanism, but are merely using name(x) as an abbreviation.
We focus on the following code.

2 := cons(a, b); I get(y);

put(z); use(y);
dispose(y);

This creates a new pointer in one process, which points to a binary cons cell
containing values a and b. To transmit these values to the other process, instead
of copying both a and b the pointer itself is placed in the buffer. The second
process reads the pointer out, uses it in some way, and finally disposes it. To
reason about the dispose operation in the second process, we must ensure that
y — —,— holds beforehand. At the end of the section we will place these code
snippets into loops, as part of a producer/consumer iidiom, but for now will
concentrate on the snippets themselves.
The resource invariant for the buffer is

Rlyyr: (fullAev— —=) V (=full A emp).

To understand this invariant it helps to use the “ownership” or “permission”
reading of separation logic, where an assertion P at a program point implies that
“I have the right to dereference the cells in P here”, or more briefly, “I own P”
[18]. According to this reading the assertion ¢ — — — says “I own binary cons
cell ¢’ (and I don’t own anything else). The assertion emp does not say that the
global state is empty, but rather that “I don’t own any heap cells, here”. Given
this reading the resource invariant says that the buffer owns the binary cons cell
associated with ¢ when full is true, and otherwise it owns no heap cells.

Here is a proof for the body of the with command in put(z).

{(RIpys * = — —,—) A —full}
{(=full A emp) * & +— — —}
{1’ = 7}

c:=x; full := true
{full A c— -}
{RIyus}
{RIpys * emp}

The rule for with commands then gives us

{z — — ~}put(z){enp}.

The postcondition indicates that the sending process gives up ownership of
pointer x when it is placed into the buffer, even though the value of z is still
held by the sender.

A crucial point in the proof of the body is the implication

Jull N c— —,— = Rlyy

which is applied in the penultimate step. This step reflects the idea that the
knowledge “x points to something” flows out of the user program and into the
buffer resource. On exit from the critical region x does indeed point to something
in the global state, but this information cannot be recorded in the postcondition

of put. The reason is that we used ¢ — —, — to re-establish the resource invariant;
having z +— —,— as the postcondition would be tantamount to asserting (x —
—,—)* (¢ — —,—) at the end of the body of the with command, and this assertion
is necessarily false when ¢ and x are equal, as they are at that point.

The flipside of the first process giving up ownership is the second’s assump-

tion of it:

{(RIyuy emp) A full)
{fullAc— — -}

Yy :=c; full .= false
{y = —— A —|full}
{(~full \ emp) x y — — —}
{Rlbuf* Y= - f},

which gives us
{emp}get(y){y — -~}

We can then prove the parallel processes as follows, assuming that use(y)
satisfies the indicated triple.

{emp * emp}
{emp} {emp}
x = cons(a,b); | get(y);
{o—- -} {y—--}
put(z); use(y);
{emp} {y—--}
dispose(y);
{emp}
{emp * emp}
{emp}

Then using the fact that the initialization establishes the resource invariant in
a way that gets us ready for the parallel rule

{emp}

full := false

{—full A emp}
{RIpys * emp * emp}

we obtain the triple {emp}prog{RI;.s} for the complete program prog.

In writing annotated programs we generally include assertions at program
points to show the important properties that hold; to formally connect to the
proof theory we would sometimes have to apply an axiom followed by the Hoare
rule of consequence or other structural rules. For instance, in the left process
above we used « — —,— as the postcondition of « := cons(a, b); to get there from
the “official” postcondition x — a,b we just observe that it implies — — — We
will often omit mention of little implications such as this one.

{emp}

full := false;

{emp A —full}
{RIyyy* emp * emp}
resource buf(c, full)

{emp * emp}
fenp} {enp}
while true do while true do
{enp} {enp}
produce(a, b); get(y);
z := cons(a, b); I use(y);
put(z); dispose(y);
{enp} fenp}
{false} {false}
{false x false}
{RIy,s+ false}
{false}

Table 3. Pointer-passing Producer/Consumer Program

The verification just given also shows that if we were to add a command,
say x.1 := 3, that dereferences x after the put command in the left process then
we would not be able to prove the resulting program. The reason is that emp
is the postcondition of put(x), while separation logic requires that = point to
something (be owned) in the precondition of any operation that dereferences z.

In this verification we have concentrated on tracking ownership, using asser-
tions that are type-like in nature: they say what kind of data exists at various
program points, but do not speak of the identities of the data. For instance,
because the assertions use —, — they do not track the flow of the values a and b
from the left to the right process. To show stronger correctness properties, which
track buffer contents, we would generally need to use auxiliary variables [20].

As it stands the code we have proven is completely sequential: the left process
must go first. Using the properties we have shown it is straightforward to prove
a producer/consumer program, where these code snippets are parts of loops, as
in Table 3. In the code there emp is the invariant for each loop, and the overall
property proven ensures that there is no race condition.

5 Example: Memory Manager

A resource manager keeps track of a pool of resources, which are given to re-
questing processes, and received back for reallocation. As an example of this we
consider a toy manager, where the resources are memory chunks of size two. The
manager maintains a free list, which is a singly-linked list of binary cons cells.
The free list is pointed to by f, which is part of the declaration

resource mm(f).

The invariant for mm is just that f points to a singly-linked list without any
dangling pointers in the link fields:

Rl list f.
The list predicate is the least satisfying the following recursive specification.
listy <2 (r =nil A emp) V (Fy.x +— —,y * listy)

When a user program asks for a new cell, mm gives it a pointer to the first
element of the free list, if the list is nonempty. In case the list is empty the mm
calls cons to get an extra element.

alloc(z,a,b) 2 yith mm when true do
if f =nil then x := cons(a,b)
elsex:=f; f:=22; 21 :=a;2.2:=b

dealloc(y) 2 with mm when true do

y.2:=f;
=y
The command f := z.2 reads the cdr of binary cons cell x and places it into

f. We can desugar x.2 as [z + 1] in the RAM model of separation logic, and
similarly we will use 2.1 for [z] to access the car of a cons cell.

Using the rule for with commands we obtain the following “interface speci-
fications”:

{emp}alloc(z,a,b){x — a,b} {y— —,—}dealloc(y){emp}.

The specification of alloc(x,a,b) illustrates how ownership of a pointer ma-
terializes in the user code, for subsequent use. Conversely, the specification of
dealloc requires ownership to be given up. The proofs of the bodies of these
operations using the with rule describe ownership transfer in much the same
way as in the previous section, and are omitted.

Since we have used a critical region to protect the free list from corruption,
it should be possible to have parallel processes that interact with mm. A tiny
example of this is just two processes, each of which allocates, mutates, then
deallocates.

{emp * emp}
{emp} {emp}
alloc(z,a,b); alloc(y,ad’,b');
{z — a,b} {y —d,b'}
z.1l:=4 I yl:=7
{z— 4,0} {y— 17,0}
dealloc(x); dealloc(y);
{emp} {emp}

{emp * emp}

{emp}

This little program is an example of one that is daring but still safe. To see
the daring aspect, consider an execution where the left process goes first, right
up to completion, before the right one begins. Then the statements mutating
x.1 and y.1 will in fact alter the same cell, and these statements are not within
critical regions. However, although there is potential aliasing between z and y,
the program proof tells us that there is no possibility of racing in any execution.

On the other hand, if we were to insert a command z.1 := 8 immediately
following dealloc(z) in the leftmost process then we would indeed have a race.
However, the resulting program would not get past the proof rules, because the
postcondition of dealloc(z) is emp.

The issue here is not exclusive to memory managers. When using a connection
pool or a thread pool in a web server, for example, once a handle is returned to
the pool the returning process must make sure not to use it again, or inconsistent
results may ensue.

6 Combining the Buffer and Memory Manager

We now show how to put the treatment of the buffer together with the home-
grown memory manager mm, using alloc and dealloc instead of cons and
dispose. The aim is to show different resources interacting in a modular way.

We presume now that we have the resource declarations for both mm and
buf, and their associated resource invariants. Here is the proof for the parallel
processes in Section 4 done again, this time using mm.

{emp * emp}
{emp} {emp}
alloc(z,a,b); | get(y);
{fo——-} {y—--}
put(z); use(y);
{emp} {yr——-}
dealloc(y);
{emp}
{emp * emp}

{emp}

In this code, a pointer’s ownership is first transferred out of the mm resource
into the lefthand user process. It then gets sent into the buf resource, from where
it taken out by the righthand process and promptly returned to mm.

The initialization sequence and resource declaration now have the form

full == false;
resource buf(c, full), mm(f)

and we have the triple

{1list(f)} full := false {RIpys* Rl * emp * emp}

which sets us up for reasoning about the parallel composition. We can use the
rule for complete programs to obtain a property of the complete program.

The point is that we did not have to change any of the code or verifications
done with mm or with buf inside the parallel processes; we just used the same
preconditions and postconditions for get, put, alloc and dealloc, as given to
us by the proof rule for CCRs. The crucial point is that the rule for CCRs does
not include the resource invariant in the “interface specification” described by
the conclusion of the rule. As a result, a proof using these specifications does
not need to be repeated, even if we change the implementation and internal
resource invariant of a module. Effective resource separation allows us to present
a localized view, where the state of a resource is hidden from user programs
(when outside critical regions).

7 The Reynolds Counterexample

The following counterexample, due to John Reynolds, shows that the concur-
rency proof rules are incompatible with the usual Hoare logic rule of conjunction

{pre{Qy {Pe{Qy
{PAPYC{QAQ'}

The example uses a resource declaration

resource 7()
with invariant
RI,. = true.

Let one stand for the assertion 10 — —. First, we have the following derivation
using the axiom for skip, the rule of consequence, and the rule for critical regions.

{true}skip{true}
emp V one) * true skipiemp * true
P P P

{emp V one}with r when true do skip {emp}
Then, from the conclusion of this proof, we can construct two derivations:

{emp V one}with r when true do skip {emp}

{emp}with r when true do skip {emp}

{emp * one}with r when true do skip {emp * one}

{one}with r when true do skip {one}

and

{emp V one}with r when true do skip {emp}

{one}with r when true do skip {emp}

Both derivations begin with the rule of consequence, using the implications
emp = emp V one and one = emp V one. The first derivation continues with
an application of the ordinary frame rule, with invariant one, and one further
use of consequence.

The conclusions of these two derivations are incompatible with one another.
The first says that ownership of the single cell is kept by the user code, while
the second says that it is swallowed up by the resource. An application of the
conjunction rule with these two conclusions gives us the premise of the following
which, using the rule of consequence, leads to an inconsistency.

{one A one}with r when true do skip {emp A one}

{one}with r when true do skip {false}

The last triple would indicate that the program diverges, where it clearly does
not.

The fact that the resource invariant true does not precisely say what storage
is owned conspires together with the nondeteministic nature of * to fool the proof
rules. A way out of this problem is to insist that resource invariants precisely nail
down a definite area of storage [18]. In the semantic notation of the appendix,

an assertion P is precise if for all states (s, h) there is at most one subheap
h' C h where s,h’ = P.

The subheap I’ here is the area of storage that a precise predicate identifies.
The Reynolds counterexample was discovered in August of 2002, a year after
the author had described the proof rules and given the pointer-transferring buffer
example in an unpublished note. Realizing that the difficulty in the example had
as much to do with information hiding as concurrency, the author, Yang and
Reynolds studied a version of the problem in a sequential setting, where precise
resource invariants were used to describe the internal state of a module [18]. The
more difficult concurrent case was then settled by Brookes [4]; his main result is

Theorem (Brookes): the proof rules are sound if all resource invariants
are precise predicates.

This rules out Reynolds’s counterexample because true is not a precise pred-
icate. And the resource invariants in the one-place buffer and the toy memory
manager are both precise.

8 Conclusion

It may seem as if the intuitive points about separation made in this paper should
apply more generally than to shared-variable concurrency; in particular, it would
be interesting to attempt to provide modular methods for reasoning about pro-
cess calculi using resource-oriented logics. In CSP the concepts of resource sep-
aration and sharing have been modelled in a much more abstract way than in
this paper [13]. And the 7-calculus is based on very powerful primitives for name

manipulation [15], which are certainly reminiscent of pointers in imperative pro-
grams. In both cases it is natural to wonder whether one could have a logic
which allows names to be successively owned by different program components,
while maintaining the resource separation that is often the basis of system de-
signs. However, the right way of extending the ideas here to process calculi is
not obvious.

A line of work that bears a formal similarity to ours is that of Caires, Cardelli
and Gordon on logics for process calculi [6,5]. Like here, they use a mixture
of substructural logic and ordinary classical logic and, like here, they consider
concurrency. But independence between processes has not been emphasized in
their work — there is no analogue of what we called the Separation Property —
and neither have they considered the impact of race conditions. Their focus is
instead on the expression of what they call “intensional” properties, such as the
number of connections between two processes. So, although similar in underlying
logical technology, their approach uses this technology in a very different way.

The idea of ownership is, as one might expect, central in work on Ownership
Types [7]. It would be interesting to attempt to describe a formal connection.

Stepping back in time, one of the important early works on reasoning about
imperative concurrent programs was that of Owicki and Gries [19]. A difference
with the work here is that our system rules out racy programs, while theirs does
not. However, they handle racy programs by assuming a fixed level of granular-
ity, where if we were to make such an assumption explicit (using a critical region)
such programs would not be, in principle, out of reach of our methods. More im-
portantly, the Owicki-Gries method involves explicit checking of non-interference
between program components, while our system rules out interference in an im-
plicit way, by the nature of the way that proofs are constructed. The result is
that the method here is more modular.

This last claim is not controversial; it just echoes a statement of Owicki and
Gries. There are in fact two classic Owicki-Gries works, one [20] which extends
the approach of Hoare in TTPP, and another [19] which is more powerful but
which involves explicit non-interference checking. They candidly acknowledge
that “the proof process becomes much longer” in their more powerful method;
one way to view this work is as an attempt to extend the more modular of
the two approaches, where the proof process is shorter, to a wider variety of
programs.

There are a number of immediate directions for future work. One is the incor-
poration of passivity, which would allow read-only sharing of heap cells between
processes. Another is proof methods that do not require complete resource sep-
aration, such as the rely-guarantee method [14,23], where the aim would be to
use separation logic’s local nature to cut down the sizes of rely and guarantee
conditions. A third is the incorporation of temporal features. Generally, how-
ever, we believe that the direction of resource-oriented logics offers promise for
reasoning about concurrent systems, as we hope to have demonstrated in the
form of proofs and specifications given in this paper.

ACKNOWLEDGEMENTS. I am grateful to Per Brinch Hansen, David Pym and
John Reynolds for discussions on resource and concurrency that impacted the
form of this work, to Steve Brookes for the theoretical analysis without which it
could not be presented, and to Josh Berdine, Richard Bornat, Cristiano Calcagno
and Hongseok Yang for daring me to embrace the daring programming idioms.
This research was supported by the EPSRC.

References

1.

2.

10.
11.

12.

13.
14.

15.

16.

17.

18.

P. Brinch Hansen. The nucleus of a multiprogramming system. Comm. ACM,
13(4):238-250, 1970.

P. Brinch Hansen. Structured multiprogramming. Comm. ACM, 15(7):574-578,
1972. Reprinted in [3].

P. Brinch Hansen, editor. The Origin of Concurrent Programming. Springer-Verlag,
2002.

S. D. Brookes. A semantics for concurrent separation logic. This Volume, Springer
LNCS, Proceedings of the 15th CONCUR, London. August, 2004.

L. Cardelli and L Caires. A spatial logic for concurrency. In 4th International Sym-
posium on Theoretical Aspects of Computer Science, LNCS 2255:1-37, Springer,
2001.

L. Cardelli and A. D. Gordon. Anytime, anywhere. modal logics for mobile ambi-
ents. In 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 365-377, 2000.

D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
Proceedings of the 15th European Conference on Object-Oriented Programming,
pages 53-76, Springer LNCS 2072, 2001.

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Program-
ming Languages, pages 43-112. Academic Press, 1968. Reprinted in [3].

E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1
2:115-138, October 1971. Reprinted in [3].

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

C. A. R. Hoare. Towards a theory of parallel programming. In Hoare and Perrot,
editors, Operating Systems Techniques. Academic Press, 1972. Reprinted in [3].
C. A. R. Hoare. Monitors: An operating system structuring concept. Comm. ACM,
17(10):549-557, 1974. Reprinted in [3].

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

C. B. Jones. Specification and design of (parallel) programs. IFIP Conference,
1983.

R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203—246.
Springer-Verlag, 1993.

P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Proceedings of 15th Annual Conference of the European
Association for Computer Science Logic, LNCS, pages 1-19. Springer-Verlag, 2001.
P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215-244, June 99.

P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hid-
ing. In 81st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 268-280, Venice, January 2004.

19. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, (19):319-340, 1976.

20. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic
approach. Comm. ACM, 19(5):279-285, 1976.

21. A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13(1), 45-60, 1981.

22. J. C. Reynolds. Separation logic: a logic for shared mutable data structures. Invited
Paper, Proceedings of the 17th IEEE Symposium on Logic in Computer Science,
pages 55-74, 2002.

23. C. Stirling. A generalization of the Owicki-Gries Hoare logic for a concurrent while
language. Theoretical Computer Science, 58:347-359, 1988.

24. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In Foundations of
Software Science and Computation Structures, Springer LNCS 2303., 2002.

Appendix: Sequential Separation Logic

Reasoning about atomic commands is based on the “small axioms” where x, m,n
are assumed to be distinct variables.

{E— }[E]:=F{E— F}

{F +— —} dispose(E) {emp}

{z = m A emp}x := cons(Fh, ..., Ex){zx — E1[m/x],..., Ex[m/z]}
{r =nAemp}x:=F{x=(E[n/z]) A emp}
{E—nANz=m}zx:=[E|{z=n A E[m/z]— n}

Typically, the effects of these “small” axioms can be extended using the frame

rule:
{rro{Qt C doesn’t change

{P+R}C{Q*R} variables free in R

In addition to the above we have the usual proof rules of standard Hoare logic.

{P A B}C{P} P=P {P}C{Q'} Q' =Q
{P}while Bdo C{P A —~B} {Prc{e}
{rici{Q} {Q}Cx{R}
{P}skip{P} {P}C1; C2{R}
{PAB}C{Q} {PA-B}C'{Q}
{P}if BthenCelse C'{Q}

Also, although we have not stated them, there is a substitution rule and a rule
for introducing existential quantifiers, as in [16].

We can use P = (@ in the consequence rule when s, h = P = @ holds for all
s and h in the semantics below (when the domain of s contains the free variables
of P and @).) Thus, the semantics is, in this paper, used as an oracle by the proof
system.

A state consists of two components, the stack s € S and the heap h € H,
both of which are finite partial functions as indicated in the following domains.

Variables 2 {z,y,...} Nats 2 {0,1,2...}
Ints 2 {.,-1,0,1,..} H 2 Nats —gn Ints
S e Variables —g, Ints States 2 Sx H
Integer and boolean expressions are determined by valuations

[E]s € Ints [B]s € {true, false}

where the domain of s € S includes the free variables of E or B. We use the
following notations in the semantics of assertions.

1. dom(h) denotes the domain of definition of a heap h € H, and dom(s) is the
domain of s € S;

2. h#h’ indicates that the domains of h and h’ are disjoint;

3. h - k' denotes the union of disjoint heaps (i.e., the union of functions with
disjoint domains);

4. (f | i~ j) is the partial function like f except that i goes to j.

The satisfaction judgement s,h = P which says that an assertion holds for a
given stack and heap. (This assumes that Free(P) C dom(s), where Free(P) is
the set of variables occurring freely in P.)

s,h EB iff [B]s = true
s,hi=EP=Qiff if s,h = P then s,h EQ
s,h=Ve. P iff YoelInts. [s|z—v],hEP

s, h = emp iff h =[] is the empty heap
s,h = Ew F iff {[E]s} = dom(h) and h([E]s) = [F]s
S,h):P*Q iff E'ho,hl. ho#hl, ho 'hl :h, S,h()):P and S,hl ':Q

Notice that the semantics of E — F'is “exact”, where it is required that F is
the only active address in the current heap. Using * we can build up descriptions
of larger heaps. For example, (10 — 3) x (11 — 10) describes two adjacent cells
whose contents are 3 and 10.

The “permissions” reading of assertions is intimately related to the way the
semantics above works with “portions” of the heap. Consider, for example, a
formula

list(f) *xz— — -

as was used in the memory manager example. A heap h satisfying this formula
must have a partition h = hg * h; where hy contains the free list (and nothing
else) and hy contains the binary cell pointed to by z. It is evident from this
that we cannot regard an assertion P on its own as describing the entire state,
because it might be used within another assertion, as part of a * conjunct.

