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Abstract

This paper explores a unification of the ideas of Concurrent Separation Logic with those of Communicating Sequential
Processes. It extends separation logic by an operator for separation in time as well as separation in space. It extends CSP in
the direction of the pi-calculus: dynamic change of alphabet is achieved by communication of channel names. Separation is
exploited to ensure that each channel still has only two ends. For purposes of exploration, the model is the simplest possible,
confined to traces without refusals. The treatment is sufficiently general to facilitate extensions by standard techniques for
sharing multiplexed channels and heap state.

1 Introduction

This paper reports on work bringing together semantic ideas lying behind Concurrent Sep-
aration Logic (CSL, [18,4]) and Communicating Sequential Processes (CSP, [11]).

CSL provides a modular way of reasoning about shared-memory programs. It is based
on the principle that that, at any time, it is possible to partition the state into that “owned”
by separate processes. Ownership constrains the operations that processes are allowed
to perform, and separation and ownership work together to allow independent reasoning
about concurrent processes. In CSL the ‘ownership” is dynamic, changing over time as
heap objects are allocated, deallocated and transferred between processes.

CSP itself has a strong form of locality built in: a process has an associated alphabet,
and it is only allowed to engage in events from the alphabet. There is thus a strong similarity
to the CSL ownership idea. It is therefore natural to ask whether we can have a more
dynamic model of ownership, as in CSL, for CSP-style message passing.

In this paper we take alphabets as the model of ownership, but allow them to change
over time. This requires us to record the current alphabet before and after every event
in a trace. Channel allocation has the effect of enlarging the alphabet while deallocation
shrinks it. We also consider message passing primitives that can change the alphabet, by
transferring channel permissions along with values.
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The model that we present is a cousin of the standard trace semantics of CSP. The
model includes two separating conjunctions: parallel composition is modelled by separa-
tion in space, and sequential composition by separation in time. The spatial separating
conjunction is defined in a way that emulates the semantics of parallel composition in CSP,
where synchronization is forced on common events in the (changing) alphabets of different
processes. The spatial composition of alphabets ensures that only one process can own a
channel end at any time. The sequential composition connective is similar to conjunctions
(“chop” operators) at the basis of Interval Temporal Logic and Duration Calculus [16,10].

To develop these ideas we use an illustrative process language that borrows from sev-
eral previous works. As in pi-calculus [15], we allow channels to be passed as the contents
of messages and to be dynamically allocated. As in the occam language [14], we model
point-to-point communication, where each channel has only one sender and one receiver
at any given time. The sender and receiver for a given channel are, however, not fixed:
permission to access a channel end can be transferred between processes, as is done in
occam-pi [26]. Unusually for a process calculus, we allow dynamic deallocation as well as
allocation of channels. This corresponds to the explicit channel-management capabilities
used in systems programs, where the responsiblity for deallocating a channel is given to
the processes that use it rather than a garbage collector. Our model applies equally well to
programs and languages that never use deallocation, preferring to rely on garbage collec-
tion. But, even in a garbage-collected language, an explicit but non-executable delete may
actually help to prove a program in a modular way: safe deallocation almost forces us to
account for which processes are allowed to use what channels, and when.

The specific features in the illustrative language are chosen because of the way they
mix together to make a somewhat simple mathematical model. Many variations could and
should be considered. We would certainly like to consider many-to-many channels. And,
we would like to mix program heap and channels; for example, we could directly model the
situation where channels are held in linked lists representing queues of requests in a web
server. Our mathematical definitions are phrased in a general way that potentially facilitates
extension to account for these kinds of features.

In this paper we do not consider structures such as failures, divergences, or infinite
traces, that have been used in the semantics of CSP to account for deadlock and liveness
[23,3]. The extension to the these sorts of properties is a problem for future work.

The presentation that follows is designed to suit readers with some prior acquaintance
either of process algebra or of separation logic; it enables them to gain acquaintance of
the other. Section 2 starts with the general principle of separation logic, and its relation
to interpretations of parallel composition. Section 3 then presents the basic ideas in our
illustrative language and its semantics in an informal way, followed by the formal treatment
in subsequent sections. The paper ends with a discussion of related and future work.

2 Separating Conjunctions and Process Semantics

This section summarizes the general background for the kind of semantic model we give.
The notions here will be used in the construction of a particular model in the further sections
of the paper.
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2.1 Ternary Relation Models

Assume we are given a set 1" and a ternary relation S C 7' x T' x T. We can lift S to a
binary operation ® : P(T") x P(T") — P(T') on the powerset of 1" as follows:

te A® B iff u,v.Stuv Aue ANv e B.

We call ® the separating conjunction induced by S. In the concrete models later, 7" will be
a set of traces, and Stuwv will express that ¢ consists of two separate parts, namely u and v.

The set P(T') of predicates is a complete Boolean algebra, and we will use standard
logical notation (A, V, —) to denote meet, join, and complement. © is monotone in the
subset order, and the induced functions A ® (-) and (-) ® A have right adjoints which give
us the implication connectives corresponding to the separating conjunction. By virtue of
being left adjoints, we obtain that each of these parametrized operations preserves all joins:

\/ AeB =4e(\/ B) ad \/ BeoAd=(\/BoAa

BeX BeX BeX BeX

for X a set of predicates.
We say that S is

commutative iff Stuv = Stou,

associative iff Jv. Stugv A Svuqiug < . Stv'ug A Sv'uguy.

Associativity or commutativity of S implies associativity or commutativity in the usual
sense of ®. The associativity condition can be pictured as asserting the equivalence of

t and t
/\ /\
UQ v v U2
VAN N
Uy U up U1

where v and v’ are existentially quantified in each tree, and where relation Sabc is depicted
as a tree with root a and children b and c.

If S is such that Stguv A Stjuv = ty = t; then we say that .S is a deterministic
model; otherwise it is nondeterministic. Deterministic models can be generated using the
Sfunction model construction. Suppose we are given a partial functionw : T' x T" — T'. This
determines a ternary relation S where Stuv iff t = u W v.

Conjunctions of the form given above were proposed by Routley and Meyer in their
ternary-relation semantics of substructural logics [24]. Special cases, where the relation can
be replaced by a (partial) function, have been used in Bunched Logic [19,21] and Duration
Calculus [10]. On the other hand, such conjunctions can be seen as binary modal operators
[5]. Like other modal operators, they are definable in predicate calculus by restricted forms
of quantification over a designated parameter (a “possible world” semantics), a parameter
that is usually left implicit in each predicate of the modal logic.

Using the definitions of this section we can begin to set down a structure of a semantics
of processes. We presume we are given a set 7', a commutative and associative ternary
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1330k 2]

relation S, on 7', and an associative relation S, on 7. We use “x” and “;” to denote the

1332

separating conjunctions induced by S, and .S,. The “*” connective will be used in the trace

semantics of concurrent processes, ““;” will be used for sequential composition, and the
disjunction A V B will interpret nondeterministic choice.

2.2 Basic Examples

A first example is given by sets with disjoint union. Here, 7" is the powerset of some set F/,
and Stuwv holds justif ¢t = v U v and w N v = (. This is a simple version of the models in
previous work on separation logic, and is both commutative and associative. This example
is obtained via the function model construction using the union & of disjoint sets.

An associative but noncommutative example is obtained by taking .S to mean separation
by concatenation of sequences. If 7' = F™ is the set of sequences of elements from a set
F, then Stuv justif t = u —~v. Again, this is a functional model (in fact, given by a rotal
function). A nondeterministic (and commutative and associative) S is given by interleaving
of sequences: Stuw just if ¢ is an interleaving of u and v.

An example related to the trace semantics of parallel composition in CSP is as follows.
Againlet T = F*,andif X C F andt € T let t| X be ¢ restricted to elements from X.
Then Stuv means that there are U and V' where v = ¢t[U and v = ¢[V. This S is both
commutative and associative, and is it nondeterministic. An example related to the trace
semantics of sequential composition in CSP is given by taking 7' = F' o be sequences
possibly terminated with v'. v* stands for successful termination, and distinguishes termi-
nation from deadlock. Then Stuv means that ¢ = u and neither has v/, or v = «'v’ and
t = ' —~wv. This S is noncomutative, associative and deterministic.

3 Illustrative Language

In this section we describe the process language we will interpret. We use several exam-
ples to explain the constructs in the language, and their semantics, in an informal way, as
preparation for the more formal treatment in subsequent sections.

3.1 Traces, Informally

The intuitive model is that at any point in time a process has a current alphabet, consisting of
the channel ends — ¢?, ¢! —that it is allowed to use. We also say that ¢? in an alphabet records
receive permission, and c! send permission. The alphabet will be allowed to change over
time, as a result of allocation, deallocation, and message passing. To model the changing
alphabet we intersperse alphabets, which confer ownership of channel ends, with events,
which record communications.

A trace t is a non-empty alternating sequence
ag...Epop,
of alphabets and events, beginning and ending with an alphabet, or an alternating sequence
ag...Eponv

ending in a v/, signifying termination.
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An alphabet « is a finite set of channel ends ¢!, ¢?, where ¢ is drawn from an infinite
collection of channels. An event (or rather, event set) £ is a finite set of primitive events,
drawn from

¢ cIm, send of a message,

* ¢?m, receive of message.

The messages m themselves have structure, consisting of a value v and a permission p:
m = vp vi=cl|3|--- pu=cel|l|7]|1?

Permissions in messages are used to indicate transfer of ownership, from sender to receiver.
For instance, a message c! indicates that ability to send, but not to receive, on c is transferred
from the sending to the receiving process, along with the value c. ¢? sends receive permis-
sion, c!? sends both permissions, and ce sends the plain value without any permissions. (In
most examples we will simply write c rather than ce, eliding the empty permission.)

A singleton event [c!m] or [¢?m)] represents an offered communication, whereas a com-
bined event [c!m, c?m] represents a consummated communication. In contrast the the
standard definition of CSP, consummated communications cannot be the subject of fur-
ther synchronization with other processes. This is because we will model point-to-point
communication.

This use of sets of primitive events, and particularly the respesentation of consum-
mated communications, has been chosen because it leads to a particularly simple notion
of event composition using set union. Also, our sets of primitive events represent several
actions happening at the same time. For example, we can have offered communications
on different channels, [c!3, d!4], or even two simultaneous consummated communications,
[c!3,¢?3,d!4, d?4].

3.2 Process Terms

The process terms we will interpret include the following

P = SKIP |STOP | P | P| P+ P | P; P
| xlgp | z?(yp).P | newz.P | disposex ---

We distinguish variables (z, ¥,...) from channels (c, d,...), and use an environment
model where the semantics of a term is relative to a mapping 7 from variables to channels
(and other values such as numbers). Channels ¢ and d are constants, like 3 and 5. The
new x. P construct extends the current alphabet with the ends ¢? and ¢! of a new channel,
binds ¢ to x in the environment, and then continues as P. So, x is a bound variable in
new z.P. Similarly, the form x7(yp).P the variable yis bound in P. The nesting of ! and 7
in messages will be used to express ownership transfer between processes.

The - - - in the grammar of processes is to indicate that our treatment will allow for the
inclusion of additional constructs, such as recursion or equality-testing of channels, which
can be interpreted in our model.

The ownership transfer primitives in our illustrative language follow a useful design
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pattern that has been built into occam-pi, where sending a channel end relinquishes owner-
ship of the end. General CSL is more flexible, and can deal with algorithms in which the
conventions about ownership transfer are under control of the programmer. For example, it
could enable ownership of input and output ends to be exchanged on every communication,
thus allowing (and requiring) an alternation of inputs and outputs on the same channel. oc-
cam dows not allow ownership transfer, and occam-pi requires all transfer of ownership to
be signalled by an explicit communication.

3.3  Examples

We begin with a very simple example, the program
progl = z!3| (x?y.SKIP).

Suppose that x is bound to channel c in the environment. Example traces for the left and
right processes are

tr, = {c} [eB]{c!}v and tr = {c?} [c?3]{c?}V .

The events (enclosed in []) and alphabets (enclosed in {}) in these traces are disjoint at
each step. The partial composition operator x : T' X T' — T on traces simply unions up
pointwise, giving us a trace

trxtrp = {c,c?} [c!3,¢?3] {c!, c?}V

of the parallel composition in prog1.

This example illustrates a crucial idea in our model: * of traces is obtained by pointwise
disjoint unioning. This operation is partial, in that ¢x¢’ is undefined if the alphabets or events
of t and t’ overlap at any given step (or if they are of different lengths).

Our next illustration concerns allocation and deallocation. The traces of

prog2 = newx.disposezx

include all traces

te) = {3 1 {ch e 1 {3v
for any channel c. We have chosen to record only communication events in the traces.
In particular, note that we do not regard allocation and deallocation as events: They are
represented by their change of alphabet alone. In t(c) we can see that new extends the
alphabet with the two ends of a channel c (also binding c to z in the environment), where
dispose removes those channels from the alphabet. dispose x must have both ends of
the channel denoted by x in its pre-alphabet in order to successfully execute.

It is instructive to consider what happens when we compose prog?2 with itself:

prog?2 || prog2.
For a given channel ¢, both processes have trace ¢(c). However, when we try to «-compose
t(c) with itself

OOy [T« {3 e} [TV

we find that the alphabets are not disjoint after the first step. So, ¢(c) * t(c) is undefined.
On the other hand, if ¢ and d are distinct then ¢(c) and ¢(d) will be disjoint at every step,

6
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and we can union them up to obtain a trace t(c) * t(d) for the parallel composition:

t(c)xt(d) = {}[]{c\, e, dl,a?} [] {}v

This example illustrates how the disjointness requirement of * (and partiality of £; * £2)
is used to ensure that allocations done in different processes are consistent with one another.
Here is an example of ownership transfer by message passing:

prog3 = z!(y!); y7z. SKIP

This program sends the write end of y along channel z, and then receives a message on .
A possible trace for it is

{vhy?, 2} [l )] {y?, 2!} [y73] {y?, 2!}

Notice how the y! end has disappeared from the trace in the alphabet after the first commu-
nication: when a process sends a channel end in a message, it relinquishes ownership.

If we compose prog3 with a process that receives on z7 then the relinquishing of y! by
prog3 is matched by the other process aquiring it:

z!(y)); y?2.SKIP || x?(w!); w!3.

A trace for the process on the right of || is

{27} [27(y)] {27, 9!} [y'3] {27, 9!}

and the alphabets and event sets of this trace are disjoint, at every step, from the corre-
sponding events and alphabets in the previously-quoted trace for prog3: we can union
these traces up using *, to obtain a trace for the parallel composition.

It can become tiresome to always mention the environment in examples, and this time
we did not bother to. A more accurate description of the first trace for prog3 would be to
say that there were channels ¢ and d bound to = and y in the initial environment, that z
became bound to d, and that the final trace was

{d),d?, et} [el(dD)] {d?, 1} [d?3] {d?, e}

The other trace would similarly mention ¢ and d, not variable names x and y. We say this
to emphasize that we use an environment mode instead of utilizing the technique of scope
extrusion [15] in the semantics of processes that pass channels in messages.We thereby
allow the logical possibility of aliasing where, for example, distinct variables denote the
same channel, and separation of channels owned by different processes is captured using
“x” rather than scoping (as illustrated in our example with prog?2 || prog2 above).

A further principle is that you can only use a channel end that you own. So,

progd = z!(y!); y!3. SKIP

never gets to do y!3, because it has given up the y! channel end in the previous step.
Finally, it is the disjoint unioning of alphabets that implements the point-to-point chan-
nel notion. In a parallel composition, a channel end cannot be sent to both processes by a
x-partitioning. For example, in the basic trace model for the program
progs = z!3 || x4

we will not be able to do both communications.
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We have given these examples to provide some intuition on the way that our trace
semantics works. The informal presentation has (purposely) hidden some of the essential
and yet intricate technical aspects of the model. Most importantly, we indicated that ¢ x ¢’ is
undefined when events or alphabets overlap; but there are other cases when it is undefined,
which are needed to implement the “forcing synchronization” idea of CSP. These cases are
examined formally in Section 4.3.

4 Traces, Formally

In this section we define the composition operators for traces. We will also identify a subset
of the traces (the legal ones) that are needed in the construction of our model.

4.1 Composition Operators

We have already said in Section 3.1 that a trace is an alternating sequence of alphabets and
events (or event sets), possibly terminated with v'. We say that trace ¢ is completed if it has
v/, and that it is incomplete, otherwise. We let 7" denote the collection of all traces, and
completed be the set of all t € T" which have v'.

With this data we can define the partial composition function * : 7' x T — T. For
incomplete traces it is

(ap...Epan) x (afy...ELal) = (o Wap)...(E, W E!) (o, Wal,)

where we understand that the left-hand-side is undefined if any of the W expressions on the
right are. We stipulate that ¢; * ¢5 is undefined if ¢; and ¢5 do not have the same length. For
completed traces, t1v xtav’ is (t1 *t2)v . t1 * ta is undefined if one argument is completed
and the other incomplete.

Using v/, we can define the sequential composition operation ;: T'x T —T.t; t' =t
if ¢ is incomplete. If ¢ is completed we concatentate ¢’ onto ¢ after we remove the v and
last alphabet from ¢ taking care to ensure that the last alphabet of ¢ is the first alphabet of
t'. That is, suppose t = upav” and ' = o’y and. Then ¢;t' = upou) if o = o/, and t; ¢/
is undefined otherwise.

By the function model construction, this gives us ternary relations S, and S, on T,
and their induced conjunctions which we will denote “x” and “;”. Context will always

disambiguate where a use of “«” or *“;” is as an operation on traces or on predicates.

4.2  Concurrency and Ownership

Not all sets of primitive events are sensible. For example, a set [d!3, d!4] indicates two
concurrent sends on d, with different values, at the same time. Another, subtler, example is
[c!(dl), d!3] where 3 is sent on channel d, and concurrently the send permission for d is sent
on channel c; this second example conflicts with the point-to-point idea, that two processes
cannot sumultaneously possess the send permission on a channel.

More generally, if e and €’ are two events in an event set, we want it to be consistent for
them to occur at the same time. We can formalize this notion of consistency by appealing
to the notion pre(e) of the pre-alphabet for an event. The alphabet pre(e) describes the
resources needed for the event e to occur. Consistency of e and ¢’ then means that pre(e)
and pre(e’) do not overlap; that is what is needed for the events to occur concurrently.

8
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We establish some notation. If m (= wvp) is a message then res(m) is an alphabet
describing the permissions sent with the message value v, and this is used in the definition
of pre(e):

res(ve) = {} res(v!?) = {vl,v7}

res(vl) = {v!} res(v?) = {v?}

pre(clm) = {c!} Ures(m) pre(c?m) = {c?}.
Note that thepre of a send includes the resources of its message, while the pre of a receive
does not; this reflects the direction in which the permissions travel.
The following is our restriction on event sets.

CONCURRENCY PROPERTY. An event set E must satisfy
Ve,e' € E. e # ¢ = pre(e) Npre(e) =10 .

This condition could be phrased much more generally, for partial monoids of events
and alphabets. Then, the condition says that if the composition of two events is defined, so
is the composition of their pre’s, where “pre” is a function from the event monoid to the
alphabet monoid.

We impose a second condition which rules out traces in which an event occurs when it
is not justified by the pre-alphabet.

OWNERSHIP PROPERTY: any pair aF of a consecutive alphabet and event in a trace
must satisfy
Ve € E.pre(e) C .

The Ownership and Concurrency properties together can be characterized equivalently
by a proof system for allowed transitions o E.

{c?}ctm] ({c!} Ures(m))[c!m]

o aoky a1 Eq
Oz[] (OélLﬂOél)(ElLﬂEg)

As an example of a transition aF allowed by the Ownership Property is
{c?,d!, e!}[c?3,d!(e!)].

It is obtained by concurrently composing the two events, of a receive on ¢ and an ownership-
sending send on d. It is important that the restrictions imposed by these properties are not
exactly “unique occurrence of a channel end,” as illustrated by

{c?,d!}[c?3,d!(d")],
where there are two occurrences of d! in the event. An example of a programming idiom
utilizing this capability will be given in Section 5.2.
4.3 Forcing Synchronization

Our final restriction constrains traces in a way which forces CSP-style synchronization.

9
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SYNCHRONIZATION PROPERTY: any pair oF of a consecutive alphabet and event in a
trace must satisfy

{c,c?} Ca= VYm.(c!me E < c'me E).

The requirement says that all communications must be consummated when both ends of a
channel are present. This is related to the point-to-point communication idea: when both
ends of a channel are owned, no other process can synchronize with one of the ends.

To see the effect of the Synchronization Property, consider the traces

tr = {c?} [e?3] {c?} [] {c?}
ty = {c} [ {c} [e3] {c1}.

These are traces for the left and right processes in (c¢?y.SKIP) || (c!3; SKIP), but if we
union together all the components the resulting trace

t = {cl,c?} [c73] {c!, c?} [13] {c!, c?}

violates the Synchronization Property. For, if the first event has ¢?3 it must also have c¢!3,
since the start-alphabet of ¢ has both ¢! and ¢?. This illustrates how the Synchronization
Property prevents communications from being ignored.

4.4 Legal Traces

The three conditions we have given in this section have the effect of restricting the set of
traces. To be explicit:

LEGAL TRACES. We define the set L of legal traces to be those t where every event set
FE satisfies the Concurrency Property and every transition oF in t satisfies the Synchro-
nization and Ownership Properties.

The * operation from Section 4.1 restricts to an operation *y, : L x L. — L as follows:

txpt =txt iftxt' € L
t xy t' = undefined if ¢ * ¢ undefined or ¢t x t' & L

; restricts to ;7 similarly.

We included these L subscripts just to make clear that we are defining new binary
operators, in terms of those defined previously. From now on, though, we will simply write
* and ;, without the subscripts, for these induced operations of type L x L — L.

4.5 Generalities

Suppose S is a ternary relation on 7" and L C 7. Then the induced relation STL C
L x L x L is just the restriction of S to L. In terms of the framework from Section 2,
Section 4.1 presented a model determined by two ternary relations .S on 7', and Section 4.2
presented further models gotten by applying this subset construction.

10
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We warn that the relation S|L is not automatically associative if S is: when we set
down any such S and we want an associative operation, we are obliged to prove associativ-
ity for the particular S|L. (STL is, however, commutative if .S is.) The particular choice of
L in this section was partly determined by this obligation. If we were to impose the Syn-
chronization Property but not Ownership, then the induced *;, (or its relation counterpart)
is not associative. However, when we impose Ownership as well, associativity holds.

4.6 Other Models

Much of the work in this paper can be done in a setting where the sets of alphabets and
events are replaced by arbitrary partial commutative monoids, with legality conditions rep-
resented by a subset L of traces.

In a heap model we could replace alphabets by a set of partial functions Heaps =
L — V, where W of alphabets can be replaced by union of functions with disjoint domain.
The elements £ € Events can be taken to be sets of semaphore operations P(s), V(s)
for a fixed collection of semphores s, with the exclusion restriction that we never have
{P(s),V(s)} C E, two operations on a single semaphore in a single event set. The event
composition & is union of disjoint sets. This model is similar to the one from [6], but allows
operations on different semaphores to happen at the same time. A variation on this model,
which allows concurrent read access to a location, is obtained using permission models [2].

We can combine heap and message passing models using a product Heaps x Alphabets.
If we keep Events as in the communication model in this paper, then we could model a
situation where each process has its own state, and only interacts with other processes by
explicit message passing.

Finally, we could perhaps model many-to-many communication by considering an al-
phabet monoid which allows the composition of overlapping channel ends to be defined.
To make this work with channel deallocation the best current technology is permissions [2].

5 The Traces of a Process

The semantics traces(P) of a process is a predicate denoting a set of traces. To be literal,
it denotes a function from environments to trace sets. For simplicity, we will use logical
notation in the usual semi-formal way to write down these predicates, relying on predicate
calculus to do all environment manipulation (see later in the section for elaboration).

We can immediately give the semantics of several of our constructs.

traces(P || Q) = traces(P) = traces(Q)
traces(P; Q) = traces(P) ; traces(Q)
traces(P + Q) = traces(P) V traces(Q)
traces(SKIP) = skip
traces(STOP) = skip A ~completed

Here, the predicate skip is the set consisting of all traces

af]---[la and of]---[Jav’
11
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where the same alphabet is repeated, interspersed with the empty event. This definition
allows arbitrary stuttering (see below) and is also closed under prefixes.
For the remaining constructs we first make some preliminary definitions.

- Al is the prefix-stuttering closure of A. That is, if t € A and ¢’ is a prefix of a trace
obtained from ¢ by some number of stuttering steps, then ¢’ € A'. Formally, if t = ua/
then we say that ¢’ = ua|]au’ is obtained from ¢ by a stuttering step. We require that
t' € Tift € T. If t is an initial subsequence of ¢’ then we we say that ¢ is a prefix of ¢/
and that ¢’ is an extension of ¢. If ¢ € T and ¢ is a prefix of ¢’ then we require that t € T

- expand[t] = skip; ({t}T * skip).

These operations are related to healthiness conditions detailed in the next section. The
trace semantics of processes will be closed under prefixes and stuffering. In a model with
finite traces only, it is necessary to consider non-completed traces in order, for example, to
account for the parallel composition of terminating and non-terminating processes. Closure
under stuttering is a technical device used to make the lengths of traces match up when
using * to define parallel composition. The initial skip in the definition of expansion is
there to ensure that the resulting predicate contains all singleton traces, and we then close
up under prefixes, stuttering, and the tacking on of additional alphabet via *skip. The
closure by *skip extends ¢ in a way that leaves additional resources unchanged, and is
related to the the issue of avoiding explicit frame axioms (which say what doesn’t change);
see Sections 6.1 and 6.3.

We can use this expansion notion to give the semantics of a construct by presenting just
a single trace. As an example, consider that with

expand| {z,z?} [] {}v' ]

we get what we expect for the semantics of disposal, a trace set consisting of

e singleton traces that consist of any initial alphabet,
e traces that stutter from any initial alphabet and fail to terminate, and

e traces that stutter from an initial alphabet containing {x!, 27}, then delete ! and z7, then
possibly stutter some more and then possibly terminate.

Here are the semantic clauses for the channel constructs.

traces(newz.P) = 3. expand[ {}[]{z!, 27}V |; traces(P)
traces(dispose =) = expand| {z!,z7}[]{}v ]
traces(z!pp) = if 27 € res(pp) then traces(STOP)
else expand| (pre(z!pp)[2!pp]({2!} —res(pp))v']
traces(2?(yp).P) = Jy.x? & res(yp)A

expand|[ {z?}x?(yp)]({x?} Wres(yp)v |; traces(P)

For new the trace allocates the two ends of a channel, and then continues as P. (Note that
x might occur in traces(P).) For dispose the semantics just removes the two ends, when
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they are present. The clauses for message send and receive use res and pre, which were
defined in Section 4.2, and “—" is used for set difference.

The clause for output of a channel end has one subtlety, concerning message sends like
x!(z?). In such a case, we know that there can never be any possible receiver, because the
sending process owns both ends of the channel. So, the semantics treats this special case
as being necessarily unrequited. Similarly, the meaning of input treats as a special case the
receiving of the input permission on the same channel.

On the other hand, a message send z!(x!), where one sends write permission for a chan-
nel in a message along that very channel, is perfectly sensible, and is used in an example in
Section 5.2.

Technical Note. The semantics just given induces a function

traces(P) : Environments — P(L)

where an environment 7 € FEnvironments is a function mapping ordinary variables x
to values 7n(z), and P(L) is the set of sets of legal traces. We used logical notation
above instead of passing environments around explicitly. For example, instead of writing
An. traces(P)n « traces(Q)n we wrote traces(P) * traces(Q).

The most significant simplification in this form of presentation comes from the use of
quantifiers. For instance, we wrote

traces(newz.P) = Jx.expand[ {}[]{z!,2?}v |; traces(P)

in the semantics of new, rather than the more literal (and cumbersome)

traces(newz.P)n = \/, expand] {}[]{c!,c?}v |; traces(P)(n | z+—c)

which is just a standard semantics of the predicate calculus notation. That is, the environment-
free presentation of the semantics for new is relying on the ability of a complete boolean
algebra to model quantification in the standard way. With these remarks, we expect that no
confusion is likely to arise from our use of logical notation in this way.

5.1 Example: Forever Unrequited Communication

The idea of the Synchronization Property from Section 4.3 is that when a process has
a resource it will have it exclusively. So, when a process has both ends of a channel,
and it offers a communication on that channel, it is impossible for any other process to
reciprocate. The following example illustrates this point further:

prog6 = newz.z!3.

This program is doubly-bad: it deadlocks and it leaks a channel. As in pi-calculus, the
deadlock happens because the offered communication will be forever unrequited, but, un-
like in pi-calculus, our semantics also says that it leaks. In pi-calculus prog6 is bisimilar
to 0 (here, STOP), the basic deadlocking process, an identification justified by the garbage-
collecting nature of pi’s channel management. Here, because we have explicit deallocation
we do not depend on a garbage collector, and so distinguish the process from STOP.

In more detail, in our model prog6 has a trace
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{3 [1{a!, 27}
which shows the allocation explicitly, but no trace extending this one that does anything

other than stutter. In particular, if we try to extend the trace with the indicated communica-
tion

{3 {x!, 2?} [213] {z!, 7}

then the resulting extended trace is not legal: it violates the Synchronization Property.
In contrast, the traces of STOP never change the alphabet.

5.2 Example: Buffer with Explicit Channel Management

A more advanced example shows a buffer that passes messages from a sender to a receiver.
The processes observe the convention that end of transmission is indicated by sending the
output permission for a channel along the channel itself; it is then the responsibility of the
recipient of an “end transmission” message to dispose the channel (or not). We give the
sender and buffer processes, but not the receiver.

new(left). sender || buffer

where
buffer = left?x. right!z. buffer
+ left?(y!).(dispose (left) || right!(right!))
and
sender = “produce an m”; left!m. sender
+ left!(left!). SKIP

The sender sends a stream of messages on the left channel to the buffer, which copies them
out to a right channel. The sender indicates that it is done by sending the write permission
for left to the buffer, which then sends the left channel back to the channel manager. The
buffer assumes responsibility for disposing the left channel, but hands off all responsibility
for managing the right channel.

(The processes just given are recursive, and we have not given a semantics to recursion
yet. We expect in any case that the reader can follow the example prior to such a semantics,
which is discussed in Section 6.2.)

Obviously there are several possible alternative arrangements for who (buffer or sender
or receiver) has final responsibility for the various channels, and this example has displayed
just one of them. In different practical situations different choices can be and are made.

To show the semantics working, here are sample traces for the sender and buffer pro-
cesses after the allocaton of left has been done.

ts = {up s {ey [ {mropan o {} [ {
tp = {17,708} [123] {12, 71} [F13] {02,01} [12000)] {2,02,01} [rieeD)] {}

In showing the traces we have written r for right and [ for left. These traces show when
the ownership transfer happens, and their composition ¢g * ¢ is a trace of the behaviour of
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the parallel composition of the sender and the buffer. In trace ¢z, the final transition

{02, eI = G = e eI

is itself a x-composition, obtained from the parallel composition in the buffer process.

Finally, it is worth remarking that the buffer is programmed in a dangerous style. If the
sender process happens to send the left! channel end, then everything will be alright. But, if
the sender mistakenly sent another channel end, then the buffer would mistakenly attempt
to dispose that channel. A safer, but less efficient way to program the buffer is

buffer2 = left?z.right!z. buffer?2
+ left?(y!).if (y = left) then (dispose left || right!(right!))

else SKIP

Here the buffer explicitly checks that the correct permission has been obtained before dis-
posing. This would help protect from incorrectly disposing. But, with the given sender
process, the unsafe buffer is safe enough.

5.3 Discusson: Channel Faults

This discussion of safety of the buffer program brings up a limitation of the trace model
in this paper. In the model we are using STOP as the receptacle of several kinds of error,
including deadlock, divergence, and channel faults. The former two are standard for trace
models; we comment on the third.

Informally, a channel fault occurs when a program attempts an operation not in its al-
phabet. The double disposal of a channel, dispose(z);dispose(x), is the classic example
(the fault is in the second step). It may be understood by analogy with a double free () in
the C language, which is regarded as resulting in “undefined behaviour” and (depending on
the compiler) may result in a segmentation fault. Another example is the parallel composi-
tion x!3 || z!4: if || splits alphabets, then one or the other of the parallel processes would
attempt a communication outside its alphabet.

In the traces model faulting is represented by STOP, as illustrated by the equivalence

dispose(x);dispose(x) = dispose(x); STOP.
Also, we have the equivalence
213 || z!4 = («!3 4+ z!4); STOP

where we would like to say that the left process is has a fault (a race condition; recall our
point-to-point assumption) where the right does not.

The basic problem is that, since traces(P + STOP) = traces(P), it is impossible to use
the trace model to say when errors represented by STOP will be avoided. In CSP, refined
models have been used to distinguish the different kinds of error represented together by
STOP in the basic trace semantics. The divergences model separates out infinite looping
with no external communication, and the failures model separates out deadlock. Similarly,
we would like a model that lets us prove that channel faults are avoided.
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6 Foundational Properties of the Model

In this section we describe some basic theoretical properties enjoyed by the semantics.
Generally, these properties will correspond to healthiness conditions, which identify con-
ditions on predicates preserved by the semantics of process terms. We also formulate a
result on footprints, which formalizes some of our intuitions about resources.

6.1 Healthiness
The trace semantics obeys the following three healthiness conditions: for a set A € P(L),
Unity : skip; 4A;skip =skipxA4 = A
StutPref : A= Af
Consistency : A #0.
Proposition 6.1 traces(P) satisfies Unity, StutPref and Consistency.

In fact, there is a stronger result than what is stated. Each construct in the language pre-
serves all three conditions, and so this result is robust under addition of new constructs to
the language of process terms.

We give the validation of Unity in a few cases of the trace semantics. For || we calculate

traces(P)  traces(()) = traces(P) * traces() x skip = traces(P || Q) * skip

(TR

The proof for *“;” is similar, and the one for 4+, use that * preserves joins.
(traces(P) x skip) V (traces(Q) * skip) = traces(P) V traces(Q).

The reason for condition StutPref was discussed in the previous section. Consistency
is a basic condition which (together with Unity) implies a property reminiscent of the CSP
trace model, where it is required that that the empty trace is included in the denotation of
any process. Here, the singleton traces consisting of alphabets « play the role of the empty
trace in CSP. We could have given inclusion of all singleton traces as this healthiness con-
dition, but in the presence of Unity that is equivalent to the simpler condition Consistency.

We give a fuller discussion of Unity. It is necessary for the expected equivalences

(U) traces(P) = traces(P || SKIP) = traces(SKIP; P) = traces(P;SKIP)

The reason is that skip is not the unit of “;” or “*” for arbitrary predicates. For counterex-
amples, consider a set {t} consisting of any single trace (say, t = {c!}[]{c!}v"). Then,
{t} = skip has infinitely many traces, not only one, and so is not equal to {t}. Similarly,
{t} # skip; {t} and {t} # {t}; skip.

The separating conjunctions do have units for arbitrary (non-healthy) predicates. The
unit of * is the set emp consisting of all traces whose alphabet and event components are
everywhere {} and []. The unit of ; is set step of completed traces av” of length two.
Neither of these predicates is denotable by a process in our illustrative language.

The Unity condition is obtained from a standard method for building a monoid from a
semigroup by choosing an idempotent element. Specifically, we know that skip € P(L)
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is idempotent wrt * and ;
skip; skip = skip * skip = skip

It follows that if A satisfies Unity we have that skip functions as a left and right unit for
both “x” and “;”, so we immediately obtain our equivalences (U).

We should argue that the Unity restriction is reasonable. First, consider skip; A =
A = A;skip. If processes are allowed to stutter and be closed under prefixes, as we want,
then it makes no difference to add stuttering on either end.

Second, consider A = A x skip. The construction A * skip in a sense “expands the
reach” of A, where any trace

ag...Epop € A or ap...E,o,v € A
is extended so that any completely separate alphabet o comes along for the ride:
(v Wa)..EplapnWa) e A or (agWa)...Ey(a, $a)v € A

All of the events F; remain the same in the extended trace, because the events in skip
are the unit [] of the event composition W. Thus, from healthiness condition Unity we
automatically obtain a sense in which processes behave locally: computation on a ‘small”
amount of resource can be automatically extended to larger portions of resource: as a con-
sequence, we do not have to think about the entire global state of a system to understand a
computation. This is related to the intuition behind the frame rule of [17].

Technical Note. When you “extend with a separate alphabet” you must be sure to sat-
isfy the Synchronization Property. For example, {c!}[c!3]{c!} * {c?}[]{c?} is undefined,
because the trace {c!, c?}[c!3]{c!, ¢?} is not legal. Thus, this illegal trace is not in the trace
set of {{c!}[c!3]{c!}} = skip. We state this because, if we were more literally following the
frame rule from [17], we might have expected the closure property (written as a rule)

{c!}[c!3]{c!} € traces(P)
{c!, c?}[c!3]{c!, c?} € traces(P)

but this inference is blocked by the Synchronization Property.

6.2 Recursion and CPO Structure

We will not give an explicit semantics of recursion in this paper, but we note that the
semantics has properties sufficient for it to be defined via fixed-points.

Proposition 6.2 The set of trace sets satisfying the three healthiness conditions is a com-
plete lattice under the subset order, with lubs being calculated by union, with traces(STOP)
being the least element and the set L of legal traces the greatest. The trace semantics of
each construct is Scott-continuous in its process arguments.

Note that Scott-continuity of || and ; is immediate from the join-preservation property
of separating conjunction quoted in Section 2.1.

This result gives us enough information to calculate the semantics of recursion using
either least or greatest fixed-points. Both have their uses. The least fixed-point corre-
sponds to a partial-correctness semantics, where the greatest fixed-point corresponds to
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a specification-oriented semantics in which the order of reverse subset is regarded as an
ordering of refinement.

Finally, the expand|[ ¢ | construction used in the previous section is connected to
healthiness as follows.

Proposition 6.3 expand| ¢ | is the smallest set containing t that satisfies the three health-
iness conditions.

6.3 Footprints

Above, we remarked how the A xskip part of condition Unity is related to the frame rule of
Separation Logic. We can take this locality idea one step further, by revisiting the footprint
idea [17]. Say that the footprint of a program execution is the set of resources touched by
it, including those that are allocated. Extrapolating from this, we can talk about a footprint
execution or trace, which mentions only those elements in its alphabets that are strictly
needed for the execution to take place. For example,

t = {zhal,x? yly?}H [ {2z, 2!, 27} [] {z!}

is a trace of dispose y; dispose x but not a footprint trace because of the redundant 2!,
which is not accessed. Deleting z! at every step gives us a footprint trace

ty = {abha?yly?} [[{al 27} ] {}

of disposey; disposez.

The relationship between these two traces is that t € {t¢} * skip. We can generalize
from this to formalize the idea is that we only need be concerned with traces that men-
tion the resources that are accessed as computation progresses; there should be a smallest
amount of relevant resource.

FOOTPRINT OF A PREDICATE: The footprint foot(A) of a predicate A is the smallest set
X, if such a smallest set exists, where X * skip = A.

A predicate is thus obviously completely determined by its footprint, when it exists.
We can show that footprints always exist by giving a characterization in terms minimal
resource required. Consider the order where ¢ C ¢’ means that ¢’ € {¢} * skip.

Proposition 6.4 If A = A x skip, then the footprint of A its subset of C-minimal traces:
foot(A) = {ty € A|t Tty Nt € Aimpliests C t}.

The proof of the Proposition uses the fact that C has no infinite descending sequences,
from which it follows that any trace ¢ € A must have at least one minimal trace ¢y € A
below it. Since traces(P) satisfies Unity the antecedent in the Proposition is satisfied, and
we conclude that the footprint of traces(P) exists.

Technical Note. For arbitrary partial commutative monoids in place of alphabets,
C might have infinite descending sequences, in which case Proposition 6.4 would fail.
Fractional permissions [2] provide one such model. See [22] for further information on the
theory of footprints (where the term “footprint” is used in a related, but inequivalent, way).
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7 Related Work

In the Introduction we acknowledged the influence of prior work on pi-calculus, occam and
occam-pi, as well as CSL and CSP. In this section we discuss two bodies of closely related
work on substructural typing and logic.

There has been a significant body of work on type disciplines that capture constraints on
channel usage in pi-calculus. Linear type systems [13] ensure point-to-point channels and
more: that each channel is used at most once. Session types are closer to the approach here,
in that they ensure point-to-point channels but allow a channel to be reused multiple times
while maintaining that there is at most one sender and receiver [12,25]. The type systems
have been used to characterize special classes of behaviour, such as sequential behaviour
[1], and are now being used in work on web services [7].

Our use of partial alphabet composition is similar to how substructural typing limits the
number of processes that can access a channel. Beyond that basic similarity, the techniques
developed here and in the work on types for pi-calculus appear to be complementary. In-
deed, it would be conceivable to use ideas like in session typing to underapproximate safe
states for our illustrative language (cf, Section 5.3). Conversely, it might be possible to em-
ploy techniques like those developed here to provide denotational models of session typing
systems, where the changing alphabet is an explicit part of the semantics.

A number of authors have used substructural logics to reason about process calculi
[9,8,20]. The approach has been to first set down an operational semantics of a process cal-
culus, and then use the parallel composition to define a separating conjunction connective
as described in Section 2. The approach in this paper is in a sense inverse. We first set down
a ternary relation model or models, and then use the induced separation connectives in the
description of the denotational semantics of processes. So, we use separation conjunctions
to provide the semantics of process terms, where [9,8,20] use process terms to provide the
semantics of separating conjunctions (in the generalized sense of Section 2).

Although our approach is inverse, we share a long-term aim with these works: We
would like to obtain tractable specification and proof methods for processes. Here we have
set down a model, but we have not yet formulated explicit proof rules that could be used in
a verification system for processes.

8 Concluding Remarks

This paper has been an experiment in model construction, where we are aiming at models
of communicating processes where all possible uses of resources are explicitly circum-
scribed. The general hope is that models of circumscribed resources can lead to modular
and tractable methods of reasoning about concurrent processes.

We carried out our study by marrying some of the ideas in CSL and CSP, two for-
malisms which have led to modular reasoning methods in different arenas. We described
the semantics of a message-passing language with dynamic allocation and deallocation of
channels, where the trace semantics of parallel composition uses a composition operation
on traces that partitions channel ends between processes. Results were given on the foot-
print of a process, expressing a sense in which the model accounts for resources locally.

Although some steps have been taken, the ideas reported here should be considered
preliminary in nature. There are two particular limitations that we highlight.
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First is the basic problem that the plain trace model does not address certain kinds of
error, such as deadlock and divergence. For our illustrative language there is a further kind
of error, channel faults (Section 5.3), which again are not addressed by the trace model.
The treatment of channel faults is perhaps the most important immediate problem.

Second, the process language we used is restrictive, and there is need to model a fuller
range of concurrency mechanisms (based on shared memory, on many-to-many channels,
etc). In fact, we have used the term “illustrative language” to emphasize that the language
itself is not the important target of your study; rather, the model is. We have described the
model in a general way that allows for variations, where one could swap different monoids
for the alphabets and the events, and we have made suggestive remarks on particular varia-
tions in Section 4.6. The study of such alternatives is a topic for future work.
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