
A Semantic Basis for Local Reasoning

Hongseok Yang1 and Peter O’Hearn2

1 ROPAS, KAIST
2 Queen Mary, University of London

Abstract. We present a semantic analysis of a recently proposed for-
malism for local reasoning, where a specification (and hence proof) can
concentrate on only those cells that a program accesses. Our main results
are the soundness and, in a sense, completeness of a rule that allows frame
axioms, which describe invariant properties of portions of heap memory,
to be inferred automatically; thus, these axioms can be avoided when
writing specifications.

1 Introduction

The need to say what memory cells or other resources are not changed, along
with those that are, has always been a vexing problem in program specification.

Consider a specification of a program to copy a tree:{
tree τ p

}
CopyTree(p; q)

{
(tree τ p) ∗ (tree τ q)

}
.

Here, the parameter list indicates that p is a value and q a reference parameter.
The predicate tree τ p says that p is, or points to, a data structure representing a
binary tree τ , and (anticipating the work to come) (tree τ p)∗(tree τ q) says that
p and q both represent this tree, but that their representations utilize disjoint
storage.

This specification certainly captures part of what we intend to say about the
procedure. But a Hoare triple typically only describes the effects an action has
on the portion of program store it explicitly mentions; it does not say what cells
among those not mentioned remain unchanged. As a result, the specification
of CopyTree(p; q) leaves open the possibility that the procedure alters a cell
not in the data structure described in the precondition. To make a stronger
specification we need to, in one way or another, take into account the notorious
“frame axioms” [8], which describe cells that remain unchanged.

It might seem that this problem is just a nuisance, that we should be con-
tent for practical purposes to prove weak properties and not worry about frame
axioms. This viewpoint is untenable, for the following reason. At a call site
for CopyTree(p; q) there will often be more cells active than those in p’s data
structure. In that case the specification is not strong enough to use, unless we
somehow take the frame axioms into account. A particular example of such a
call site is in the body of a recursive definition of CopyTree(p; q), which uses
recursive calls for each of two subtrees. As explained in [5], if we do not have

some way of showing that each recursive call doesn’t affect the other, then the
specification will not be strong enough to use as an induction hypothesis when
proving the program.

It might alternatively be thought that the problem can be easily solved,
simply by listing the variables that a program might alter as part of the spec-
ification. This viewpoint is untenable when there are storage cells other than
those directly named by variables, typically when there are pointers of one form
or another. This solution is thus not applicable to realistic imperative languages.

Nonetheless, although much more than a nuisance, this frame problem is still
irritating. It seems unfortunate to have to think up a general formula to function
as a description of the cells left unchanged, covering all potential call sites, when-
ever we write a specification. And intuitively the specification of CopyTree(p; q),
for instance, seems to already carry enough information. The hitch is that for
this intuition to be realized we need to somehow require that any state alteration
not explicitly mandated by the specification is excluded.

Unfortunately, this last part, that “any state alteration not explicitly man-
dated by the specification is excluded” is difficult to make precise, and that
difficulty has spawned hundreds of papers in AI and in program specification.
Twice unfortunately, no completely convincing solution has emerged.

In this paper we study the semantics of an approach recently developed in
an extension of Hoare’s logic for reasoning about mutable data structures [5].
The scope of the approach is modest in intent, in that it is not put forward as
a general solution to the frame problem. Rather, the suggestion is that, when
certain assumptions are met, there is a natural and simple way to avoid frame
axioms. Although, as we further demonstrate here, these assumptions are met
in some natural models of imperative languages, there is no claim that they are
universally applicable in reasoning about action.

The general idea is that by focusing on the idea of the memory footprint of
a program we can get a concrete handle on the resources that a specification of
a program needs to describe. More specifically, there are two components to the
approach.

1. We interpret a specification {P}C {Q} so that, when C is run in a state
satisfying P , it must dereference only those cells guaranteed to exist by P
or allocated during execution.

2. An inference rule, the Frame Rule, lets us obtain {P ∗ R}C {Q ∗ R} from
the initial specification {P}C {Q} of a procedure or command, where P ∗R
is true just when P and R are true of separate areas of the current heap
memory.

Point 1 is reminiscent of the old informal idea of a tight interpretation of spec-
ifications: we assume that a specification mentions all the resources relevant
to understanding a program, that other resources are automatically unaffected.
With it the specification of the CopyTree procedure above implies that any ac-
tive cell not in p’s tree before execution will remain unchanged; this allows us to
avoid explicit frame axioms and instead work with the simple specification. Point

2

2 then gives us a proof method that enables us to infer the invariant properties
supported by tightness.

We stress that the first of these points does not depend on the second. Given
the tight interpretation, a host of invariant properties are simply true, and this
is independent of the language used to describe pre and postconditions. The ∗
connective just gives us a direct way to exploit tightness, in a program logic.

The purpose of this paper is to provide a semantic analysis of these ideas.
The basic conception of the interplay between points 1 and 2 above as a basis for
local reasoning is due to the second author. Many of the semantic foundations,
particularly those related to completeness described later, were first worked out
thoroughly by the first author. We refer to the precursor papers [9, 2, 5] for exam-
ples of reasoning with the spatial formalism, for program logic axioms for specific
heap-altering and accessing commands, and for references to the literature on
program logic and on the frame problem (see also [8]).

The first problem we tackle is the soundness of the Frame Rule. This turns
out to be surprisingly delicate, and it is not difficult to find situations where
the rule doesn’t work. So a careful treatment of soundness, appealing to the
semantics of a specific language, is essential. We phrase our argument here in
terms of a model devised by Reynolds [10, 5], for an extension of the language
of while programs with operations for pointer manipulation, including address
arithmetic.

In the course of proving soundness we will attempt to isolate the properties
on which it relies. Once these properties are established, much of the work in this
paper can be carried out at a more abstract level and we sketch the appropriate
definitions. But a thorough abstract account will be left for other work; here our
goal is to remain concrete and provide a detailed analysis of a single language.

After showing soundness we move on to prove a completeness result, which
shows a sense in which no frame axioms are missing. Our approach to complete-
ness follows a line of work which goes under the name of sharpness or adaptation
completeness [4]. There one of the main issues is always to conclude certain in-
variant properties of variables not free in a command. Our completeness result
can be seen as extending such results to handle the heap as well, where there
are other store locations than those associated with program variables. The key
idea for proving completeness is to view commands as predicate transformers
satisfying a locality property.

2 A Programming Language

The programming language is an extension of the language of while programs,
with operations for manipulating pointers in a heap. The syntax and domains
for the language are in Table 1.

The model has two components, the store and the heap. The store is a map-
ping from variables to integers, and the heap is a finite mapping from natural
numbers (addresses) to integers. The heap is accessed using indirect addressing
[E] where E is an arithmetic expression.

3

Syntax

C ::= x := E | x := [E] | [E] := F | x := cons(E1, ..., En) | dispose(E)
| C;C | while B C | if B then C else C

E,F ::= x, y, ... | 0 | 1 | E + F | E × F | E − F
B ::= false | B ⇒ B | E = F | E < F

Domains

Nats
∆
= {0, 1, ..., 17, ...} Ints

∆
= {...,−17, ...,−1, 0, 1, ..., 17, ...}

Variables
∆
= {x, y, ...} Stores

∆
= Variables→ Ints

Heaps
∆
= Nats⇀fin Ints States

∆
= Stores× Heaps

Functionality of Expressions

[[E]]s ∈ Ints [[B]]s ∈ {true, false} (where s ∈ Stores)

Table 1. Syntax and Domains

We assume the standard denotational semantics of integer and boolean ex-
pressions. Note that expressions are heap-independent.

The crucial operation on heaps is disjoint combination. We write h#h′ to
indicate that the domains dom(h) and dom(h′) are disjoint. When h#h′ holds,
h∗h′ is the heap obtained by taking the union of disjoint partial functions. When
h#h′ does not hold, h ∗ h′ is undefined. The empty heap [] is the unit of ∗. The
notation [n 7→ m] describes the singleton heap which maps n to m and which is
undefined everywhere else.

The operational semantics of commands defines a relation on configura-
tions. Configurations include terminal configurations s, h, triples C, s, h, and a
special configuration fault indicating a memory fault. The command x := [E]
reads the value at address E in the heap and places it in x. [E] := F updates
address E so that its content is F . x := cons(E1, ..., En) allocates a sequence of
n contiguous heap cells, initializes them to E1, ..., En, and places the address of
the first cell in the segment in x. dispose(E) removes address E from the heap.
The commands x := [E], [E] := F and dispose(E) generate a memory fault, a
particular kind of error, if E is not an active address. Notice that the number m
is chosen non-deterministically in the rule for cons. An example of a command
that always faults is dispose(x); [x] := 42. In typical implementations an at-
tempt to dereference a disposed address might not always lead immediately to a
fault. Generating these faults early in the semantics is a device that allows us to

4

x := E, s, h (s | x 7→ [[E]]s), h

[[E]]s = n

dispose(E), s, h ∗ [n 7→ m] s, h

[[E]]s = n n 6∈ dom(h)

dispose(E), s, h fault

[[E]]s = n ∈ dom(h) h(n) = m

x := [E], s, h (s | x 7→ m), h

[[E]]s 6∈ dom(h)

x := [E], s, h fault

[[E]]s = n ∈ dom(h)

[E] := F, s, h s, (h | n 7→ [[F]]s)

[[E]]s 6∈ dom(h)

[E] := F, s, h fault

m, ..., n+m− 1 6∈ dom(h) v1 = [[E1]]s, ..., vn = [[En]]s

x := cons(E1, ..., En), s, h (s | x 7→ m), (h ∗ [m 7→ v1, ..., n+m− 1 7→ vn])

C1, s, h C′1, s
′, h′

(C1;C2), s, h (C′1;C2), s′, h′
C1, s, h s′, h′

(C1;C2), s, h C2, s
′, h′

C1, s, h fault

(C1;C2), s, h fault

[[B]]s = true

if B then C else C′ , s, h C, s, h

[[B]]s = false

if B then C else C′ , s, h C′, s, h

[[B]]s = false

while B do C od, s, h s, h

[[B]]s = true

while B do C od, s, h (C; while B do C od), s, h

Table 2. The Programming Language: Syntax and Semantics

arrange the formalism in a conservative manner, where well-specified programs
will never try to dereference a disposed address.

In the semantics we use (f | i 7→ j) for the (perhaps partial) function like f
except that i goes to j. This notation is used both when i is and is not in the
domain of f .

3 Specifications

We treat predicates semantically in this paper, so a predicate is just a subset of
the set of states.

Pred
∆= P(States)

To evoke the semantics of the assertion languages from [9, 2, 5], we sometimes
use the satisfaction notation

s, h |= p

as an alternative to (s, h) ∈ p.
To define the semantics of Hoare triples first recall point 1 from the Intro-

duction, where we guarantee that if {p}C{q} holds then C must not access any
cells not guaranteed to exist by p. We can formalize this by observing that if C
did guarantee to access such a cell, then it could be made to fault by running it
in a state in which that cell is not active. This is the role of the following notion
of safety.

5

– “C, s, h is safe” when C, s, h 6 ∗ fault .

For partial correctness the interpretation of triples is the standard one, with
an additional safety requirement.

Partial Correctness. {p}C{q} is true just when, for all s, h,
if s, h |= p then
– C, s, h is safe, and
– if C, s, h ∗ s′, h′ then s′, h′ |= q.

This fault-avoiding interpretation of triples is not new, but the connection to
the intuitive notion of tight specification does not seem to have been observed
before (excepting [2, 5]). To describe this, suppose E ↪→ F is a predicate saying
that F is the contents of the active address E in the current heap. Suppose,
further, that the triple

{x ↪→ 5}C{x ↪→ 6}

holds and that C does not alter any variables (though it might alter heap cells).
Then we claim that, just from this information, we can infer that C does not
modify any heap cell existing in the starting state, other than the one denoted by
x. To see the reason, suppose that C does modify such a cell and call it y. Then
the specification says that the program will not fault if it is run in the singleton
state where x is the only active address (with contents 5). But we just said that
C alters the address y, and so this attempt to dereference y must generate a
fault starting from the singleton state.

We will also consider a total correctness form of specification. For total cor-
rectness, we do not need an explicit safety assumption, because total correctness
is about “must termination” which itself includes a safety requirement.

– “C, s, h must terminate normally” when C, s, h is safe and there is no infinite
 -sequence starting from C, s, h.

Total Correctness. {p}C{q} is true just when, for all s, h
if s, h |= p then
– C, s, h must terminate normally, and
– if C, s, h ∗ s′, h′ then s′, h′ |= q.

To formulate the Frame Rule we will need the ∗ connective; if p and q are
predicates then

p ∗ q ∆= {(s, h ∗ h′) | s, h |= p ∧ s, h′ |= q ∧ h#h′}

The statement of the Frame Rule from [2, 5] is as follows.

Frame Rule, Syntactic Version

{P}C {Q}
Modifies(C) ∩ Free(R) = { }

{P ∗R}C {Q ∗R}

6

where Modifies(C) denotes the set of variables updated in the command C,
i.e., those appearing as the destination of an assignment statement in C. To
be precise, the Modifies set of each of x := · · · is {x}, while for [E] := F and
dispose(E) it is empty; these latter two statements affect the heap but not the
values of variables in the store. Since we are working semantically with predicates
in this paper, we need to reformulate the rule slightly and replace the reference
to the free variables of R in the side condition. We will precede this with a short
discussion.

The condition for variables in the rule is straightforward; it simply checks
whether any variables inR are modified by a command C. However, the condition
for heap cells is more elaborate. With the spatial conjunction, it says that for
every state satisfying P ∗ R, the current heap can be split into two subheaps
so that P holds for the one and R for the other; then, the tight interpretation
of the Hoare triple {P}C {Q} says that the command can only access the first
part, i.e. the part for P , consequently making R an invariant during execution.

As an example, starting from the specification of CopyTree in the Introduc-
tion we can infer that copying p’s tree does not affect a cell not in it’s data
structure. {

tree τ p
}
CopyTree(p; q)

{
(tree τ p) ∗ (tree τ q)

}{
(tree τ p) ∗ (x ↪→ y)

}
CopyTree(p; q)

{
(tree τ p) ∗ (tree τ q) ∗ (x ↪→ y)

}
Here, the Modifies set of CopyTree(p; q) is assumed to be {q}.

To describe a version of the rule which refers to semantic rather than syntactic
predicates we utilize a notion X#p of independence of a predicate from a set of
variables. This can be formulated simply in terms of quantification. If X is a set
of variables then

∀X.p ∆= {(s, h) | ∀sX ∈ [X → Ints]. (s[sX], h) ∈ p}

where s[s′] denotes the update of s by s′ defined by:

s[s′](y) ∆=
{
s′(y) if y ∈ dom(s′)
s(y) otherwise

Then

- X#p holds just if p = ∀X.p.

Frame Rule, Semantic Version

{p}C {q}
Modifies(C)#r

{p ∗ r}C {q ∗ r}

4 Soundness of the Frame Rule

The Frame Rule codifies a notion of local behaviour, and in this section we
undertake to describe that notion in terms of the operational semantics.

It will be helpful to first consider a plausible property that does not hold.

7

If C, s, h0 ∗ s′, h′0 and h0#h1, then C, s, h0 ∗ h1 ∗ s′, h′0 ∗ h1.

The intuition behind this property is just that we can add on extra state, and
any execution that works for a smaller state can still go ahead. This property
fails because of the behaviour of cons. An address that is allocated during an
execution from a small state cannot be allocated starting in a bigger state where
it is already active. For example,

x := cons(2, 3), [x 7→ m], [] [x 7→ 0], [0 7→ 2, 1 7→ 3]

but if we run x := cons(2, 3) in a heap where 0 is already active, then a different
address than 0 must be chosen by .

This is an example of where an action on a little state can be disabled when
moving to bigger states. Such behaviour might make us doubt that the Frame
Rule could be sound at all. However, it only indicates that the language does
not behave locally with respect to “may” properties. With Hoare triples we are
interested in a form of “must” property. If {p}C{q} holds and, starting from a
state satisfying p, the command terminates, then the final state must satisfy q.
Put another way, it is not individual computations that we will judge local, but
properties of classes of computations.

The correct property says that if a command is safe in a given state, then
the result of executing it in a larger state can be tracked to some execution
computation on the little state.

Lemma 1 (Safety and Termination Monotonicity).

1. If C, s, h is safe and h#h′, then C, s, h ∗ h′ is safe.
2. If C, s, h must terminate normally and h#h′, then C, s, h∗h′ must terminate

normally.

Lemma 2 (Frame Property). Suppose

C, s, h0 is safe, and C, s, h0 ∗ h1 ∗ s′, h′.

Then there is h′0 where

C, s, h0 ∗ s′, h′0, and h′ = h′0 ∗ h1.

Proof. For x := cons(E1, ..., En), consider m, ..., n + m − 1 6∈ dom(h0 ∗ h1),
The operational rule gives us s′ = (s | x 7→ m) and h′ = h0 ∗ h1 ∗ [m 7→
v1, ...,m + n − 1 7→ vn]. Then since m, ...,m + n − 1 6∈ dom(h0), this segment
may be selected by the operational rule for cons applied in the smaller heap h0.
So h′0 = h0 ∗ [m 7→ v1, ...,m+ n− 1 7→ vn] gives us the desired result.

For [E] := F , since [E] := F, s, h0 is safe by assumption we know [[E]]s ∈
dom(h0) and therefore [[E]]s 6∈ dom(h1). Thus, the assignment leaves h1 un-
changed, and taking h′0 = (h0 | [[E]]s 7→ [[F]]s) gives the result.

For dispose(E), if [[E]]s = n then n ∈ dom(h0) by safety, and h0 decomposes
as h′0 ∗ [n 7→ m] for some m. This h′0 satisfies the requirement of the theorem.

For x := [E], safety ensures that [[E]]s ∈ dom(h0), and taking h′0 = h0 gives
the result.

8

To cover C;C ′, while and if, we need to prove a slightly stronger result.
We state the property, which is needed to get the right induction hypothesis,
but omit the detailed proof. Consider a variant of the theorem which considers
non-terminal configurations; specifically, where the terminal configurations s′, h′

and s′, h′0 are replaced by C ′, s′, h′ and C ′, s′, h′0. The terminal and non-terminal
variants are proven simultaneously, by induction on the derivation of C, s, h0 ∗
h1 ∗ s′, h′ or C, s, h0 ∗ h1 ∗ C ′, s′, h′. The rules for atomic commands above
were already considered above, and each of the rules for while and C;C ′ has an
immediate proof. ut

Theorem 1 (Soundness). The Frame Rule is sound for both partial and total
correctness.

Proof. The proof uses the Frame Property, and the following locality property
for variables.

If C, s, h ∗ s′, h′ and a variable x is not assigned in C, then s(x) = s′(x).

For partial correctness, suppose the premise of the Frame Rule holds, and
that s, h0 |= p and s, h1 |= r. The premise gives us that C, s, h0 is safe, and
safety of C, s, h0 ∗ h1 follows from Safety Monotonicity. If C, s, h0 ∗ h1 ∗ s′, h,
the Frame Property yields h′0 where h = h′0 ∗ h1 and C, s, h0 ∗ s′, h′0. The
premise then ensures s′, h′0 |= q. The variable locality property implies that s′

agrees with s on all variables not in Modifies(C), so s′, h1 |= r follows since we
know s, h1 |= r and Modifies(C)#r. The semantics of ∗ then yields s′, h |= q ∗ r.

The argument for total correctness appeals additionally to Termination Mono-
tonicity. ut

4.1 The Scope and Delicacy of the Frame Rule

Some remarks are in order on the delicacy of the soundness result.
First, the non-deterministic nature of cons was relied on in an essential way.

If we had interpreted cons so that, say, the smallest possible free address was
always chosen for allocation, then adding memory would change what this new
address was, and the difference could be detected with address arithmetic; this
would invalidate the Frame Rule. Non-deterministic allocation is used to force
a program proof not to depend on details of how the allocator might work. (In
a language without address arithmetic, we could use invariance under location
renaming rather than non-determinism in allocation to ensure this sort of inde-
pendence.)

Second, suppose we were to add an operation for trapping a memory fault to
our language. If we did this, without changing ∗, then the Frame Rule would be
invalid; the reason is that we could branch on whether or not a cell is active, and
this would contradict Safety Monotonicity. This does not necessarily mean that
fault trapping is incompatible with the Frame Rule. We could perhaps change
the interpretation of ∗ so that the undefinedness it introduces is regarded as
introducing the possibility of a further kind of error, different from memory

9

fault. (The way Calcagno puts it, we need a notion that is detectable in the
program logic, but not in the programming language.)

Although delicate, the scope of the Frame Rule is wider than the specific
programming language considered here. We briefly sketch an abstract setting.
Suppose we have an arbitrary partial commutative monoid (pcm), in place of
(Heaps, ∗, []), and an arbitrary set V of values, which we use to define Stores =
Variables→ V . Then a “local action” is a binary relation between States and
States ∪ {⊥, fault} satisfying Safety and Termination Monotonicity, and the
Frame Property. With this definition, the Frame Rule is sound for every local
action.

An example somewhat removed from heap storage that fits this definition is
given by Petri nets. A net without capacity N = (P, T, pre, post) consists of sets
P and T of places and transitions, and two functions pre, post:T → M from
transitions to markings, where a marking is a finite multiset of places and M
denotes the set of all markings. M forms a pcm whose commutative monoid
structure comes from the multiset union and the empty set. This is a total
commutative monoid. If we regard a transition that is not enabled as equivalent
to faulting, then each transition t ∈ T determines a local action1 by the firing
rule: M [t]N iff ∃t.∃M ′.M = pre(t) ∗M ′ and N = post(t) ∗M ′.

Nets with capacity 1 provide a counterexample. Suppose that places in a net
can hold at most one token; consequently, markings are simply subsets of places,
and pre, post map transitions to finite subsets of places. Transitions are fired
in this case only when it is guaranteed that all the tokens to be produced do
not violate the capacity requirement. We can define a pcm on the set of places,
where ∗ is union of disjoint sets (which is undefined on sets that overlap). A
transition t that violates Safety Monotonicity has pre(t) = {a}, post(t) = {b},
where a 6= b. t is enabled in {a} but not in {a, b} because the post-place of
t is already filled in {a, b}. (It is possible to define a different pcm, for which
transitions do correspond to local actions, by recording when a place is known
to be unmarked; we can do this using P ⇀ {full , empty}, with ∗ as union of
partial functions with disjoint domains.)

These examples and counterexamples indicate that the Frame Rule is not
something we expect to be automatically valid, in the way that we expect, say,
the rule of Consequence always to be. Close attention must be paid to the inter-
play between the definition of ∗ and the kinds of operation present in a language.

5 Completeness of the Frame Rule

Suppose we are given a Hoare triple specification {p}C{q} but we are not told
exactly what C is. The question we are concerned with in this section is whether
we can derive all other specifications that follow from it, without making use of
knowledge of C.

To formulate this we consider Hoare triples {p} − {q} with an unspecified
command. Following [3, 12, 1], we call such a Hoare triple with a hole a specifi-
1 We take Stores to be the singleton set [Variables→ {1}].

10

Consequence

p′ ⊆ p {p} − {q} q ⊆ q′

{p′} − {q′}

Frame Rule

{p} − {q}
X#r

{p ∗ r} − {q ∗ r}

Table 3. Proof system for specification statements with Modifies set X

cation statement. Throughout this section we assume a given set X of variables,
regarded as the Modifies set. To derive one specification statement from the
other we use the usual rule of Consequence from Hoare logic, and the Frame
Rule; see Table 3.

The completeness question, which is variously called sharpness or adapta-
tion completeness, is whether this system lets us derive one specification state-
ment from another just when this inference holds semantically. Since the rule
of Consequence is itself treated semantically, in that it uses inclusion between
predicates-as-sets rather than a provable implication, all of the stress in this
question is placed on the Frame Rule: it is essentially asking whether we obtain
enough frame axioms.

To show completeness we need to define a notion of semantic consequence be-
tween specification statements. There is a niggling problem here: Not all pre/post
pairs determine a relation in a direct way. The traditional way around this prob-
lem in work on specification statements is to use predicate transformers, which
correspond more directly to pre/post pairs. One then separately singles out spe-
cial kinds of transformers and pre/post pairs that have a good correspondence
with relations. In the remainder of the paper we just work with transformers.
The tie-up with relations is possible, but omitted for lack of space; we refer the
reader to Yang’s thesis for further information [11].

5.1 Local Predicate Transformers

In a predicate transformer interpretation, a command C is interpreted as a
mapping from a postcondition to a precondition. For instance, the predicate
transformer induced by x := 2 maps y = x to y = 2.

Mathematically, predicate transformers are monotone maps from predicates
to predicates.

PT
∆= Pred→monotone Pred

Given a predicate transformer t the Hoare triple “{p} t {q}” corresponds to the
property p ⊆ t(q). Then, the monotonicity requirement is equivalent to saying
that the rule of Consequence is valid.

The domain PT contains predicate transformers which, when viewed opera-
tionally, don’t exhibit the local behavior of commands as described in Section 4.
For instance, the predicate transformer λq. {(s, h) ∈ q | |dom(h)| ≤ 3} corre-
sponds to a command which generates a memory fault when there are more

11

than 3 active heap cells and skips otherwise;2 this command doesn’t satisfy
Safety Monotonicity. So, it is not surprising that the Frame Rule is not valid for
PT since the rule is closely related to the locality properties of Section 4.

We refine PT by requiring predicate transformers to satisfy a locality con-
dition. Recall that in this section we are assuming a given set X of modifiable
variables.

Locality for X: ∀r, q ∈ Pred. X#r =⇒ t(q) ∗ r ⊆ t(q ∗ r)

The condition is equivalent to saying that t satisfies the Frame Rule, which in
predicate transformer terms is

∀p, r, q ∈ Pred. X#r ∧ p ⊆ t(q) =⇒ p ∗ r ⊆ t(q ∗ r)

The domain LPT(X) of local predicate transformers with Modifies set X is defined
as:

LPT(X) ∆= {t ∈ PT | t satisfies locality for X}.
LPT(X) inherits the ordering from PT, which is just a pointwise ordering

induced by the subset ordering of Pred. With such an ordering, LPT(X) forms a
complete lattice, in fact, a complete sublattice of PT.

Proposition 1. LPT(X) is a complete sublattice of PT. Therefore, given a set
{ti}i∈I of elements in LPT(X), its least upper bound is given by λq.

⋃
i∈I ti(q),

and its greatest lower bound is given by λq.
⋂
i∈I ti(q).

Proof. Let r be a predicate such that X#r. It suffices to show that
⋃
i∈I ti(q ∗r)

and
⋂
i∈I ti(q ∗ r) include (

⋃
i∈I ti(q)) ∗ r and (

⋂
i∈I ti(q)) ∗ r, respectively. The

first inclusion follows because
⋃
i∈I(ti(q) ∗ r) = (

⋃
i∈I ti(qi)) ∗ r, and the second

inclusion holds since ∗ is monotone with respect to the subset ordering. ut

5.2 Operational Sensibility

The locality condition in LPT(X) has an operational explanation via mappings,
wp and wlp, from commands to predicate transformers, which correspond to total
correctness and partial correctness. Let C be a command and q a predicate. Then
we define the weakest, and weakest liberal, precondition predicate

wp(C)(q) ∆= {(s, h) | C, s, h must terminate normally
and if C, s, h ∗ s′, h′, then s′, h′ |= q}

wlp(C)(q) ∆= {(s, h) | C, s, h is safe
and if C, s, h ∗ s′, h′, then s′, h′ |= q}

We can now establish the operational sensibility of local predicate trans-
formers, which says that if X ⊇ Modifies(C), both wp(C) and wlp(C) are local
predicate transformers in LPT(X).
2 This command, call it C, makes {{(s, h) ∈ q | |dom(h)| ≤ 3}}C {q} true for all q in

both total and partial correctness, and C is the smallest such in the sense that all
other such commands satisfy more Hoare triples than C.

12

Proposition 2. For a command C, both wp(C) and wlp(C) satisfy locality for
X iff C satisfies Safety and Termination Monotonicity, Frame Property and the
following locality property for variables:

if C, s, h is safe and C, s, h ∗ s′, h′, then s(y) = s′(y) for all y ∈
Variables−X.

Notice that this proposition establishes as close a correspondence with the local-
ity properties of Section 4 as we would expect; since both wp and wlp completely
ignore all unsafe configurations we can not obtain any properties of unsafe con-
figurations with predicate transformers.

5.3 Proof of Completeness

We have already given a proof system for specification statements in Table 3.
This determines a notion of consequence between specification statements.

{p} − {q} `X {p′} − {q′} iff {p′} − {q′} can be derived from {p} − {q}
using the rules in Table 3.

The semantic interpretation of each specification statement is given by a
satisfaction relation between local predicate transformers in LPT(X) and speci-
fication statements. For t in LPT(X)

t |=X {p} − {q} iff p ⊆ t(q).

We can now define the semantic consequence relation |= by requiring that any
transformer satisfying the antecedent also satisfies the consequent.

{p} − {q} |=X {p′} − {q′} iff for all t ∈ LPT(X),
t |=X {p} − {q} implies t |=X {p′} − {q′}.

The proof system is sound with respect to this interpretation since the mono-
tonicity condition in PT ensures that the rule of Consequence is sound and the
locality condition for X guarantees that the Frame Rule is sound.

Proposition 3 (Soundness, II). If {p} − {q} `X {p′} − {q′}, then {p} −
{q} |=X {p′} − {q′}.

In the remainder of this section we concentrate on the proof of the converse.

Theorem 2 (Completeness). If {p}−{q} |=X {p′}−{q′}, then {p}−{q} `X
{p′} − {q′}.

The proof of completeness proceeds by finding the smallest local predicate
transformer t in LPT(X), amongst those that satisfy a given specification. To
describe this transformer it will be convenient to use a notation for the spatial
implication −∗ of predicates in pointer logic [2, 5], which is itself taken from the
logic of Bunched Implications [6, 7].

p−∗ q ∆= {(s, h) | ∀h′. h′#h ∧ s, h′ |= p =⇒ (s, h ∗ h′) |= q}

In words, p−∗ q holds of a given heap if, whenever we are given new or fresh heap
satisfying p, the combined new and current heap satisfies q.

13

Lemma 3. Given predicates p, q ∈ Pred, the predicate transformer t = λr. p ∗
∀X. (q−∗ r) is in LPT(X) and satisfies p ⊆ t(q). Moreover, it is the smallest such
in LPT(X) with respect to the pointwise ordering.

Proof. It is straightforward to see that t is monotone. To see that t satisfies the
locality condition for X, pick predicate r, r′ with X#r′. Then, we have:

t(r ∗ r′) = p ∗ (∀X. (q−∗ r ∗ r′)) ⊇ p ∗ (∀X. (q−∗ r) ∗ r′)
⊇ p ∗ (∀X. (q−∗ r)) ∗ (∀X. r′) = p ∗ (∀X. (q−∗ r)) ∗ r′ = t(r) ∗ r′

The condition p ⊆ t(q) is also easily verified as follows:

t(q) = p ∗ (∀X. (q−∗ q)) ⊇ p ∗ (∀X. emp)
⊇ p ∗ emp ⊇ p

where emp = {(s, []) | s ∈ Stores} is the unit of ∗. Finally, t is the smallest
satisfying p ⊆ t(q) because for any other t′ ∈ LPT(X) with p ⊆ t′(q),

t′(r) ⊇ t′(q ∗ ∀X. (q−∗ r)) ⊇ t′(q) ∗ ∀X. (q−∗ r) ⊇ p ∗ ∀X. (q−∗ r).

ut

We denote the smallest local predicate transformer in Lemma 3 by smallest(p, q,X).
To prove completeness, first note that for predicates p, q, r, the precondi-

tion smallest(p, q,X)(r) can be calculated with the Frame Rule and the rule of
Consequence:

{p} − {q}

{p ∗ ∀X.(q−∗ r)} − {q ∗ ∀X.(q−∗ r)} q ∗ ∀X.(q−∗ r) ⊆ r

{p ∗ ∀X.(q−∗ r)} − {r}

The right-hand inclusion is just an application of the usual rule of ∀-elimination,
together with a monotonicity rule for ∗ and the version of modus ponens that
connects ∗ and −∗ .

Now, let {p′}−{q′} be a specification statement with {p}−{q} |=X {p′}−{q′}.
Then, we have p′ ⊆ smallest(p, q,X)(q′) by Lemma 3, and {p′} − {q′} can be
derived from {p} − {q} as follows:

p′ ⊆ p ∗ ∀X.(q−∗ q′)

{p} − {q}

{p ∗ ∀X.(q−∗ q′)} − {q′}

{p′} − {q′}

This finishes the proof of Theorem 2.
To sum up, in this paper we have shown the soundness of a rule for au-

tomatically inferring frame axioms, and we have also shown a sense in which
the rule gets all the frame axioms we need. We did this by appealing to the
operational semantics of a specific programming language: Perhaps the main

14

unresolved question is whether the approach here and in [9, 2, 5] can be adapted
to problems further afield. We outlined a more abstract setting for the work, and
a range of other models do fit the abstract definitions, but pointer models are the
only ones whose program logic has been examined in detail so far. Particularly
worthwhile would be to attempt to apply the notion of local action, mentioned
in Section 4.1, in an AI setting, where the frame problem originally arose and
where it continues to be intensely studied [8].

Acknowledgments

Thanks to David Naumann and Uday Reddy for advice on predicate transform-
ers, to John Reynolds for discussions on the significance of fault avoidance in
specifications, and to the anonymous referees for suggesting improvements to the
presentation. Yang was supported by the US NSF under grant INT-9813854 and
by Creative Research Initiatives of the Korean Ministry of Science and Technol-
ogy. O’Hearn was supported by the EPSRC under the Local Reasoning about
State project.

References

1. R.-J. R. Back. On the Correctness of Refinement Steps in Program Development.
PhD thesis, Department of Computer Science, University of Helsinki, 1978. Report
A-1978-4.

2. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.
In Principles of Programming Languages, pages 14–26, January 2001.

3. C. C. Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3), Jul 1988.

4. D. Naumann. Calculating sharp adaptation rules. Information Processing Letters,
2000. To appear.

5. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In L. Fribourg, editor, Proceedings of 15th Annual Conference
of the European Association for Computer Science Logic: CSL 2001, pages 1–19.
Springer-Verlag. LNCS 2142.

6. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 99.

7. D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.
Kluwer Academic Publishers, Boston/Dordrecht/London, 2002. To appear.

8. R. Reiter. Knowledge in Action. MIT Press, 2001.
9. J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In

Jim Davies, Bill Roscoe, and Jim Woodcock, editors, Millennial Perspectives in
Computer Science, pages 303–321, Houndsmill, Hampshire, 2000. Palgrave.

10. J. C. Reynolds. Lectures on reasoning about shared mutable data structure. IFIP
Working Group 2.3 School/Seminar on State-of-the-Art Program Design Using
Logic. Tandil, Argentina, September 2000.

11. H. Yang. Local Reasoning for Stateful Programs. Ph.D. thesis, University of Illinois,
Urbana-Champaign, Illinois, USA, 2001.

12. H. Yang and U. S. Reddy. On the semantics of refinement calculi. In Foundations
of Software Science and Computation Structures, pages 359–374. Springer-Verlag,
2000.

15

