Space Invading Systems Code

Cristiano Calcagno?, Dino Distefano!, Peter O’Hearn', and Hongseok Yang'

1 Queen Mary University of London
2 Imperial College

1 Introduction

Space Invader is a static analysis tool that aims to perform accurate, automatic
verification of the way that programs use pointers. It uses separation logic asser-
tions [IOJIT] to describe states, and works by performing a proof search, using
abstract interpretation to enable convergence. As well as having roots in sepa-
ration logic, Invader draws on the fundamental work of Sagiv et. al. on shape
analysis [12]. It is complementary to other tools — e.g., SLAM [I], Blast [§],
ASTREE [6] — that use abstract interpretation for verification, but that use
coarse or limited models of the heap.

Space Invader began life as a theoretical prototype working on a toy language
[7], which was itself an outgrowth of a previous toy-language tool [3]. Then,
in May of 2006, spurred by discussions with Byron Cook, we decided to move
beyond our toy languages and challenge programs, and test our ideas against real-
world systems code, starting with a Windows device driver, and then moving on
to various open-source programs. (Some of our work has been done jointly with
Josh Berdine and Cook at Microsoft Research Cambridge, and a related analysis
tool, SLAyer, is in development there.)

As of the summer of 2008, Space Invader has proven pointer safety (no null
or dangling pointer dereferences, or leaks) in several entire industrial programs
of up to 10K LOC, and more partial properties of larger codes. There have been
three key innovations driven by the problems encountered with real-world code.

— Adaptive analysis. Device drivers use complex variations on linked lists — for
example, multiple circular lists sharing a common header, several of which
have nested sublists — and these variations are different in different drivers.
In the adaptive analysis predicates are discovered by scrutinizing the linking
structure of the heap, and then fed to a higher-order predicate that describes
linked lists. This allows for the description of complex, nested (though linear)
data structures, as well as for adapting to the varied data structures found
in different programs [2].

— Near-perfect Join. The adaptive analysis allowed several driver routines to
be verified, but it timed out on others. The limit was around 1K LOC, when
given a nested data structure and a procedure with non-trivial control flow
(several loops and conditionals). The problem was that there were thousands
of nodes at some program points in the analysis, representing huge disjunc-
tions. In response, we discovered a partial join operator which lost enough

M. Hanus (Ed.): LOPSTR 2008, LNCS 5438, pp. 1-3] 2009.
© Springer-Verlag Berlin Heidelberg 2009

2 C. Calcagno et al.

information to, in many cases (though crucially, not always), leave us with
only one heap. The join operator is partial because, although it is often de-
fined, a join which always collapses two nodes into one will be too imprecise
to verify the drivers: it will have false alarms. Our goal was to prove pointer
safety of the drivers, so to discharge even 99.9% of the heap dereference sites
was considered a failure: not to have found a proof.

The mere idea of a join is of course standard: The real contribution is
existence of a partial join operator that leads to speed-ups which allow en-
tire drivers to be analyzed, while retaining enough precision for the goal of
proving pointer safety with zero false alarms [9].

— Compositionality. The version of Space Invader with adaptation and join
was a top-down, whole-program analysis (like all previous heap verification
methods). This meant the user had to either supply preconditions manually,
or provide a “fake main program” (i.e., supply an environment). Practically,
the consequence was that it was time-consuming to even get started to ap-
ply the analysis to a new piece of code, or to large codes. We discovered a
method of inferring a preconditon and postcondition for a procedure, with-
out knowing its calling context: the method aims to find the “footprint” of
the code [4], a description of the cells it accesses. The technique — which
involves the use of abductive inference to infer assertions describing miss-
ing portions of heap — leads to a compositional analysis which has been
applied to larger programs, such as a complete linux distribution of 2.5M
LOC [5].

The compositional and adaptive verification techniques fit together particu-
larly well. If you want to automatically find a spec of the data structure usage in
a procedure in some program you don’t know, without having the calling context
of the procedure, you really need an analysis method that will find heap predi-
cates for you, without requiring you (the human) to supply those predicates on
a case-by-case basis. Of course, the adaptive analysis selects its predicates from
some pre-determined stock, and is ultimately limited by that, but the adaptive
capability is handy to have, nonetheless.

We emphasize that the results of the compositional version of Space Invader
(code name: Abductor) are partial: it is able to prove some procedures, but
it might fail to prove others; in linux it finds Hoare triples for around 60,000
procedures, while leaving unproven some 40,000 othersT. This, though, is one of
the benefits of compositional methods. It is possible to get accurate results on
parts of a large codebase, without waiting for the “magical abstract domain”
that can automatically prove all of the procedures in all of the code we would
want to consider.

! Warning: there are caveats concerning Abductor’s limitations, such as how it ignores
concurrency. These are detailed in [5].

Space Invading Systems Code 3

References

10.

11.

12.

. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-

drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys. (2006)

. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,

H.: Shape analysis of composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178-192. Springer, Heidelberg (2007)

. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Automatic modular assertion

checking with separation logic. In: 4th FMCO, pp. 115-137 (2006)

. Calcagno, C., Distefano, D., O’'Hearn, P., Yang, H.: Footprint analysis: A shape

analysis that discovers preconditions. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 402-418. Springer, Heidelberg (2007)

. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis

by means of bi-abduction. In: POPL (2009)

. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The ASTREE analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21-30. Springer, Heidelberg (2005)

Distefano, D., O’'Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287-302. Springer, Heidelberg (2006)

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL:
Principles of Programming Languages (2002)

Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385-398. Springer, Heidelberg (2008)

O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
p. 1. Springer, Heidelberg (2001)

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS (2002)

Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS 20(1), 1-50 (1998)

	Space Invading Systems Code
	Introduction
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

