
Evolving Fractal Gene Regulatory Networks
for Robot Control

Peter J. Bentley

Department of Computer Science, University College London, Gower Street, London.
P.Bentley@cs.ucl.ac.uk

Abstract. Fractal proteins are a new evolvable method of mapping genotype
to phenotype through a developmental process, where genes are expressed
into proteins comprised of subsets of the Mandelbrot Set. The resulting net-
work of gene and protein interactions can be designed by evolution to pro-
duce specific patterns, that in turn can be used to solve problems. Here the
use of fractal gene regulatory networks for learning a robot path through a se-
ries of obstacles is described. The results indicate the ability of this system to
learn regularities in solutions and automatically create and use modules.

1 Introduction

Life is complex. This is true in the chemical interactions of proteins and genes
within a single cell, or in the cellular interactions in a multicellular organism. While
evolution is mostly to blame for this, there can be little doubt that complexity would
not arise if the vast intricacies of molecular interactions and physical forces were
not present. Open-ended evolution (evolution in which solutions become progres-
sively more complex) relies on the right kind of genetic representation in the right
kind of environment. In nature, this is DNA – a molecule that relies on chemical
interactions in order to function.

Translating these ideas into computer science is not a simple prospect. As we
know in evolutionary computation, using a fixed binary string as a genotype, pro-
hibits complexity growth. But variable-length representations such as genetic pro-
gramming do not guarantee an increase in complexity either (unless you count in-
trons as complexity). Even if a seemingly ideal representation is found, often it is
not evolvable, or it only achieves its complexity increases through the careful high-
level structures (e.g. modularity) imposed on it by the developer.

This work takes a different approach. A developmental process maps variable-
length genotypes to phenotypes, through the use of fractal proteins. Genes are ex-
pressed into complex fractal shapes (subsets of the Mandelbrot Set) that interact
according to their forms. The resulting network of gene interactions can be designed
by evolution to produce specific gene activation patterns, that in turn can be used to
solve problems. In this paper the use of fractal gene regulatory networks for learning
a robot path through a series of obstacles is described.

2 Background

Researchers such as Hornby [7], Bongard [5], Haddow [6] and Kumar and Bentley
[10] have demonstrated that various types of development can enable smaller geno-
types to represent more complex phenotypes through the ability of development to
discover modularities and repetition. Other scientists in the field have been focus-
sing on the ability of developmental methods to enable self-repairing behaviour and
graceful degradation of solutions. For example, the work of Andy Tyrrell and his
group create fault-tolerant hardware inspired by ideas of embryology and immune
systems [8]. More recently, Julian Miller has described experiments evolving devel-
opmental programs to create “French Flag” patterns [12]. He shows that develop-
ment is able to regenerate these patterns. However, work on applying developmental
algorithms to robot control is less common. Most seem to rely on the development
of neural networks that are then used to control motion (and in some cases generate
form) [9] [7] [5].

3 Fractal Proteins

Development is the set of processes that lead from egg to embryo to adult. Instead
of using a gene for a parameter value as we do in standard EC (i.e., a gene for long
legs), natural development uses genes to define proteins. If expressed, every gene
generates a specific protein. This protein might activate or suppress other genes,
might be used for signalling amongst other cells, or might modify the function of the
cell it lies within. The result is an emergent “computer program” made from dy-
namically forming gene regulatory networks (GRNs) that control all cell growth,
position and behaviour in a developing creature [13].

Table 1. Types of objects in the representation

fractal proteins defined as subsets of the Mandelbrot set.
Environment contains one or more fractal proteins (expressed from the environment

gene(s)), and one or more cells.
Cell contains a genome and cytoplasm, and has some behaviours.
Cytoplasm contains one or more fractal proteins.
Genome comprising structural genes and regulatory genes. In this work, the

structural genes are divided into different types: cell receptor genes,
environment genes and behavioural genes.

regulatory gene comprising operator (or promoter) region and coding (or output) region.
cell receptor gene a structural gene with a coding region which acts like a mask, permit-

ting variable portions of the environmental proteins to enter the corre-
sponding cell cytoplasm.

environment gene a structural gene which determines which proteins (maternal factors)
will be present in the environment of the cell(s).

behavioural gene structural gene comprising operator and cellular behaviour region.

In this work, a biologically plausible model of gene regulatory networks is con-
structed through the use of genes that are expressed into fractal proteins – subsets of
the Mandelbrot set that can interact and react according to their own fractal chemis-
try. Further motivations and discussions on fractal proteins are provided in [1][2][3].
Table 1 describes the object types in the representation; Figure 1 illustrates the rep-
resentation. Figure 2 provides an overview of the algorithm used to develop a phe-
notype from a genotype. Note how most of the dynamics rely on the interaction of
fractal proteins. Evolution is used to design genes that are expressed into fractal
proteins with specific shapes, which result in developmental processes with specific
dynamics.

Environm ent

Ce ll

C y to p la s m

G e n om e Fractal
prote ins

Fractal
prote ins

E n v iro n m e n t g e n e
C e ll re ce p te r g e n e
R e g u la to ry g e n e
B e h a vio ura l ge n e

FRACTAL DEVELOPMENT

For eve ry ce ll in the em bryo :

For ev ery d eve lopm e ntal t im e ste p :

Express a ll environm ent genes and
calcu la te shape of m erged environm ent fracta l prote ins

Express cell receptor genes as receptor fracta l prote ins
and use each one to m ask the merged environm ent proteins
in to the ce ll cytop lasm .

If the m erged contents of the cytop lasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fracta l prote in to the cytoplasm .

If the m erged contents of the cytop lasm match a promoter o f a
behavioura l gene, use coding reg ion of the gene to specify a
ce llu lar func tion.

Update the concentration leve ls o f a ll prote ins in the cytop lasm.
If the concentration leve l o f a protein fa lls to zero, that protein
does not exis t.

Fig. 1. Representation using fractal
proteins.

Fig. 2. The fractal development algorithm.

3.2 Defining a Fractal Protein

A fractal protein is a finite square subset
of the Mandelbrot set [11], defined by
three codons (x,y,z) that form the coding
region of a gene in the genome of a cell.
Each (x, y, z) triplet is expressed as a
protein by calculating the square fractal
subset with centre coordinates (x,y) and
sides of length z, see fig. 3 for an exam-
ple. In this way, it is possible to achieve
as much complexity (or more) compared
to natural protein folding in nature.

Fig. 3. Example of a fractal protein
defined by (x = 0.132541887, y =
0.698126164 , z = 0.468306528)

In addition to shape, each fractal protein represents a certain concentration of
protein (from 0 meaning “does not exist” to 200 meaning “saturated”), determined

by protein production and diffusion rates [1].

3.3 Fractal Chemistry

Cell cytoplasms and the environment usually contain more than one fractal protein.
In an attempt to harness the complexity available from these fractals, multiple pro-
teins are merged. The result is a product of their own “fractal chemistry” which
naturally emerges through the fractal interactions.

Fractal proteins are merged (for each point sampled) by iterating through the
fractal equation of all proteins in “parallel”, and stopping as soon as the length of
any is unbounded (i.e. greater than 2). Intuitively, this results in black regions being
treated as though they are transparent, and paler regions “winning” over darker
regions. See fig 4 for an example.

Fig. 4. Two fractal proteins (left and middle) and the resulting merged fractal

protein combination (right).

3.4 Genes

The environment gene, cell receptor gene, regulatory genes, and behavioural genes
all contain 7 real-coded values:

xp yp zp
Affinity

threshold
Concentration

threshold
x y z type

where (xp, yp, zp, Affinity threshold, Concentration threshold) defines the pro-
moter (operator or precondition) for the gene and (x,y,z) defines the coding region of
the gene. The type value defines which type of gene is being represented, and can be
one or all of the following: environment, receptor, behavioural, or regulatory. This
enables the type of genes to be set independently of their position in the genome,
enabling variable-length genomes. It also enables genes to be multi-functional, i.e. a
gene might be expressed both as an environmental protein and a behaviour.

When Affinity threshold is a positive value, one or more proteins must match the
promoter shape defined by (xp,yp,zp) with a difference equal to or lower than Affin-
ity threshold for the gene to be activated. When Affinity threshold is a negative
value, one or more proteins must match the promoter shape defined by (xp,yp,zp)

with a difference equal to or lower than |Affinity threshold| for the gene to be re-
pressed (not activated).

To calculate whether a gene should be activated, all fractal proteins in the cell
cytoplasm are merged (including the masked environmental proteins) and the com-
bined fractal mixture is compared to the promoter region of the gene. The full de-
tails of this process are lengthy; interested readers should consult [1][2][3].

Behavioural Gene. A behavioural gene is activated when other protein(s) in the
cytoplasm match its promoter region (using the affinity threshold). For this applica-
tion, a gradual activation between ‘not activated’ and ‘activated’ was required, using
the x value of the coding region (x,y,z) triplet as a fate value to define a function,
calculated as follows:

If the gene is being activated with a negative Affinity threshold,
output = output • (totalconcentration • concentrationthreshold) × fate

If the gene is being activated with a positive Affinity threshold,
output = output + (totalconcentration • concentrationthreshold) × fate

Note how the total concentration of proteins seen on the promoter is offset against
the Concentration Threshold gene and scaled by the fate gene (x value of the coding
region), allowing evolution to adjust the range of values seen on the output, and
used to specify behaviours. (If there are more behavioural genes than are required,
the resultant behaviour will be the sum behaviour of all genes.)

3.7 Development

As was illustrated in figure 2, an individual begins life as a single cell in a given
environment. To develop the individual from this zygote into the final phenotype,
fractal proteins are iteratively calculated and matched against all genes of the ge-
nome. Should any genes be activated, the result of their activation (be it a new pro-
tein, receptor or cellular behaviour) is generated at the end of the current cycle.
Development continues for d cycles, where d is dependent on the problem. Note that
if one of the cellular behaviours includes the creation of new cells, then develop-
ment will iterate through all genes of the genome in all cells.

3.8 Evolution

The genetic algorithm used in this work has been used extensively elsewhere for
other applications (including GADES [4]). A dual population structure is employed,
where child solutions are maintained and evaluated, and then inserted into a larger
adult population, replacing the least fit. The fittest n are randomly picked as parents
from the adult population. Typically the child population size is set to 80% of the

adult size and n = 40%. (For further details of this GA, refer to [4].) Because real
coding was used, duplication and creep mutation is used, see [1] for complete de-
tails. Crossover is always applied; all mutations occur with probability 0.01 per
gene.

4 Robot Control

Previous work has demonstrated how evolution can generate specific fractal proteins
that interact with each other in order to produce desired patterns of behavioural gene
activation [1][2][3]. Here the two behavioural genes are used to generate commands
for a robot, with the aim of directing the robot past obstacles in its environment to
reach a destination. So instead of directing cellular behaviour (i.e., cell division,
differentiation or death), the fractal gene regulatory networks will direct robot be-
haviour. Although the tasks are clearly very different, both do rely on precise timing
and accuracy, and both make use of the inherent pattern-generating properties of
GRNs.

4.1 Robot

The platform used was a palm-sized six-legged robot known as a wonderborgTM,
produced by Bandai, see Fig. 5. Although not widely available outside Japan, the
robot boasts several useful features: it is programmed via infrared communications,
and once programmed it runs fully autonomously. It has two forward-facing infrared
collision detectors, a bottom-facing infrared floor sensor, an upwards facing light
sensor and two microswitch touch sensors or feelers. Its legs are driven by two mo-
tors (one for the legs on each side), operating like a tracked vehicle.

Fig. 5. The wonderborgTM robot (Bandai).

The wonderborgTM was not designed as a research platform, so unfortunately suffers
from certain drawbacks. Currently the only way to send a program to the robot is
through Bandai’s proprietary software which forces the use of high-level commands
and programming structures. Because all movement commands are high-level (e.g.
“Rotate right” or “Back up left”), this prohibits the independent control of motors.
To overcome the difficulties, the two behavioural genes were treated as “steering”
and “acceleration,” and then their values were mapped onto the appropriate high-

level commands. For example, a positive value for the steering gene is taken to
mean “steer right” and a value of -3 for the acceleration gene is taken to mean
“move -3 backwards”, see table 2. The fractal development system was then modi-
fied to convert the patterns of gene activation produced during development into a
robot control file in the appropriate format for the proprietary software.

Table 2. Mapping of steering and acceleration genes to the nine predefined robot commands

Steering Acceleration Robot command Symbol (n=1)
0 (None) 0 (None) Halt

-ve (Left) 0 (None) Rotate left
+ve (Right) 0 (None) Rotate right

0 (None) n (n forwards) Advance by n
-ve (Left) n (n forwards) Turn left by n
+ve (Right) n (n forwards) Turn right by n

0 (None) -n (n backwards) Back up by n
-ve (Left) -n (n backwards) Back up left by n
+ve (Right) -n (n backwards) Back up right by n

Finally, to enable high-speed evaluation of robot control programs, a wonderborgTM

simulator was created. This reads the same file format as used by Bandai’s proprie-
tary software (and as output by the fractal developmental system) and calculates the
path of the robot through an environment. The simulator was designed to be fast –
on a 1 Ghz PC, approximately 40 developmental cycles and corresponding robot
control simulations occur every second.

5 Experiments

Two sets of experiments were performed. The first used a simple environment with
four obstacles, the second used a more difficult environment with seven obstacles,
see figures 6 and 7. The robot simulator was initialised with the robot at one end of
the environment. The further the robot managed to walk across the environment the
higher the fitness of the corresponding controller. If the robot touched an obstacle or
walked off the edges, its final position was measured as its last valid position in the
environment. Note that the controllers did not use any of the robot’s sensors to
gauge proximity of obstacles (which might have made the task easier). Instead they
specified a fixed path past the obstacles, learning the structure of the environment
through generations of “hitting its head against walls.” A second fitness measure (of
less importance than the first) was used to provide penalties corresponding to the
time taken by the robot and hence encourage efficient and fast journeys. (Without
this, the robots would often rotate many times on one spot for several seconds be-
tween each movement in order to find the perfect angle.)

To evolve the controllers, the fractal development system was initialised with a
single cell, 1 environment gene, 1 receptor gene, 2 behavioural genes and 6 regula-
tory genes. (Note that with variable length genomes, evolution was free to modify

these gene numbers). The operator and coding regions of the genes were randomly
initialised with the alleles that defined 10 previously evolved protein fractals [1]. 32
developmental steps were employed, and the evolutionary algorithm used a popula-
tion size of 100, running for up to 500 generations in the first experiment and 1500
in the second.

6 Results and Analysis

In the first experiment, 13 out of 20 produced robot controllers able to reach the top
(500 generations). In the second experiment, only 1 out of 20 produced successful
robot controllers after 500 generations. When the GA was allowed to run for 1500
generations, 11 out of 20 produced robot controllers able to reach the top. The in-
crease in success is further evidence of evolvability of this representation [1][3]; it is
likely that further generations would have improved the success rate even more.
Figs 6 and 7 show examples of robot paths produced by fit controllers. The final
controllers have been confirmed by testing on the actual robot.

Despite the poor level of control available through the high-level commands,
evolution and development manage to create remarkably precise and detailed robot
paths, designed to avoid the obstacles in the environment. Significantly, these con-
trollers often employed “modules” or “subroutines” that were repeated (sometimes
with variations) to overcome the obstacles. This automatic discovery and exploita-
tion of pattern in the solution is very important, and also very unusual – most other
systems (e.g. ADFs in GP or parameterised L-Systems) must explicitly build in
notions of modules. Here they emerge naturally. To illustrate a little of how this
happens, figure 8 displays protein concentrations of the controller in fig 7c.

a b c d

e f g h

Fig. 6. Eight examples of very fit controllers for the first experiment.

a b c d

e f g h

Fig. 7. Eight examples of very fit controllers for the second experiment.

0

50

100

150

200

1 5 9 13 17 21 25 29

Protein 1 Protein 2 Protein 4

Fig. 8. Protein concentrations of the three main proteins used during development
in controller shown in fig 7c. Steering and acceleration are the result of interactions
between oscillating protein concentrations, resulting in very precisely controlled
oscillating robot motion. The 32-step pattern is partially repeated in the final con-
troller, producing a total of 50 commands for the robot.

7 Conclusions

It is not a trivial task to find a suitable genetic representation that enables open-
ended evolution, while being evolvable, incorporating ideas of intricate chemi-
cal/physical environments, and employing developmental processes. The use of
genes expressed as fractal proteins is the approach investigated in this paper. The
work has shown that fractal gene regulatory networks can be successfully designed
by evolution to solve problems. Here, the task of producing robot controllers capa-
ble of guiding a “bug” robot past obstacles in an environment was demonstrated. In
addition to creating diverse and useful controllers, the fractal GRN also demon-
strated an ability to identify patterns in solutions and create its own modules (sub-
solutions that were reused and used with minor modifications). This automatic
learning, not just of a good solution (robot path), but of a way of building a good
solution in an efficient manner, is seen as a significant and important property of
developmental processes. Combine this with the results of previous research that

shows a tendency towards efficiency and fault-tolerance of fractal GRNs [3], and the
potential for this technique looks impressive.

Acknowledgments

Thanks to Sanjeev Kumar for his comments. This material is based upon work supported by the
European Office of Aerospace Research and Development (EOARD), Airforce Office of Scientific Re-
search, Airforce Research Laboratory, under Contract No. F61775-02-WE014. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author and do not necessarily

reflect the views of EOARD. MOBIUS is an project http://www.cs.ucl.ac.uk/staff/
P.Bentley/emblem.html

References

1. Bentley, P. J. Fractal Proteins. 2003a. To appear in Genetic Programming and Evolvable
Machines Journal.

2. Bentley, P. J. Evolving Fractal Proteins. 2003b. In Proc. of ICES ’03, the 5th Interna-
tional Conference on Evolvable Systems: From Biology to Hardware.

3. Bentley, P. J. Evolving Beyond Perfection: An Investigation of the Effects of Long-
Term Evolution on Fractal Gene Regulatory Networks.2003c. Submitted to Information
Processing in Cells and Tissues (IPCAT 2003).

4. Bentley, P. J. From Coffee Tables to Hospitals: Generic Evolutionary Design. 1999.
Chapter 18 in Bentley, P. J. (Ed) Evolutionary Design by Computers. Morgan Kauf-
mann Pub. San Francisco, pp. 405-423.

5. Bongard, J. C. Evolving Modular Genetic Regulatory Networks. 2002. In Proc.of 2002
Congress on Evolutionary Computation (CEC2002), IEEE Press, pp. 1872-1877.

6. P. C. Haddow, G. Tufte, and P. van Remortel. Shrinking the Genotype: L-Systems for
EHW 2001. In Proc. Of 4th Int. Conf. On Evolvable Systems: From Biology to Hard-
ware, Tokyo, Japan.

7. Hornby, G. S. Generative Representations for Evolutionary Design Automation. 2003.
Brandeis University, Dept. of Computer Science, Ph.D. Dissertation.

8. A.H. Jackson, A.M. Tyrrell Implementing Asynchronous Embryonic Circuits using
AARDVArc. 2002. In Proceedings of 2002 NASA/DoD Conference on Evolvable Hard-
ware (EH-2002), IEEE Computing Society, Alexandria, Virginia, Pages 231-240, 15-18.

9. N. Jakobi. Harnessing Morphogenesis. 1995. International Conference on Information
Processing in Cells and Tissues, Liverpool, UK.

10. S. Kumar and P. J. Bentley. Computational Embryology: Past, Present and Future. 2003.
Invited chapter in Ghosh and Tsutsui (Eds) Theory and Application of Evolutionary
Computation: Recent Trends. Springer Verlag (UK).

11. Mandelbrot, B. The Fractal Geometry of Nature. 1982. W.H. Freeman & Company.
12. Miller, J. and Banzhaf, W. Evolving the Program for a Cell: From French Flags to

Boolean Circuits. 2003. To appear as an invited chapter in Kumar, S. and Bentley, P. J.
(Eds) On Growth, Form and Computers. Academic Press, 2003.

13. Lewis Wolpert, Rosa Beddington, Thomas Jessell, Peter Lawrence, Elliot Meyerowitz,
Jim Smith. Principles of Development, 2nd Ed. 2001. Oxford University Press.

