
Structure-Aware Geometry ProcessingNiloy J. Mitra

Structure-‐Aware	  Shape	  Processing

Niloy J. Mitra      Michael Wand      Hao Zhang      Daniel Cohen-Or      Martin Bokeloh

State-of-the-art Report
on

http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/
http://www.stanford.edu/


Structure-Aware Geometry ProcessingNiloy J. Mitra

Structure



Structure-Aware Geometry ProcessingNiloy J. Mitra

Structure

a complex system considered 
from the point of view of the whole 

rather than of any single part



Structure-Aware Geometry ProcessingNiloy J. Mitra

Structure

anything composed of parts 
arranged together in some way

an organization

a complex system considered 
from the point of view of the whole 

rather than of any single part
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On	  Growth	  and	  Form

For it is not a bundle of parts but an 
organization of parts, of parts in their 
relative arrangement, . . . the 
coordinated parts, now as related and 
fitted to the end or function of the 
whole, and now as related to or 
resulting from the physical causes 
inherent in the entire system of forces 
to which the whole has been exposed. 

Chapter XVI [Thompson 1892]
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Structure	  in	  Shapes

Mitra Part B1 SMARTGEOMETRY

1a) Extended Synopsis

. . . the search for relations between things apparently disconnected . . .
. . . the form of an object is a “diagram of forces”

— D. Thompson, On Growth and Form, 1917.

Objects are often characterized by the geometric relations among their parts. For example, how the legs of a
chair support the seat is more important than geometric details like its engravings. Forms of natural organisms have
evolved from simple growth laws or evolutionary preferences [12, 3]; whereas forms of man-made objects are often
driven by simple fabrication and economic considerations [11]. Discovering, understanding, and modeling such
object characteristics have long been important activities in science. Historically, in absence of sufficient data, the
process has largely been empirical. The recent plethora of geometric data collections, arising out of acquisition, 3D
modeling, or simulation outputs, provide new and exciting opportunities to revisit the problem. However, state-of-
the-art algorithms are unsuited for this task. Hence, I propose to develop necessary mathematical and algorithmic
tools to jointly analyze such model collections towards better understanding of the underlying structures.

Motivation: 3D geometric data is now abundant. Such data arises out of acquisition processes (e.g., LiDAR
scans, time-of-flight scans, MRI scans), 3D modeling tools (e.g., Blender, Google SketchUp), or simulation pro-
cesses (e.g., weather patterns, traffic planning) resulting in quickly growing massive 3D model collections (e.g.,
Turbosquid, Google 3D Warehouse, Kinect@Home). Further, the model collections often measure related objects
and hence contain significant redundancies. For example, we expect strong correlation across measurements in-
volving humans in different poses, or chairs across different styles, or the same building measured from different
viewpoints. While we are being flooded with such 3D content (order of 100k to millions of models, each with
thousands to millions of points), we are still missing appropriate tools to handle, manipulate, and understand the
correlated data. The data in its native form (e.g., unorganized point set, polygon soup, voxels) provides little un-
derstanding of the captured environments, hides underlying object simplicity, and thus hinders smart interaction
possibilities. Factoring out the redundancies across related objects can reveal interesting and important modes of
variations. For example, geometrically analyzing connection networks of neurons in multiple brain DTI (diffusion
tensor images) of healthy and diseased brains can reveal common sources of disease due to connection anomalies.
In order to decouple consistent structure from dominant variations, we need to jointly analyze such model collec-
tions, rather than in isolation. Hence, decoupling the consistent parts from the dominant variations in such data can
reveal important characteristics about the objects, and possibly provide insights into their functions (see Figure 1).

FIGURE 1: Structures, i.e., relations between parts and how they can move, often characterize shapes. Such geometric forms
often relate to the object functions and design considerations. Such relations are observed around scales ranging from microns
to meters. Left-to-right: silk spinning spigots of a spider, brain fiber tracking in diffusion tensor imaging, matching snap traps
on Venus flies, bone-lines on a femur section, ergonomic room layout, different window positions on a building facade, and
near-regular basalt columns on the Fingal’s cave.

Thus, there is an urgent need to analyze, abstract, understand, and distil 3D model collections, else we will sim-
ply be gathering tera-bytes of data without gaining any useful insight into the world. Understanding the geometric
principles behind such data can have far-reaching impact on compact characterization, efficient navigation, and
powerful exploration, which are currently beyond the scope of any existing approach. The data, however, should
not be analyzed in isolation, but jointly across model collections, and hence necessitates new mathematical and
computational tools. The fundamental question is how to decouple (consistent) structure from dominant variations
embedded in such model collections, and effectively encode and utilize the extracted information.

Research Goal: I propose to extract, encode, and exploit global structures (i.e., relations as algebraic constraints
across object parts) and dominant variations embedded in 3D model collections towards next-generation geometry
processing and optimization tasks, with low-level geometric details only playing a secondary role. I will focus on

2
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Figure 3: Modeling-by-example proposed a novel model
synthesis possibility by directly composing parts retrieved
from a database of 3D shapes [FKS⇤04]. As 3D model
repositories continue to grow, such a design possibility has
increasingly gained research focus.

The analyze-and-edit approach introduced in the iWires
work [GSMCO09] has set the tone for numerous works
on structure-preserving editing, e.g., [ZFCO⇤11, LCOZ⇤11,
BWSK12]. The analysis phase often takes the center stage
as it presents the taller challenge of shape or structural un-
derstanding. Such works include inverse procedural mod-
eling [SBM⇤10, BWS10] and symmetry-driven genera-
tive analysis [PMW⇤08, WXL⇤11]. Note early work by
Stiny [SG71] on shape grammars has been an inspiration in
this area, with current works focusing on recovering such
grammars directly from the input examples.

Symmetry indeed plays a key role in structure-aware pro-
cessing of man-made objects, since symmetries are abundant
in these objects and from a functional point of view, sym-
metric structures are expected to share the same function-
ality. Methods for structural symmetry detection [MGP06,
PSG⇤06, SKS06] have been made accessible to the geomet-
ric modeling community and since then, a large body of
work has been developed on symmetry-driven shape pro-
cessing (cf., survey [MPWC12]). An attempt to understand
functionality of man-made objects was the notion of upright
orientation [FCODS08], which can be seen as one of the
early efforts in structural analysis of man-made objects. Both
symmetry and upright orientation represent early attempts at
extracting high-level semantic information from geometry.

Part analysis lies at the core of structure-aware shape
processing. Extracting parts from a shape is the classical
segmentation problem (c.f., survey [Sha08]). Equally im-
portant is the part correspondence problem, not only be-
tween a pair of shapes, but among a shape collection (c.f.,
survey [vKZHCO11]). Early works on both the problems
focused exclusively on local geometric analysis including
those on geodesics and curvature. An influential effort was

made by the ShapeAnnotator framework [ARSF09] which
helps the user create semantic, part-based shape ontology.
Recent developments have taken the data-driven approach,
in particular by learning structural invariants from a set of
examplars. Such a co-analysis approach started with the
work of Golovinskiy and Funkhouser [GF09] on consistent
segmentation and gained momentum on several fronts in-
cluding style content separation [XLZ⇤10], joint segmen-
tation [HKG11], spectral clustering [SvKK⇤11, KLM⇤12],
active learning [WAvK⇤12], co-abstraction [YK12], and dis-
covery of functional substructures [ZCM13]. Going beyond
object modeling, Fisher et al. [FSH11, FRS⇤12] analyze
scene data using spatial contexts and apply the results for
novel scene synthesis.

Organization. We organize this survey on structure-aware
shape processing techniques by the underlying structure
models as primary sorting criterion. We believe that formal-
izing our understanding of “structure” in shapes is the intel-
lectual key challenge in creating more powerful and gener-
ally applicable modeling tools. Beside discussing the broad
types of structure analysis approaches, we also summarize
key application areas including smart acquisition, structure-
aware model editing, novel model synthesis, and design
space exploration. We conclude by listing some of the key
challenges to be solved and their potential implications.

2. Overview of Structure

Starting with early scientific efforts to relate object form to
its intended functions, the inter-relation between form and
function has played an important role in shape understand-
ing and design. In nature, the geometric forms, such as the
skeleton, of many organisms can be explained by physical
considerations arising from their environment, operational
efficiency, and functional utility. For example, the horns and
shells of animals are often spiral-shaped due to growth pat-
tern and rate considerations [Tho92]. Hence, it is expected
that functionally related natural objects would share a simi-
lar form, or as we shall call in this survey, structure.

In man-made artifacts, such similarities can be even more
pronounced since most man-made objects are designed to
serve singular functions. Structures of man-made objects
arise due to physical and ecomonic, i.e., cost, constraints
during design and menufacturing, or more pragmatically,
due to semantic considerations. But, what is a structure?

The Oxford dictionary defines structure as

(Definition): The arrangement of and relations be-
tween the parts or elements of something complex.

In this view, structure constitutes a collection of parts and
how the parts are mutually related. It should not be con-
fused with the notion of structure in structural engineering.
In this survey, we follow this abstract notion for composite
objects. Such a characterization is not surprising given that

c� The Eurographics Association 2013.

[Funkhouser et al. 04]
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Figure 11: Left: Setting up a differential soft-constraint en-
ergy, every one-ring neighborhood is a part Pi, and every
vertex is a parameter xi, shared by multiple parts. From
the configuration of vertices in the one-ring neighborhood,
an estimate for differential surface properties is obtained.
Right: Deformation result for an elastic deformation model.

functions bi that represent localized, low-frequency degrees
of freedom in the global deformation field f . The parame-
ters are the coefficients xi (which are 3D vectors). The part-
geometry is the set of triangles that have vertices within the
support of the part bi. There is no constraint energy — the
user has to adjust all parameters manually. Structure is only
implicitly imposed by using only a few, low-frequency basis
functions.

The requirement to adjust all control points of a low-
frequency deformation basis explicitly creates some avoid-
able burden to the designer. More recent free-form deforma-
tion techniques use physics-based priors: The method uses
an elastic energy as constraint energy. Additional handles are
added to give the user control. In order to formulate elastic
deformation models, differential properties of the deformed
shape are computed and deformations that stretch or bend
the surface are penalized using a soft constraint energy. If the
input is a triangle mesh, the differential properties are typi-
cally read off a one-ring neighborhood in the mesh [SA07],
so that the parts of such a model are all one ring neigh-
borhoods and the parameters are the vertex positions of the
mesh. Figure 11 illustrates this notion (left), along with a re-
sult from an elastic free-form deformation of the Stanford
bunny model (right).

There are a large number of variants of this idea, dating
back to the seminal paper of Terzopoulos et al. [TPBF87].
A survey is provided by Botsch and Sorkine [BS08]. From a
birds-eye-view, the structure model always involves a con-
straint energy that penalizes deviations from the original
shape. By formulating the penalty in a differential domain,
local details are preserved more strongly than low-frequency
shape properties.

5.1.2. Structure-Aware Deformation

Free-form deformations have a local and non-adaptive way
of preserving structure: The shape of local pieces is pre-
served independently of the content (lack of adaptivity). Fur-
ther, no global relations are considered; only a tendency to-
wards low-frequency bending arises implicitly from chain-

Figure 12: Non-homogeneous resizing protects salient re-
gions [KSSCO08].

ing differential parts. Both of these aspects open up room
for new methods.

Local adaptivity. Local but adaptive deformation is consid-
ered for example by [KSSCO08], see Figure 12. Their ap-
proach uses a differential free-form deformation energy that
prefers axis-aligned stretch. Further, it estimates the “vulner-
ability” of local regions by looking at differential properties
(curvature, slippage analysis [GG04]), and the elasticity of
the model is adaptively reduced in vulnerable regions. Xu
et al. [XWY⇤09] introduce adaptivity by adjusting the de-
formation penalties locally to match the slippability prop-
erties of the object (again based on slippage analysis); see
Figure 13. This creates a deformation behavior that often
mimics the behavior of mechanical systems (joints, cylin-
ders etc.).

Figure 13: Possible joint locations are extracted by a lo-
cal slippability analysis and subsequently used in enabling
joint-aware deformation [XWY⇤09]. Note that structure in
the form of the kinematic motion chains is discovered by an-
alyzing the input model.

In both of these cases, the same concept of parts and pa-
rameters is used. The only difference is how the constraint
energy is created. In both cases, the constraints only react
to local differential properties of the deformation field, but
the behavior is more adaptive than in a standard deformation
approach.

Non-local relations. Global relations are used by
iWires [GSMCO09], see Figure 14. The method first
detects crease lines in a triangle mesh, which the authors
call “wires”. These elements are the parts of the deformation
model. The parameters are the vertices of the wires. Among
these parts, all salient properties of Euclidean geometry
(parallelity, orthogonality, different types of symmetry)

c� The Eurographics Association 2013.

[Xu et al. 09]
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from a database of 3D shapes [FKS⇤04]. As 3D model
repositories continue to grow, such a design possibility has
increasingly gained research focus.

The analyze-and-edit approach introduced in the iWires
work [GSMCO09] has set the tone for numerous works
on structure-preserving editing, e.g., [ZFCO⇤11, LCOZ⇤11,
BWSK12]. The analysis phase often takes the center stage
as it presents the taller challenge of shape or structural un-
derstanding. Such works include inverse procedural mod-
eling [SBM⇤10, BWS10] and symmetry-driven genera-
tive analysis [PMW⇤08, WXL⇤11]. Note early work by
Stiny [SG71] on shape grammars has been an inspiration in
this area, with current works focusing on recovering such
grammars directly from the input examples.

Symmetry indeed plays a key role in structure-aware pro-
cessing of man-made objects, since symmetries are abundant
in these objects and from a functional point of view, sym-
metric structures are expected to share the same function-
ality. Methods for structural symmetry detection [MGP06,
PSG⇤06, SKS06] have been made accessible to the geomet-
ric modeling community and since then, a large body of
work has been developed on symmetry-driven shape pro-
cessing (cf., survey [MPWC12]). An attempt to understand
functionality of man-made objects was the notion of upright
orientation [FCODS08], which can be seen as one of the
early efforts in structural analysis of man-made objects. Both
symmetry and upright orientation represent early attempts at
extracting high-level semantic information from geometry.

Part analysis lies at the core of structure-aware shape
processing. Extracting parts from a shape is the classical
segmentation problem (c.f., survey [Sha08]). Equally im-
portant is the part correspondence problem, not only be-
tween a pair of shapes, but among a shape collection (c.f.,
survey [vKZHCO11]). Early works on both the problems
focused exclusively on local geometric analysis including
those on geodesics and curvature. An influential effort was

made by the ShapeAnnotator framework [ARSF09] which
helps the user create semantic, part-based shape ontology.
Recent developments have taken the data-driven approach,
in particular by learning structural invariants from a set of
examplars. Such a co-analysis approach started with the
work of Golovinskiy and Funkhouser [GF09] on consistent
segmentation and gained momentum on several fronts in-
cluding style content separation [XLZ⇤10], joint segmen-
tation [HKG11], spectral clustering [SvKK⇤11, KLM⇤12],
active learning [WAvK⇤12], co-abstraction [YK12], and dis-
covery of functional substructures [ZCM13]. Going beyond
object modeling, Fisher et al. [FSH11, FRS⇤12] analyze
scene data using spatial contexts and apply the results for
novel scene synthesis.

Organization. We organize this survey on structure-aware
shape processing techniques by the underlying structure
models as primary sorting criterion. We believe that formal-
izing our understanding of “structure” in shapes is the intel-
lectual key challenge in creating more powerful and gener-
ally applicable modeling tools. Beside discussing the broad
types of structure analysis approaches, we also summarize
key application areas including smart acquisition, structure-
aware model editing, novel model synthesis, and design
space exploration. We conclude by listing some of the key
challenges to be solved and their potential implications.

2. Overview of Structure

Starting with early scientific efforts to relate object form to
its intended functions, the inter-relation between form and
function has played an important role in shape understand-
ing and design. In nature, the geometric forms, such as the
skeleton, of many organisms can be explained by physical
considerations arising from their environment, operational
efficiency, and functional utility. For example, the horns and
shells of animals are often spiral-shaped due to growth pat-
tern and rate considerations [Tho92]. Hence, it is expected
that functionally related natural objects would share a simi-
lar form, or as we shall call in this survey, structure.

In man-made artifacts, such similarities can be even more
pronounced since most man-made objects are designed to
serve singular functions. Structures of man-made objects
arise due to physical and ecomonic, i.e., cost, constraints
during design and menufacturing, or more pragmatically,
due to semantic considerations. But, what is a structure?

The Oxford dictionary defines structure as

(Definition): The arrangement of and relations be-
tween the parts or elements of something complex.

In this view, structure constitutes a collection of parts and
how the parts are mutually related. It should not be con-
fused with the notion of structure in structural engineering.
In this survey, we follow this abstract notion for composite
objects. Such a characterization is not surprising given that

c� The Eurographics Association 2013.
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Figure 11: Left: Setting up a differential soft-constraint en-
ergy, every one-ring neighborhood is a part Pi, and every
vertex is a parameter xi, shared by multiple parts. From
the configuration of vertices in the one-ring neighborhood,
an estimate for differential surface properties is obtained.
Right: Deformation result for an elastic deformation model.

functions bi that represent localized, low-frequency degrees
of freedom in the global deformation field f . The parame-
ters are the coefficients xi (which are 3D vectors). The part-
geometry is the set of triangles that have vertices within the
support of the part bi. There is no constraint energy — the
user has to adjust all parameters manually. Structure is only
implicitly imposed by using only a few, low-frequency basis
functions.

The requirement to adjust all control points of a low-
frequency deformation basis explicitly creates some avoid-
able burden to the designer. More recent free-form deforma-
tion techniques use physics-based priors: The method uses
an elastic energy as constraint energy. Additional handles are
added to give the user control. In order to formulate elastic
deformation models, differential properties of the deformed
shape are computed and deformations that stretch or bend
the surface are penalized using a soft constraint energy. If the
input is a triangle mesh, the differential properties are typi-
cally read off a one-ring neighborhood in the mesh [SA07],
so that the parts of such a model are all one ring neigh-
borhoods and the parameters are the vertex positions of the
mesh. Figure 11 illustrates this notion (left), along with a re-
sult from an elastic free-form deformation of the Stanford
bunny model (right).

There are a large number of variants of this idea, dating
back to the seminal paper of Terzopoulos et al. [TPBF87].
A survey is provided by Botsch and Sorkine [BS08]. From a
birds-eye-view, the structure model always involves a con-
straint energy that penalizes deviations from the original
shape. By formulating the penalty in a differential domain,
local details are preserved more strongly than low-frequency
shape properties.

5.1.2. Structure-Aware Deformation

Free-form deformations have a local and non-adaptive way
of preserving structure: The shape of local pieces is pre-
served independently of the content (lack of adaptivity). Fur-
ther, no global relations are considered; only a tendency to-
wards low-frequency bending arises implicitly from chain-

Figure 12: Non-homogeneous resizing protects salient re-
gions [KSSCO08].

ing differential parts. Both of these aspects open up room
for new methods.

Local adaptivity. Local but adaptive deformation is consid-
ered for example by [KSSCO08], see Figure 12. Their ap-
proach uses a differential free-form deformation energy that
prefers axis-aligned stretch. Further, it estimates the “vulner-
ability” of local regions by looking at differential properties
(curvature, slippage analysis [GG04]), and the elasticity of
the model is adaptively reduced in vulnerable regions. Xu
et al. [XWY⇤09] introduce adaptivity by adjusting the de-
formation penalties locally to match the slippability prop-
erties of the object (again based on slippage analysis); see
Figure 13. This creates a deformation behavior that often
mimics the behavior of mechanical systems (joints, cylin-
ders etc.).

Figure 13: Possible joint locations are extracted by a lo-
cal slippability analysis and subsequently used in enabling
joint-aware deformation [XWY⇤09]. Note that structure in
the form of the kinematic motion chains is discovered by an-
alyzing the input model.

In both of these cases, the same concept of parts and pa-
rameters is used. The only difference is how the constraint
energy is created. In both cases, the constraints only react
to local differential properties of the deformation field, but
the behavior is more adaptive than in a standard deformation
approach.

Non-local relations. Global relations are used by
iWires [GSMCO09], see Figure 14. The method first
detects crease lines in a triangle mesh, which the authors
call “wires”. These elements are the parts of the deformation
model. The parameters are the vertices of the wires. Among
these parts, all salient properties of Euclidean geometry
(parallelity, orthogonality, different types of symmetry)

c� The Eurographics Association 2013.

[Xu et al. 09]

Semantic Correspondences and Functionality Recognition in Manmade 3D Shapes • 9

Fig. 6: Correspondence results. The query model is shown in the center of each sub-figure. Observe the large geometric variations exhibited
in the shapes. Observe also that correspondences can be computed across different levels of the segmentation hierarchy, as shown by the
highlighted examples. The 3D models are courtesy of the Shape COSEGData Set, except the airplanes, which are courtesy of the SHREC2007
watertight models.

Table I. : Correspondence accuracy on four classes of shapes, with and without the horizontal support relationship. In the later case, the
upright orientation of the shapes is assumed to be known. Segmentations are obtained using our implementation of randomized cuts (RC).

Class #models p = 0
Without horizontal support relationship With horizontal support relationship Hierarchy relationship
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 only with p = 3

Candles 34 39.9% 65.6% 75.4% 79.5% 66.9% 79.1% 82.2% 74.1%
Vases 27 40.5% 61.2% 65.8% 70.4% 70.3% 76.8% 80.3% 68.7%
Chairs 17 31.3% 59.8% 71.9% 75.5% 63.4% 73.0% 78.3% 65.4%
Lamps 21 47.5% 75.3% 85.9% 89.0% 76.7% 88.5% 92.7% 83.5%

Table II. : Correspondence accuracy on four classes of shapes, with and without the horizontal support relationship. In the later case, the up-
right orientation of the shapes is assumed to be known. Segmentations are obtained using the supervised-learning approach of [Kalogerakis
et al. 2010].

Class #models p = 0
Without horizontal support relationship With horizontal support relationship
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Candles 34 40.5% 67.0% 81.2% 82.1% 67.7% 83.5% 86.7%
Vases 27 43.7% 64.2% 68.4% 73.0% 71.3% 82.1% 86.0%
Chairs 17 35.1% 66.5% 74.6% 79.2% 65.0% 76.7% 82.0%
Lamps 21 50.0% 78.7% 87.7% 92.8% 80.0% 88.6% 94.2%

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

[Laga et al. 13]
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Figure 3: Modeling-by-example proposed a novel model
synthesis possibility by directly composing parts retrieved
from a database of 3D shapes [FKS⇤04]. As 3D model
repositories continue to grow, such a design possibility has
increasingly gained research focus.

The analyze-and-edit approach introduced in the iWires
work [GSMCO09] has set the tone for numerous works
on structure-preserving editing, e.g., [ZFCO⇤11, LCOZ⇤11,
BWSK12]. The analysis phase often takes the center stage
as it presents the taller challenge of shape or structural un-
derstanding. Such works include inverse procedural mod-
eling [SBM⇤10, BWS10] and symmetry-driven genera-
tive analysis [PMW⇤08, WXL⇤11]. Note early work by
Stiny [SG71] on shape grammars has been an inspiration in
this area, with current works focusing on recovering such
grammars directly from the input examples.

Symmetry indeed plays a key role in structure-aware pro-
cessing of man-made objects, since symmetries are abundant
in these objects and from a functional point of view, sym-
metric structures are expected to share the same function-
ality. Methods for structural symmetry detection [MGP06,
PSG⇤06, SKS06] have been made accessible to the geomet-
ric modeling community and since then, a large body of
work has been developed on symmetry-driven shape pro-
cessing (cf., survey [MPWC12]). An attempt to understand
functionality of man-made objects was the notion of upright
orientation [FCODS08], which can be seen as one of the
early efforts in structural analysis of man-made objects. Both
symmetry and upright orientation represent early attempts at
extracting high-level semantic information from geometry.

Part analysis lies at the core of structure-aware shape
processing. Extracting parts from a shape is the classical
segmentation problem (c.f., survey [Sha08]). Equally im-
portant is the part correspondence problem, not only be-
tween a pair of shapes, but among a shape collection (c.f.,
survey [vKZHCO11]). Early works on both the problems
focused exclusively on local geometric analysis including
those on geodesics and curvature. An influential effort was

made by the ShapeAnnotator framework [ARSF09] which
helps the user create semantic, part-based shape ontology.
Recent developments have taken the data-driven approach,
in particular by learning structural invariants from a set of
examplars. Such a co-analysis approach started with the
work of Golovinskiy and Funkhouser [GF09] on consistent
segmentation and gained momentum on several fronts in-
cluding style content separation [XLZ⇤10], joint segmen-
tation [HKG11], spectral clustering [SvKK⇤11, KLM⇤12],
active learning [WAvK⇤12], co-abstraction [YK12], and dis-
covery of functional substructures [ZCM13]. Going beyond
object modeling, Fisher et al. [FSH11, FRS⇤12] analyze
scene data using spatial contexts and apply the results for
novel scene synthesis.

Organization. We organize this survey on structure-aware
shape processing techniques by the underlying structure
models as primary sorting criterion. We believe that formal-
izing our understanding of “structure” in shapes is the intel-
lectual key challenge in creating more powerful and gener-
ally applicable modeling tools. Beside discussing the broad
types of structure analysis approaches, we also summarize
key application areas including smart acquisition, structure-
aware model editing, novel model synthesis, and design
space exploration. We conclude by listing some of the key
challenges to be solved and their potential implications.

2. Overview of Structure

Starting with early scientific efforts to relate object form to
its intended functions, the inter-relation between form and
function has played an important role in shape understand-
ing and design. In nature, the geometric forms, such as the
skeleton, of many organisms can be explained by physical
considerations arising from their environment, operational
efficiency, and functional utility. For example, the horns and
shells of animals are often spiral-shaped due to growth pat-
tern and rate considerations [Tho92]. Hence, it is expected
that functionally related natural objects would share a simi-
lar form, or as we shall call in this survey, structure.

In man-made artifacts, such similarities can be even more
pronounced since most man-made objects are designed to
serve singular functions. Structures of man-made objects
arise due to physical and ecomonic, i.e., cost, constraints
during design and menufacturing, or more pragmatically,
due to semantic considerations. But, what is a structure?

The Oxford dictionary defines structure as

(Definition): The arrangement of and relations be-
tween the parts or elements of something complex.

In this view, structure constitutes a collection of parts and
how the parts are mutually related. It should not be con-
fused with the notion of structure in structural engineering.
In this survey, we follow this abstract notion for composite
objects. Such a characterization is not surprising given that

c� The Eurographics Association 2013.
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Figure 11: Left: Setting up a differential soft-constraint en-
ergy, every one-ring neighborhood is a part Pi, and every
vertex is a parameter xi, shared by multiple parts. From
the configuration of vertices in the one-ring neighborhood,
an estimate for differential surface properties is obtained.
Right: Deformation result for an elastic deformation model.

functions bi that represent localized, low-frequency degrees
of freedom in the global deformation field f . The parame-
ters are the coefficients xi (which are 3D vectors). The part-
geometry is the set of triangles that have vertices within the
support of the part bi. There is no constraint energy — the
user has to adjust all parameters manually. Structure is only
implicitly imposed by using only a few, low-frequency basis
functions.

The requirement to adjust all control points of a low-
frequency deformation basis explicitly creates some avoid-
able burden to the designer. More recent free-form deforma-
tion techniques use physics-based priors: The method uses
an elastic energy as constraint energy. Additional handles are
added to give the user control. In order to formulate elastic
deformation models, differential properties of the deformed
shape are computed and deformations that stretch or bend
the surface are penalized using a soft constraint energy. If the
input is a triangle mesh, the differential properties are typi-
cally read off a one-ring neighborhood in the mesh [SA07],
so that the parts of such a model are all one ring neigh-
borhoods and the parameters are the vertex positions of the
mesh. Figure 11 illustrates this notion (left), along with a re-
sult from an elastic free-form deformation of the Stanford
bunny model (right).

There are a large number of variants of this idea, dating
back to the seminal paper of Terzopoulos et al. [TPBF87].
A survey is provided by Botsch and Sorkine [BS08]. From a
birds-eye-view, the structure model always involves a con-
straint energy that penalizes deviations from the original
shape. By formulating the penalty in a differential domain,
local details are preserved more strongly than low-frequency
shape properties.

5.1.2. Structure-Aware Deformation

Free-form deformations have a local and non-adaptive way
of preserving structure: The shape of local pieces is pre-
served independently of the content (lack of adaptivity). Fur-
ther, no global relations are considered; only a tendency to-
wards low-frequency bending arises implicitly from chain-

Figure 12: Non-homogeneous resizing protects salient re-
gions [KSSCO08].

ing differential parts. Both of these aspects open up room
for new methods.

Local adaptivity. Local but adaptive deformation is consid-
ered for example by [KSSCO08], see Figure 12. Their ap-
proach uses a differential free-form deformation energy that
prefers axis-aligned stretch. Further, it estimates the “vulner-
ability” of local regions by looking at differential properties
(curvature, slippage analysis [GG04]), and the elasticity of
the model is adaptively reduced in vulnerable regions. Xu
et al. [XWY⇤09] introduce adaptivity by adjusting the de-
formation penalties locally to match the slippability prop-
erties of the object (again based on slippage analysis); see
Figure 13. This creates a deformation behavior that often
mimics the behavior of mechanical systems (joints, cylin-
ders etc.).

Figure 13: Possible joint locations are extracted by a lo-
cal slippability analysis and subsequently used in enabling
joint-aware deformation [XWY⇤09]. Note that structure in
the form of the kinematic motion chains is discovered by an-
alyzing the input model.

In both of these cases, the same concept of parts and pa-
rameters is used. The only difference is how the constraint
energy is created. In both cases, the constraints only react
to local differential properties of the deformation field, but
the behavior is more adaptive than in a standard deformation
approach.

Non-local relations. Global relations are used by
iWires [GSMCO09], see Figure 14. The method first
detects crease lines in a triangle mesh, which the authors
call “wires”. These elements are the parts of the deformation
model. The parameters are the vertices of the wires. Among
these parts, all salient properties of Euclidean geometry
(parallelity, orthogonality, different types of symmetry)

c� The Eurographics Association 2013.

[Xu et al. 09]
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Fig. 6: Correspondence results. The query model is shown in the center of each sub-figure. Observe the large geometric variations exhibited
in the shapes. Observe also that correspondences can be computed across different levels of the segmentation hierarchy, as shown by the
highlighted examples. The 3D models are courtesy of the Shape COSEGData Set, except the airplanes, which are courtesy of the SHREC2007
watertight models.

Table I. : Correspondence accuracy on four classes of shapes, with and without the horizontal support relationship. In the later case, the
upright orientation of the shapes is assumed to be known. Segmentations are obtained using our implementation of randomized cuts (RC).

Class #models p = 0
Without horizontal support relationship With horizontal support relationship Hierarchy relationship
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 only with p = 3

Candles 34 39.9% 65.6% 75.4% 79.5% 66.9% 79.1% 82.2% 74.1%
Vases 27 40.5% 61.2% 65.8% 70.4% 70.3% 76.8% 80.3% 68.7%
Chairs 17 31.3% 59.8% 71.9% 75.5% 63.4% 73.0% 78.3% 65.4%
Lamps 21 47.5% 75.3% 85.9% 89.0% 76.7% 88.5% 92.7% 83.5%

Table II. : Correspondence accuracy on four classes of shapes, with and without the horizontal support relationship. In the later case, the up-
right orientation of the shapes is assumed to be known. Segmentations are obtained using the supervised-learning approach of [Kalogerakis
et al. 2010].

Class #models p = 0
Without horizontal support relationship With horizontal support relationship
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Candles 34 40.5% 67.0% 81.2% 82.1% 67.7% 83.5% 86.7%
Vases 27 43.7% 64.2% 68.4% 73.0% 71.3% 82.1% 86.0%
Chairs 17 35.1% 66.5% 74.6% 79.2% 65.0% 76.7% 82.0%
Lamps 21 50.0% 78.7% 87.7% 92.8% 80.0% 88.6% 94.2%

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

[Laga et al. 13]
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Figure 4: An example of a structured shape (a) that is decomposed into parts. Each part controls a portion of geometry (b),
which we call part geometry. The parts (c) have parameters and a constraint energy that controls the parameters as well as
the decomposition itself. The example shows a pairwise relations (a part graph). In this particular case, it has a Markovian
structure (only neighbors interact). Such graphs would for example reflect the structure of enforcing connectivity or smoothness
across neighboring pieces.

most man-made objects (e.g., chairs, tables, lamps, shelves)
are a constellation of parts, where the constellations are of-
ten characteristic of the corresponding model collection. We
assume that the global geometry is captured by a composi-
tion of (abstract) parts, each of which has parameters that
define the parts, and a set of relations among these parts that
impose structure on the composite. A unique feature of the
setup is that the relations can arise among parts restricted to
any particular model, or more generally, across different but
functionally related models (e.g., a collection of chairs).

2.1. Modeling Structures

We describe a generic model for structuring shapes, which
we later use to compare and contrast apparently different
structure-aware shape processing techniques, and better un-
derstand their scope and design choices. A shape S can be
seen as a collection of parts, their parameters, and most im-
portantly, the relations that characterize the arrangement of
the parts (see Figure 4).

Parts and parameters. A part Pi of a shape is a logical en-
tity of semantic significance that controls the appearance of
part geometry. Note that in this abstraction, parts are not nec-
essarily disjoint, i.e., they can overlap. Further, each part has
a finite set of parameters that affect the shape of the part.
Note that unlike in traditional geometry processing, by part
we do not necessarily mean a surface patch arising from seg-
mentation. Instead, a part can simply be an abstraction for a
region of the object and act as a proxy for a semantic part.
Figure 4 shows a schematic example of a shape that is de-
composed into parts with multiple parameters per part.

Generally speaking, a part a vector of all the vertices
forming a shape space (e.g., as in [YYPM11]), a feature
curve (e.g., as in [BBW⇤09, GSMCO09]), a bounding box
(e.g., as in [XLZ⇤10,OLGM11], a fitted proxy such as a box
or generalized cylinder (e.g., as in [ZFCO⇤11,XZZ⇤11,XZ-
COC12]), a surface or volumetric segment [Sha08], or a
variational proxy, etc. Note that in most cases the choice of
parts automatically determines the choice of the respective

parameters. Further, in some cases, the parts can be com-
pletely specified by the user, i.e., semantic parts can be pro-
vided as part of the input as an input template. Most methods
covered in this survey operate on parts which are meaningful
components of a shape [Sha08], e.g., a leg of a chair, a table
top, a wing of an airplane, or a window over a facade, etc.

Relations. Relations capture how parts, and hence their pa-
rameters, are correlated. Such relations can be between a pair
of parts (i.e., a pairwise relation) or among a set of parts
(i.e., higher order relations). The relations are the key ele-
ment behind any structure. Formally, relations can be rep-
resented mathematically by a constraint energy E that must
be zero for a valid structure (relations enforced as hard con-
straints) or that should be minimized (soft constraints). Let
us consider few examples:

• In a constraint-based modeling setup, the relations would
require elementary, pairwise relations such as parallelity,
coplanarity, bilateral symmetry, etc.

• Relations can also link a set of parts by considering
higher-order relations. For example, the windows on a
building facade can be arranged on a 2-parameter regu-
lar grid. In general, symmetry relations with more than
two elements involved will lead to higher-order relations.
Figure 5 shows an example – the blue parts are coupled
by a 4-ary symmetry energy.

• A set of relations can capture the part configuration of
a functional model collection, e.g., a set of chairs. Such
constraints should capture both coupled part-level contin-
uous variations and also discrete changes like chairs with
or without arms. Thus, the relations capture not only part-
arrangements, but also how they can vary in a coupled
fashion, i.e., a corresponding deformation model.

2.2. Discovering Structures

For most methods covered, the input shapes come in the
form of low-level geometric representations, such as polyg-
onal meshes, thus obscuring the underlying structure of the
shapes. For example, a 3D scanner returns a collection of

c� The Eurographics Association 2013.
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Figure 4: An example of a structured shape (a) that is decomposed into parts. Each part controls a portion of geometry (b),
which we call part geometry. The parts (c) have parameters and a constraint energy that controls the parameters as well as
the decomposition itself. The example shows a pairwise relations (a part graph). In this particular case, it has a Markovian
structure (only neighbors interact). Such graphs would for example reflect the structure of enforcing connectivity or smoothness
across neighboring pieces.

most man-made objects (e.g., chairs, tables, lamps, shelves)
are a constellation of parts, where the constellations are of-
ten characteristic of the corresponding model collection. We
assume that the global geometry is captured by a composi-
tion of (abstract) parts, each of which has parameters that
define the parts, and a set of relations among these parts that
impose structure on the composite. A unique feature of the
setup is that the relations can arise among parts restricted to
any particular model, or more generally, across different but
functionally related models (e.g., a collection of chairs).

2.1. Modeling Structures

We describe a generic model for structuring shapes, which
we later use to compare and contrast apparently different
structure-aware shape processing techniques, and better un-
derstand their scope and design choices. A shape S can be
seen as a collection of parts, their parameters, and most im-
portantly, the relations that characterize the arrangement of
the parts (see Figure 4).

Parts and parameters. A part Pi of a shape is a logical en-
tity of semantic significance that controls the appearance of
part geometry. Note that in this abstraction, parts are not nec-
essarily disjoint, i.e., they can overlap. Further, each part has
a finite set of parameters that affect the shape of the part.
Note that unlike in traditional geometry processing, by part
we do not necessarily mean a surface patch arising from seg-
mentation. Instead, a part can simply be an abstraction for a
region of the object and act as a proxy for a semantic part.
Figure 4 shows a schematic example of a shape that is de-
composed into parts with multiple parameters per part.

Generally speaking, a part a vector of all the vertices
forming a shape space (e.g., as in [YYPM11]), a feature
curve (e.g., as in [BBW⇤09, GSMCO09]), a bounding box
(e.g., as in [XLZ⇤10,OLGM11], a fitted proxy such as a box
or generalized cylinder (e.g., as in [ZFCO⇤11,XZZ⇤11,XZ-
COC12]), a surface or volumetric segment [Sha08], or a
variational proxy, etc. Note that in most cases the choice of
parts automatically determines the choice of the respective

parameters. Further, in some cases, the parts can be com-
pletely specified by the user, i.e., semantic parts can be pro-
vided as part of the input as an input template. Most methods
covered in this survey operate on parts which are meaningful
components of a shape [Sha08], e.g., a leg of a chair, a table
top, a wing of an airplane, or a window over a facade, etc.

Relations. Relations capture how parts, and hence their pa-
rameters, are correlated. Such relations can be between a pair
of parts (i.e., a pairwise relation) or among a set of parts
(i.e., higher order relations). The relations are the key ele-
ment behind any structure. Formally, relations can be rep-
resented mathematically by a constraint energy E that must
be zero for a valid structure (relations enforced as hard con-
straints) or that should be minimized (soft constraints). Let
us consider few examples:

• In a constraint-based modeling setup, the relations would
require elementary, pairwise relations such as parallelity,
coplanarity, bilateral symmetry, etc.

• Relations can also link a set of parts by considering
higher-order relations. For example, the windows on a
building facade can be arranged on a 2-parameter regu-
lar grid. In general, symmetry relations with more than
two elements involved will lead to higher-order relations.
Figure 5 shows an example – the blue parts are coupled
by a 4-ary symmetry energy.

• A set of relations can capture the part configuration of
a functional model collection, e.g., a set of chairs. Such
constraints should capture both coupled part-level contin-
uous variations and also discrete changes like chairs with
or without arms. Thus, the relations capture not only part-
arrangements, but also how they can vary in a coupled
fashion, i.e., a corresponding deformation model.

2.2. Discovering Structures

For most methods covered, the input shapes come in the
form of low-level geometric representations, such as polyg-
onal meshes, thus obscuring the underlying structure of the
shapes. For example, a 3D scanner returns a collection of
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• CAD community: constrained editing

• Compositional modeling

• Symmetry analysis

• Co-analysis of model collections, etc. 
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