
Learning Part-based Templates from Large Collections of 3D Shapes

Vladimir G. Kim1 Wilmot Li2 Niloy J. Mitra3 Siddhartha Chaudhuri1 Stephen DiVerdi2,4 Thomas Funkhouser1

1Princeton University 2Adobe Research 3University College London 4Google

Abstract

As large repositories of 3D shape collections continue to grow, un-
derstanding the data, especially encoding the inter-model similarity
and their variations, is of central importance. For example, many
data-driven approaches now rely on access to semantic segmen-
tation information, accurate inter-model point-to-point correspon-
dence, and deformation models that characterize the model collec-
tions. Existing approaches, however, are either supervised requiring
manual labeling; or employ super-linear matching algorithms and
thus are unsuited for analyzing large collections spanning many
thousands of models. We propose an automatic algorithm that starts
with an initial template model and then jointly optimizes for part
segmentation, point-to-point surface correspondence, and a com-
pact deformation model to best explain the input model collection.
As output, the algorithm produces a set of probabilistic part-based
templates that groups the original models into clusters of models
capturing their styles and variations. We evaluate our algorithm on
several standard datasets and demonstrate its scalability by analyz-
ing much larger collections of up to thousands of shapes.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems;

Keywords: shape analysis, model collections, part-based template,
segmentation, correspondence

Links: DL PDF WEB DATA CODE

1 Introduction

With the increasing number and diversity of 3D polygonal mod-
els in online repositories, there is a growing need for automated
algorithms that can derive structural and semantic relationships
from large model collections. For example, the Trimble 3D Ware-
house contains millions of 3D models in many different classes
and thus should be a valuable resource for data-driven solutions to
common geometry processing problems, including surface recon-
struction [Kim et al. 2012b], model completion [Shen et al. 2012],
model-based object recognition [Shapira et al. 2010; Nan et al.
2012], shape synthesis [Kalogerakis et al. 2012; Zheng et al. 2013],
etc. In addition, analyzing the diversity of shapes in this database
could yield insights about the geometric variations of real-world
objects. Unfortunately, most Web-based repositories, including the
Trimble 3D Warehouse, do not contain the necessary structural and
semantic information required to support such applications. They

Initial
Template:
Final templates: 11 11 9 5

Figure 1: Analysis results for a collection of 36 chairs. Starting
from an initial template (top left), we capture the main modes of
variations within the collection by the final templates (top row). In
this example, the algorithm extracted template clusters for chairs
without arms and with arms; a cluster for wide benches; and a
cluster for tall chairs. By jointly solving for model deformations,
part segmentation, and inter-model correspondence, our algorithm
achieves higher accuracy for each individual task.

have little semantic tagging, no consistent part decompositions, and
no information about how surfaces on different objects relate to one
another. As a result, it is difficult to get an overarching view of
what types of models are in the repository, how models correspond
to and differ from each other, and whether they contain necessary
information for a given application.

We provide an analysis tool to derive structure from large, unorga-
nized, diverse collections of 3D polygonal models (e.g., thousands
of shapes within the same general object class, like chairs). By
structure, we refer to how objects correspond to each other, how
they are segmented into semantic parts, and how the parts deform
and change across the models. This allows us to group the models
into clusters with similar structure; to learn a part-based deformable
model of the shape variations within each such cluster; to provide
consistent segmentations for all models with similar parts; and to
provide correspondences between semantically equivalent points
across all models in the collection. Our analysis results can then
be directly used for many data-driven geometric acquisition, anal-
ysis, processing, and modeling tasks. For example, it enables the
use of Trimble 3D Warehouse collections for assembly-based syn-
thesis of new models by combining parts of existing models, which
previously has only been demonstrated with much smaller model
collections that require significant manual annotation [Kalogerakis
et al. 2012].

Existing efforts on analyzing collections of polygonal models con-
sider segmentation, deformation, and correspondence separately.
For example, recent work on surface correspondence establishes
links between related points on different surfaces while ignoring the
part structure of objects [Kim et al. 2012a]; consistent segmenta-
tion algorithms decompose polygonal models into consistent sets of

http://doi.acm.org/10.1145/2461912.2461933
http://portal.acm.org/ft_gateway.cfm?id=2461933&type=pdf
http://www.cs.princeton.edu/~vk/projects/CorrsTmplt/
http://www.cs.princeton.edu/~vk/projects/CorrsTmplt/doc_data.php
http://www.cs.princeton.edu/~vk/projects/CorrsTmplt/doc_code.php

parts but do not compute point-to-point correspondences [Golovin-
skiy and Funkhouser 2009] or model shape variation [Sidi et al.
2011]. Finally, prior work [Fisher et al. 2011; Kalogerakis et al.
2012] on probabilistic modeling of shape variations requires man-
ually annotated data sets with parts and correspondences already
labeled. Furthermore, such algorithms do not scale to handle the
thousands or tens of thousands of models in many object classes
within large repositories.

In this paper, we provide an algorithm that simultaneously seg-
ments polygonal models into parts, learns a probabilistic model of
part-based template variations, and establishes point-to-point sur-
face correspondences in large collections of shapes. The rationale
for this approach is that these three problems are tightly inter-
connected, i.e., segmentations help predict correspondences and de-
formations; correspondences help predict segmentations and defor-
mations; and deformation models help predict segmentations and
correspondences. Attacking the three problems together leads to
more efficient, more accurate, and more consistent analysis results.

Our algorithm is based on a probabilistic, part-based, deformable
model, which encodes clusters of shape styles, cardinalities of parts,
shapes of parts, correspondences across clusters, and alignments of
a template to each model. It starts from a repository of polygonal
models and an initial deformable model represented by a template
encoding the types of parts expected in the repository and an ini-
tial guess for the locations and scales of each part. It proceeds by
iteratively evolving the set of deformable templates, fitting them to
the polygonal models (implicitly aligning and co-segmenting the
polygonal models), updating the distributions of shape deforma-
tions, and refining part- and point-level correspondences across the
shapes (see Figure 1).

The part-based deformable model is similar to the one used in
[Kalogerakis et al. 2012], but it is learned from unstructured and
unlabeled data, rather than labeled examples. While our learning
algorithm can run in a fully automatic mode, we found that the anal-
ysis results for diverse collections can substantially improve with
user-assisted template initialization. For all examples presented in
this paper, the user never had to spend more than a few minutes per
shape class.

Our algorithm has a linear complexity with the number of models
in the collection, can be executed out-of-core, and is highly parallel.
As a result, we can analyze polygonal model collections an order of
magnitude larger than most previous geometry processing datasets
(e.g., 7K+ models in one case). It also provides joint segmentations,
correspondences, and deformation models, which also results in in-
creased accuracy. Additionally, our algorithm performs favorably in
comparison on standard benchmarks to specialized algorithms for
consistent segmentation and surface correspondence.

Contributions. In summary, we present an algorithm to

• robustly discover structure from any large, unorganized, unla-
beled shape collection;

• simultaneously recover segmentation, point-level correspon-
dence, and a probabilistic part-based deformable model for
shape collections to reveal key information for many data-driven
geometric modeling and synthesis tasks; and

• efficiently realize in an out-of-core framework to handle col-
lections spanning thousands of models at a scale never demon-
strated before.

2 Related Work

This paper builds upon a large body of previous work in shape anal-
ysis of 3D model collections, including consistent segmentation,
surface correspondence, and part-based deformable models.

Surface correspondences. Many researchers have investigated
how to compute consistent alignments and correspondences within
surface pairs [van Kaick et al. 2011b] or more recently on collec-
tions of 3D models [Nguyen et al. 2011; Huang et al. 2012; Kim
et al. 2012a]. For example, Kim et al. [2012a] propose a diffusion-
based method to compute “fuzzy correspondences” between every
pair of surface points in a collection. While these methods are ef-
fective for small collections of models with limited shape variation,
they do not explicitly leverage the part structure of objects, identify
clusters of related shapes, or learn a model of shape deformation
within the collection. As a result, they are unable to handle the
diversity (arising from deformations) of shapes considered in this
paper. Moreover, such methods rely on algorithms that are super-
linear in complexity with respect to the number of input models
and thus cannot scale to handle large collections.

Consistent segmentation. Although there has been significant
recent work on consistent segmentation of 3D model collections,
the methods are limited by the size and/or diversity of the input
collections they can handle. Golovinskiy and Funkhouser [2009]
present an approach that first aligns models, then builds corre-
spondences, and finally segments all models into parts. Since their
method relies on rigid alignments of model pairs to establish corre-
spondences, they obtain good results only for collections with small
shape diversity. Moreover, their algorithm computes alignment, cor-
respondence, and segmentation in sequence, without feedback be-
tween the steps, and thus fails to leverage information learned in
later steps to correct earlier mistakes. The “deform-to-fit” consistent
segmentation technique of Xu et al. [2010] suffers from a similar
limitation. Their algorithm computes initial segmentations indepen-
dently for each mesh, those segmentations are clustered without
alignment or correspondence, the co-segmentation for each style
cluster is computed independently without accounting for statistics
of shape variation, and the co-segmentations for different style clus-
ters are not adapted as inter-style part correspondences are found.
In addition, the overall complexity of the algorithm is quadratic in
the number of models in the collection.

Several existing approaches address the problem of consistent seg-
mentation and labeling by clustering points in an embedded space
of local shape features [Kalogerakis et al. 2010; van Kaick et al.
2011a; Huang et al. 2011; Sidi et al. 2011; Hu et al. 2012; Wang
et al. 2012]. However, these methods do not learn or leverage the
statistics of part cardinalities, shapes, or geometric arrangements,
which are relevant types of structure for many applications. Further,
the algorithms make one or more of the following assumptions:
input collections have low shape variations/deformations; access
to clean and manifold models; patch-based feature signatures are
robust across model variations; and access to labeled training data.
Moreover, as output, they produce only labels (e.g., labels indicate
leg, but not which leg) and possibly inconsistent correspondences
across the entire data set. In terms of scalability, the supervised
methods (e.g., [Kalogerakis et al. 2010; van Kaick et al. 2011a])
require 15% to 95% of the collection to be segmented and labeled
as training data, while Wang et al. [2012] require users to interac-
tively specify tens to hundreds of constraints. Finally, most of these
analysis algorithms rely on comparing all pairs of shapes with run-
ning times in the tens of hours for hundreds of shapes [Huang et al.
2011], which makes them impractical for much larger collections.

Part-based models. Our approach is motivated by the success-
ful application of deformable templates for object recognition in
computer vision [Jain et al. 1998]. Felzenszwalb et al. [2005] and
others have developed part-based models to encode distributions
of appearances and spatial arrangements of parts and used them
for recognition of objects in images [Fergus et al. 2003; Amit and
Trouve 2007; Felzenszwalb et al. 2010]. Similar approaches have
been used for pose estimation [Lopez-Sastre et al. 2011], image
segmentation [Eslami and Williams 2012], and viewpoint classifi-
cation [Gu and Ren 2010]. Yet, in most of this work, the part-based
model is given or is learned from previously segmented and labeled
training data. In contrast, we learn the part-based model from un-
labeled data, evolving a set of templates to best fit the data (see
also [Weber et al. 2000a; Weber et al. 2000b] for applications in
visual recognition).

Many geometry processing tasks require and assume access to part-
based model information: Shen et al. [2012] use a database of
segmented models to reconstruct models from Kinnect scans; Xu
et al. [2012] use part based deformation model to spawn an evo-
lutionary model towards creation of novel and interesting model
variations; Kim et al.[2012b] searches over allowed deformations
in part-based template models to fit object labels and pose attributes
to sparse noisy point cloud scans. The output of our algorithm can
directly be used as input to such applications.

Kalogerakis et al. [2012] learn a probabilistic distribution over a
part-based model encoding multiple object styles, part cardinalities,
part shapes, and part placements, and uses it for shape synthesis.
However, the method assumes access to manually segmented and
labeled examples. Since we focus on analyzing very large model
collections, manually annotating even a small fraction of such col-
lections is infeasible and thus calls for a different approach.

Ovsjanikov et al. [2011] describe a part-based method to explore
shape variations within a collection of polygonal models. Their al-
gorithm forms a template from a single, manually segmented model
and then describes shape variations in terms of how part translations
and scales affect a global D2 shape descriptor. This approach han-
dles deformations that reveal themselves as low-dimensional struc-
tures (e.g., 1D curves) in the global descriptor space but fails to
discover part-level shape variations. Also, their analysis does not
explicitly map template parts to surface regions on models and thus
is not directly useful for applications that require segmentations
and/or correspondences.

3 Overview

At the core of our algorithm is a probabilistic, part-based model
that uses a set of deformable templates to describe shape variations
within a collection. Each template represents a distribution (or style)
of shapes as a set of oriented parts with random variables indicating
their positions, sizes, and local geometric features. This part-based
model matches the modes of variation found in many collections
of man-made objects, which often contain a few clusters of shapes
with more-or-less the same types of parts arranged in more-or-less
the same locations with specific instances differing only slightly
in the positions, sizes, and shapes of parts [Xu et al. 2010]. For
example, the collection of 36 chairs in Figure 1 has four clusters
with different sets of parts (arms versus no arms) and/or parts with
different relative sizes and shapes (e.g., benches versus chairs). To
model such variations, we introduce an automatic method for learn-
ing part-based deformable templates to an input shape collection.

Starting from an initial set of templates, we use an iterative algo-
rithm that (i) deforms templates to fit the shapes, (ii) clusters the
shapes based on their fits, and (iii) refines the set of templates to

Inputs:
Shape collection S
An optional template T

Outputs:
Updated set of templates {T}
Template↔shape clusters C
Template→shape global rigid transformations R
Template→shape per-part deformations D
Template↔shape point mappings M
Shape→template point labelings L
Template→shape fit errors E

——-

If no T is provided, CreateAutoTemplate(S) (Section 4.3)
LearnTemplate(T, S) (Section 4)

foreach iteration
{R,D,M,L,E} = FitTemplateSet(T, S)
C = ClusterShapes(T, S,E)
T = RefineTemplateSet(T, S,C,R,D,L,E)

return {T,C,R,D,M,L,E}
——-

FitTemplateSet(T, S) (Section 4.1)
foreach S[j] ∈ S

foreach T [i] ∈ T
{R[i, j],D[i, j],M[i, j],L[i, j],E[i, j]} = FitTemplate(T [i], S[j])

return {R,D,M,L,E}
FitTemplate(t, s) (Section 4.2)

foreach candidate alignment r
d = tmean
repeat until ` converges
` = SegmentShape(t, s, d, r)
{r, d, e} = argmin{r,d} FitError(t, s, `)

return {r, d, `,m, e} with least e

——-

RefineTemplateSet(T, S,C,R,D,L,E)
SL = SelectLearningSet(S,E)
TL = FitLearningSet(T, SL,C,L)
T ′ = ClusterLearningSet(T,TL)
return T ′

Figure 2: Algorithm pseudocode.

better describe the shape variations within each cluster, possibly
spawning new templates in the process (see Figure 2). We repeat
these steps in sequence until the family of learned templates stops
evolving, or a maximum number of iterations is reached. The re-
sulting clusters of shapes, one for each template, represent the dis-
crete set of shape styles across the collection. Within each cluster,
the random variables of the associated template describe continu-
ous shape variations, and the template-to-shape fitting information
provides non-rigid alignments, point-to-point correspondences, and
consistent part segmentations. By default, we compute the initial
templates based on an automatic segmentation of a set of randomly
selected shapes. The user can select/refine these templates, or create
her own.

The following section describes in detail our part-based template
representation, the individual steps of our iterative algorithm, and
different strategies for template initialization.

4 Algorithm

This section describes the steps to learn a set of templates for a
collection of shapes.

The main input is a collection of shapes, each represented by a
discrete set of points. Note that our algorithm does not require

a. Initial
Template

e. Fitting Setb. Fitting Set c. Learning
Set

d. Updated
Templates

g. Updated Templatesf. Learning Set

Figure 3: Overview example. Two main modes of variation are learned in a collection of 10 models (5 chairs and 5 benches). First, an initial
template (a) is matched to all the models (b); however, only chairs with small fitting error are included in the Learning Set (c). Variations
are learned from the set and the template is updated (d), which is then fit to the remaining shapes (e). Note that the learned part-wise
deformations subsequently lead to better segmentation and alignment of benches. Variations among benches (f) are too dissimilar from the
chairs, and hence, a second template is spawned to the final set of templates (g). In image (g) and throughout the paper, a higher variance in
part positions is depicted by larger ellipsoids at part centers, while higher variance in anisotropic scales is depicted by longer dashed lines.

manifold polygonal meshes, or even meshes at all. Rather, it can
take almost any shape representation as input, including polygon
soups, voxel grids, and point set surfaces – it simply samples points
on the surfaces of other representations to form point sets for its
analysis. This choice is disadvantageous for most steps of our al-
gorithm (e.g., computing segmentations with good boundaries is
simpler with connected surface meshes), but it is necessary to al-
low processing the wide variety of shape representations found in
repositories on the Web (e.g., polygon soups).

A second input, which is optional, is one (or more) initial tem-
plate(s). The user can manually create such templates. If not, the
system can create template(s) automatically by choosing from seg-
mentations of several candidate shapes (see Section 4.3).

Subsequently, our main algorithm (LearnTemplate in Figure 2) pro-
ceeds by interleaving three steps: fitting, clustering, and refinement.
During the fitting step, every template is deformed to fit to every
shape. Then, during the clustering step, shapes are associated with
their best-fitting template. Finally, during the refinement step, the
set of templates is updated to reflect the shape deformations ob-
served during the fitting step, possibly spawning new templates to
describe clusters of shapes represented poorly by the deformations
of the initial templates. We terminate when either template cannot
be updated from any new shapes, or after reaching the maximal
number of iterations Niter.

Figure 3 illustrates two iterations of the template learning proce-
dure. The example collection of 10 models is bi-modal and includes
5 chairs and 5 benches. Starting with the initial template (a) we first
fit it to every model (b), note how the intermediate alignments and
segmentations produced with the initial template are not accurate
since it does not cover the space of all shape deformations. We
further learn deformation parameters from a subset of models (c)
and use these parameters to refine the set of templates (d). Iterating
the fitting and learning steps (e, f) allows our method to identify the
second mode of shape variation (g).

Template definition. In our implementation, we treat a template
as a collection of k boxes {B1, . . . ,Bk} with each template part
being abstracted as a box. We model each box by a Gaussian dis-
tribution capturing its centroid position (µ

p(Bi), σ
p(Bi)), a Gaus-

sian distribution capturing its anisotropic scale (µ
s(Bi), σ

s(Bi)),
and a Gaussian distribution of per-point local shape features
(µ

f (Bi), σ
f (Bi)). Thus, template deformation amounts to relative

movements of the boxes and their respective anisotropic scaling (we
do not consider rotation in our implementation). Finally, as template
initialization, a user can mark certain parts as must-exist to enforce

semantic structure of the learned templates (e.g., a seat must-exist
in a chair template).

We now describe the various stages of our algorithm, focusing on
template fitting and refinement, while deferring template initializa-
tion to Section 4.3.

4.1 Template Fitting

Given a set of templates T , our next task is to “fit” each of them to
a set of shapes S. For each pair of template t ∈ T and shape s ∈ S,
our goal is to find the segmentation of the shape and the deformation
of the template that optimizes an energy function e measuring the
alignment of their parts.

Free variables: The free variables in this optimization are: (i) a
rigid transformation aligning the template to the shape (r), (ii) a set
of deformation parameters for the template (existences, position,
and scales of parts) that best fit the shape (d), (iii) a mapping from
points in the shape to corresponding points on the template (m) and
vice-versa, and (iv) a labeling of points in the shape according to
their corresponding part in the template (`).

Energy function: The goal is to minimize an energy function
e(t, s, r, d,m, `) measuring the fit of the template parts to the shape
segmentation. The energy function is designed to favor segmen-
tations that are consistent with both the shape geometry and the
template structure, while penalizing implausible deformations of
the template to fit the shape. To achieve these goals, we define the
fitting energy e to be a sum of three terms:

e(t, s, r, d,m, `) = Edata(t, s, r, d,m, `) + αEdeform(t, d)

+βEsmooth(s, `) (1)

The data term measures distances and dissimilarities in local shape
features between points on the shape and corresponding points on
the template. To compute it, we suppose that the shape and the tem-
plate are both uniformly sampled with discrete sets of points, Ps and
Pt , respectively, and sum error estimates at those points:

Edata(t, s, r, d,m, `) = Es→t + Et→s + γEfeat (2)

Es→t(t, s, r, d,m) =
1
|Ps| ∑

ps∈Ps

Edist(ps, r(d(m(ps))))
2 (3)

Et→s(t, s, r, d,m) =
1
|Pt | ∑

pt∈Pt

Edist(r(d(pt)),m−1(pt))
2 (4)

Efeat(t, s, l) =
1
|Ps| ∑

ps∈Ps

Efeat dist(ps, `(ps))
2 (5)

where Edist measures the Euclidean distance between points (nor-
malized by the shape radius R, computed as the furthest distance
between any pair of points in a shape), and Efeat dist measures the
squared difference between a local shape feature vector at a point on
the shape with the average local shape feature vector for all points
in the corresponding part of the template divided by the variance
of those features. To account for potential noise or outliers a point
can be labeled as null, the distance penalties are 0, and we set high
penalty Efeat dist(ps, null) = 1 in this case.

In our implementation, we compute local shape features f at a
point p by analyzing the covariance matrix of its local neighbor-
hood Nhd(p) which is defined by all points within the distance
τNhd = 0.15R. Suppose sorted eigenvalues (decreasing order) and
eigenvectors are λ1,2,3 and v1,2,3, we produce six features, includ-
ing ratios of eigenvalues (λ2/λ1 and λ3/λ1), and normalized angles
between axes and eigenvectors acos(v1 · aup)/π, acos(v1 · a2)/π,
acos(v2 · aup)/π, acos(v2 · a2)/π.

The data term produces a low error if surfaces are well-aligned,
have similar part structures, and have similar local shape features at
corresponding points.

The deformation term penalizes solutions that have statistically un-
likely positions bp and scales bs of template parts B:

Edeform(d) = ∑
b∈t

|bp − µ
p(B)|2

σ p(B)2 +
|bs − µ

s(B)|2

σ s(B)2 (6)

where b is a part in template t, bp, and bs are the position and scale
for that part, and µ

p(B) and σ
p(B) are the mean and standard de-

viation of positions for all instances of part b learned from shapes
assigned to t (and similarly for bs). This term penalizes extreme
deformations of t to fit s. Note that a user can specify ‘must include’
parts. If no points are mapped to such a part its deformation penalty
is set to Eexist penalty = ∞ to avoid learning from topologically invalid
shapes.

Finally, the smoothness term penalizes shape segmentations in
which nearby points with similar surface normals are assigned to
different template parts:

Esmooth(l) = ∑
p1,p2∈Ps

s.t.p2∈Nhd(p1)
`(p2)6=`(p1)

−log
(

1− θp1,p2

π

)
· exp

(
dist(p1, p2)

τ
2
Nhd

)
(7)

where θ(p1, p2) is the angle between surface normals at two points
within local neighborhood p1 and p2.

We use α = 0.5, β = 2, and γ = 2 to weight these three energy
terms for all results presented in this paper.

Figure 4 illustrates how the different energy terms influence the fi-
nal fitting. These examples demonstrate that excluding local shape
features Efeat fails to discriminate between some parts, missing de-
formation priors Edeform results in incorrect and implausible seg-
mentation and alignment of parts; and absence of smoothness
Esmooth generates labeling with noisy boundaries.

Optimization procedure: Minimizing this fitting energy is dif-
ficult, because the optimal rigid alignment, template deforma-
tion, shape segmentation, and point correspondences are all inter-
dependent. If the optimal shape segmentation was given, it would
be easier to find the rigid alignment and template deformation that
best aligns parts. Alternatively, if the optimal rigid alignment and
template deformation were known, it would be easier to find the
optimal point correspondences and shape segmentation. However,

T

Eall
Without
Efeat Eall

T

T

Eall
Without
Edeform

Without
Esmooth

Figure 4: Energy function example. Effect of every energy term in
the template fitting procedure. For all the three examples, we show
a result with all the energy terms (left) and with one energy term
excluded (right). (Left-to-right) The stem merges with the base if
local shape features are excluded for goblets; chair legs are ex-
tended towards back support if we exclude statistical plausibility of
a template deformation; and the segmentation boundary between
the head and the torso of an animal is noisy in the absence of the
smoothness term.

neither is known in advance. We address this problem with an iter-
ative approach.

Our algorithm starts by searching for the rigid alignment r that
best aligns the mean template surface to the shape. In practice, we
search a discrete number of rigid alignments, noting that geomet-
ric repositories commonly have a default up direction aup, and that
optimal rotations around that axis are usually close to multiples of
π/2. Thus, we simply align centroids and try all the four π/2 rota-
tions around aup. For each of those four starting transformations, r
is fixed – we return the one that provides the best e after all other
free parameters are estimated.

For each rigid transformation, we optimize e(t, s, r, d,m, `) with an
algorithm that alternatively optimizes the discrete shape segmenta-
tion `, then the discrete point correspondences m, and finally the
continuous template deformation parameters m. These three steps
are iterated until the labeling remains unchanged in consecutive it-
erations (with a maximum number of iterations set to 100).

During the first step, we treat d and r as fixed and optimize `, the as-
signment of shapes points to template parts. Since our energy func-
tion requires correspondences m, for any point label `(p) we set its
correspondence to the nearest point on `(p). We further exclude the
template to points distances Et→s since m−1 is only defined when all
points are labeled, and thus cannot be computed without optimizing
`. The remaining non-constant terms can be formulated as condi-
tional random field with the unary terms defined by Es→t + Efeat
and the binary terms defined by Esmooth. We approximately solve the
problem with the efficient graph cut algorithm described by Boykov
et al. [2001].

During the second step, we treat `, d, and r as fixed and optimize
m. This is a classic surface correspondence problem, with the spe-
cial properties that points are constrained to correspond only to
other points with the same part label. Since surfaces have already
been aligned by the optimal rigid transformation r and template
deformation d (after the first iteration), we simply use closest-point
algorithm to estimate point correspondences. Specifically, for each
point in s, we find the closest point sampled from the template part
with the same label, and vice-versa.

During the third step, we treat `, m, and d as fixed and only optimize
r. We find an optimal rigid transformation that minimizes the sum
of squared distances between corresponding points, using a singular
value decomposition based method [Sorkine 2007].

During the fourth step, we treat ` and m as fixed and optimize
d. This is a classic regression problem that requires minimizing a

quadratic energy function, Edata + Edeform. We can solve for critical
points ∂ (Edata+Edeform)

∂bp
= 0 and ∂ (Edata+Edeform)

∂bs
= 0 for all parts b. Note

that we can solve independently for scale and position of every part
w.r.t. every dimension, reducing the problem to finding inverses of
2x2 matrices.

As these four steps are iterated, the shape segmentation is refined
and the template is deformed to align its parts with corresponding
segments on the shape. The final fitting energy provides an estimate
for how well the template fits to the shape.

4.2 Template Refinement

Once we fit all the shapes to all the templates, our final step is
to evolve the set of templates to better represent shape variations
within the collection. Our specific goals are to re-estimate the dis-
tributions of part positions and scales within the existing templates
and to create new templates to represent salient clusters of shapes
not fit well by any existing template.

Selecting a learning set: The first challenge is to select a subset of
shapes from which the parameters of each template should be re-
estimated. This is important for two reasons: (i) to avoid learning
template parameters from shapes that fit poorly, and (ii) to avoid the
undue computational burden of considering every shape for every
refinement of the templates. To address this challenge, we build a
Learning Set SL that includes only those shapes that fit best to their
associated templates, and then we re-estimate the template parame-
ters only using those shapes.

Our method for selecting the Learning Set is quite simple. First we
re-estimate the fitting error for a subset of models, which we call a
Fitting Set, SF . In the first iteration the Fitting Set includes all the
models in the collection, in the subsequent iterations we sort every
shape s by the most recently computed fitting error ẽ∗(ts, s). Then,
we add the KL shapes with lowest ẽ∗(ts, s) to the Fitting Set, plus
another KL shapes chosen at random. We re-fit the current set of
templates to the models in the Fitting Set, and update fitting errors
e∗(ts, s) associated with the best fitted template ts. For each of these
shapes, we add it to the Learning Set if its e∗(ts, s) is less than either
a global threshold, emin, indicating an almost-certainly good fit, or
less than max(et , emax), where et = τ · argmins′e∗(t, s′), indicating
that the fit for s is among the best for t. We terminate the learning
procedure when the Learning Set is empty or after reaching the
maximal number of iterations Niter. We have chosen conservative
values of KL = 50, emin = 75, emax = 150, τ = 4, and Niter = 10
empirically, and keep them the same for all results presented in this
paper, noting that KL and τ could be tuned to encourage more (less)
conservative evolution with smaller (larger) values.

Figure 5 illustrates the template refinement step. For an exam-
ple Learning Set (middle) the shapes can either contribute to re-
estimating template deformation parameters (blue clusters), spawn
new shapes (black clusters), or be disregarded as outliers (red clus-
ters). Note how chairs that are different from the current set of
templates (with elongated seats and with short stems) form new
clusters potentially expanding the space of geometries represented
by the set of templates.

Re-estimating template deformation parameters: Next, we re-
estimate the distribution of part deformations for each template
based on its fits to examples in the Learning Set SL.

Specifically, for each template t, we want to update it from all
matched shapes that are similar to its mean part arrangement
dµ(t) = {µ p(B), µ

s(B)}. We consider the subset St of the Learning
Set associated with t, and with edata(t, s, r, dµ(t),m, `) ≤ emin. For

Current
Template

Set

...

...

...

...
New

templates

Clusters
are too
small

Learning Set

Figure 5: Template refinement. This figure demonstrates a single
iteration of template refinement step. Shapes in the learning set
(shaded area) are either used to update existing templates (blue),
spawn new templates (black) or do not participate in learning (red).

each shape s ∈ St , we estimate the template part deformations pa-
rameters d∗(t, s) that minimize Edata(t, s, r, d,m, `). Then, we build
a Gaussian distribution over all d∗(t, s) for all s ∈ St (re-estimating
the means and variations of the centroids, scales, and shape descrip-
tors for every part in the template t).

Spawning new templates: Next, we create new templates to rep-
resent clusters of deformations that are similar to one another, but
poorly modeled by the existing templates. To do so, we perform
agglomerative clustering of all shapes that are fitted to templates
with the same part cardinalities. We measure dissimilarity for a pair
of shapes s1, s2 as Edata(s1, s2, r, d,m, `) + Edata(s2, s1, r, d,m, `),
where deformations and labeling are fixed and m is defined by near-
est points with the same label.

We iteratively merge nearest clusters as long as maximal dissimi-
larity between their elements is below emin. We use clusters with
more than 5% · KLS elements to add new templates to the set with
parameters estimated from optimal deformations d∗(t, s). Note that
the spawned templates do not introduce new parts, but may only
include a subset of parts of their parents.

Rejecting outliers: Finally, remaining shapes are considered to be
outliers (deformation-wise) and we exclude them from future learn-
ing steps. Note that while these shapes are explained by the current
set of templates, we assume that they do not represent sufficient
fraction of the collection to expand the template set.

The final result is a new set of templates with re-estimated deforma-
tion parameters, and possibly with additional templates describing
new shapes and arrangements of parts.

Consider, for example the collection of 36 chairs in Figure 1: there
are four different clusters, two sets with arms, and two sets without
arms. Even among those with arms, the algorithm groups chairs
and benches separately based on their corresponding continuous
deformation parameters. Our algorithm learns the structure of this
collection automatically: starting from an initial template (top left),
it learns that the collection has fours different clusters of shapes,
each with relatively tight distributions of part positions and sizes,
and accordingly produces four representative deformable templates
(second row). The resulting templates can further be used to analyze
similar collections.

4.3 Template Initialization

We support two main modes for initial template creation: (i) auto-
matic shape segmentations, and (ii) user assisted refinement.

Automatic shape segmentations: Our system starts by creating an
initial template based on automatic shape segmentations. We start
by segmenting every shape using a modification of our template
fitting procedure. More specifically, we use seed with Nseg clus-
ters generated by Voronoi diagram of iteratively farthest points. We
initialize Nseg bounding boxes oriented along PCA directions with
anisotropic scales set to one standard deviation. Finally, we use our
template fitting optimization to re-label points and find optimal de-
formation parameters optimizing Edata + Esmooth. We observe that
in the most cases the template with the smallest fitting energy pro-
duces the best results. The user can further pick a template from
the set of best-fitted examples. In the fully automatic mode, we
execute our template learning procedure initialized from 10 best-
fitted initial templates, and then we pick the resulting template with
the smallest average fitting score (see example in Section 5).

User-refined templates: The user can also refine the initial sugges-
tions made by the automatic shape segmentation. Effectively, using
the proposed template(s) as scaffold, the user refines the arrange-
ment of boxes using a simple interactive tool that allows orienting,
positioning, and scaling boxes. The process, which is fairly intu-
itive, typically takes about 5 minutes (e.g., user updates/adds boxes
to define an airplane template with fuselage, wings and a tail; or
creates a bicycle template with wheels, body, seat and handles). In
less obvious datasets, one can look at a few example shapes from
the input collection and just align bounding boxes to the semantic
parts. For initial sets containing multiple templates (only chairs in
our examples), we started with a single template, investigated out-
lier shapes in the results (based on the fitting score), and added new
arrangement of parts that would cover the outliers. We believe, such
a workflow is appropriate for analyzing large collections without
relying on any prior knowledge about the dataset.

We found that the user refinements can be valuable, especially to
provide semantic cues and to make sure that all possible parts are
included in the initial template. We expect that the users interested
in analyzing a collection of shapes are able and willing to spend
a couple of minutes to interactively explore proposed initial tem-
plates, and/or fixup and select from among a set of templates pro-
duced automatically.

5 Results

In this section, we evaluate how well our algorithm recovers the
shape structure from an unlabeled collection. First, we evaluate the
quality of segmentations, deformations, and correspondences, and
then visualize variations learned from shape collections containing
thousands of models. We further investigate different aspects of our
algorithm such as its sensitivity to the initial template, generality of
the learned variations, and scalability of the method. Please refer to
the supplementary material for further details.

Datasets. We use several datasets in our evaluation: the COSEG
dataset [Sidi et al. 2011; Wang et al. 2012] containing several
classes of smooth manifold shapes with ground truth per-face la-
beling, the correspondence benchmark of [Kim et al. 2012a] that
includes collections of polygon soups obtained from the 3D Ware-
house [Trimble 2012] with consistently selected feature points. Fur-
ther, to validate applicability of our method to analysis of very
large and diverse datasets we created a set of large scale collec-
tions containing thousands of models. We obtained this dataset by

crawling the 3D Warehouse for particular keywords1 and grouped
the retrieval results into collections of semantically-similar classes.
We further presented all models rendered as a grid of thumbnails
to AMT workers [Amazon 2012], and asked them to select images
that contain only a single object of interest. We finally pruned ge-
ometries that did not receive a majority vote among 5 users. We
refer to Table 2 for more details on classes of shapes used in our
analysis and sizes of the collections. Note that all of these datasets
have a canonical ‘up’ direction, which is used by the template fit-
ting procedure. We also scale every shape, normalizing the average
distance to its centroid.

Correspondence benchmark for large collections. We build a
new correspondence benchmark for the newly acquired datasets.
Due to the scale of the data, we randomly sample 100 models
from each of the collections and select feature points only for those
models. Since the collections are very diverse it is hard to define a
consistent set of feature points that are present in all models, thus
we allow some points to be missing on some models (see Figure 6).

Segmentation accuracy. We evaluate quality of part-wise labeling
` produced by our method using the COSEG dataset [Sidi et al.
2011; Wang et al. 2012]. Similarly to previous methods we evalu-
ate labeling accuracy, measuring the fraction of faces with correct
labels (where labels are assigned manually to the corresponding
segments). Since accuracy is measured at a face level, we project
our per-point segmentations to mesh faces using a variant of fuzzy
cuts algorithm [Katz and Tal 2003], where fuzzy cut boundaries are
defined by the labeled points. For non-manifold meshes, we simply
assign face label by voting with the nearest labeled points.

Table 1 presents labeling accuracy of our method. We test two
versions of template initialization described in Section 4.3: fully
automatic (Auto) and manually-refined (Man). In both cases, we
also include labeling results that were obtained prior to template
learning procedure (Init). Note that for simple classes of shapes
initial template is sufficient to understand part-wise decomposition
(e.g., small dataset of chairs). However, shapes with more geomet-
ric diversity (e.g., four-legged creatures) demonstrate significant
improvement after learning deformations.

We further include results reported by the previous methods of [Sidi
et al. 2011] (Sidi) and [Hu et al. 2012] (Hu). The quality of our
labels is comparable to the previous techniques, and we provide
improvement for classes where spacial arrangement of parts is im-
portant (e.g., lamps, chairs). Our method demonstrates a slightly
inferior performance on classes that do not have well-defined parts
(e.g., vases). Another common problem that we encountered with
automatically-generated templates is that the final templates might
not have the same granularity as the ground truth parts (e.g., the

1 “chair”, “bench”, “plane”, “airplane”, “jet”, “bike”, “bicycle”, “motorcy-
cle”, and “helicopter.”

100 / 452 helicopters 104 / 3114 planes100 / 471 bikes100 / 7442 seats

Figure 6: Ground truth. This image illustrates some example mod-
els with ground truth feature points. Note that each model can have
only a subset of ground truth points (e.g., arm rests points of chairs
are absent in some chair shapes).

378

Initial Template

Final Templates

Co-aligned points

Randomly sampled template fitting results:

1508 1605 63 23 7

Initial Template

Final Templates

Co-aligned points

Randomly sampled template fitting results:

Figure 7: Trimble 3D Warehouse data. Some example templates learned from 3D Warehouse datasets along with corresponding models.
Note how we automatically identify that the airplane dataset has military planes with wider variation in positions of wings (left column) and
commercial airplanes with relatively uniform part scales. We also automatically identify the difference between bicycles and motorcycles.

Class Sidi Hu Auto
init

Auto
result

Man.
init

Man.
result

Lamps 94.3 90.7 95.1 95.2 81.8 97.6
Chairs 84.8 89.6 96.7 97.6 97.9 98.4
Vase 87.4 80.2 80.7 81.3 81.7 83.2

FourLegged 77.3 88.7 81.6 86.9 84.6 87.1
Guitars 87.2 98.0 86.6 88.5 95.9 96.5
Goblets 98.2 99.2 89.4 97.6 98.4 98.1

Candelabra 84.4 93.9 82.9 82.4 85.7 87.9
Chairs (400) XX XX 80.4 91.2 91.3 96.9
Vase (300) XX XX 85.7 85.6 85.9 81.2

Table 1: Segmentation accuracy. Each entry records fraction of the
area that was labeled correctly by a segmentation technique, where
rows correspond to datasets and columns correspond to methods.
We compare to the consistent segmentation techniques by Sidi et
al. [2011] and Hu et al. [2012]. We also execute our method with
two types of initial templates: fully automatic (Auto) and manually-
refined (Man). In both cases, we show results of using just the initial
template for matching (init) and results after we execute our tem-
plate learning procedure (result).

neck and head of a guitar are commonly put into single part, and
the body is segmented into two pieces). Despite lower labeling ac-
curacy in these cases, the co-alignment and learned variations for
these classes is still meaningful. Note that unlike previous tech-

niques, our method does not require manifold meshes as input and
our results are disadvantaged by this generality.

Figure 7 demonstrates randomly selected segmentations and tem-
plate alignments from much larger datasets containing polygon
soups. Note how our method is effective even for these non-
manifold surfaces. Figure 9 demonstrates our segmentation results
for a set of lamps, note how we automatically identify three types
of deformable templates and successfully label most models in the
collection.

Deformation quality. We visually verify the quality of per-model
template alignment and deformation parameters r, d, by rendering
deformed boxes aligned to the matched models (e.g., see bottom of
Figure 7). We also use the template deformation to co-align all mod-
els to a canonical space, thus relating all the shapes. More specifi-
cally, for every shape s associated with template t with deformation
parameters dt , we align every point ps to corresponding point in the
canonical space m(ps) + os, where os is the offset by which point
is displaced from a deformed template: os = d(m(ps))− ps.

Figure 8 demonstrates co-aligned points from all the models side
by side with rigidly aligned points that do not account for part-
wise deformations. Note that our result is much sharper than rigidly
aligned models significantly reducing the variance in point distribu-
tions, demonstrating that anisotropic part scales account for a very

Initial
template:

Final templates:

Figure 9: Segmentation example. This example illustrates analysis
of a collection of 20 lamps. Note how resulting templates capture
variations in position and size of lamps’ head.

significant amount of geometric variations (see also supplementary
material).

Correspondence accuracy. We evaluate the quality of the re-
sulting map between models m using standard correspondence
benchmarks. To provide pairwise correspondences required for
the benchmarks, we co-align all the shapes to a canonical do-
main and use nearest neighbors to define shape-to-shape correspon-
dences. We evaluate our results on the datasets proposed in Kim et
al. [2012a], and our newly created benchmark for larger and more
diverse collections. Similarly to previous methods we compute cor-
respondences for selected feature points and measure Euclidean er-
ror between predicted point and ground truth, normalized by mesh
diameter (maximal distance between a pair of points). We further
aggregate this information into plots that show fraction of corre-
spondences predicted correctly (y-axis) for a given Euclidean error
threshold (x-axis).

Figure 10 demonstrates these results on all benchmarks used in our
evaluation. We demonstrate results for our method trained on all
data (red), our method only trained on models that have ground
truth correspondences (magenta). We further compare the method
proposed by Huang et al. [2012] trained on ground truth models
(black), and on the largest dataset it could handle (gray): it success-
fully analyzed all bikes, a subset of 1000 planes, a subset of 1000
seats, and crashed for larger subsets of helicopter dataset. We also
execute the method of Kim et al. [2012a] (blue), which is not able
to handle collections much larger than one hundred models.

Note that the performance of our method is comparable on datasets
with less part-wise variations (e.g., chairs, commercial planes),
while our method performs significantly better on datasets with
part-wise deformations (e.g., seats have significant deformation be-
tween chairs and benches). Both previous techniques rely on rigid
alignment to compute correspondences for pairs of models and use
transitivity to recover larger variations. These approaches are sen-
sitive to multi-modal variations in collections that contain clusters
that are not connected by a smooth path of rigid alignments (e.g.,

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

86 Commercial Planes

Our
Huang12
Kim12
Our:init

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

111 Chairs

Our
Huang12
Kim12
Our:init

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

452 Helicopters

Our:all
Our:gtonly
Huang12:gtonly
Kim12:gtonly
Our:init

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

471 Bikes

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

7442 Seats

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

3114 Planes

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

7442 Seats

Our:all
Our:gtonly
Huang12:gtonly
Huang12:1000
Kim12:gtonly
Our:init

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

471 Bikes

Our:all
Our:gtonly
Huang12:gtonly
Huang12:all
Kim12:gtonly
Our:init

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Euclidean Distance

%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

7442 Seats

Our:all
Our:gtonly
Huang12:gtonly
Huang12:1000
Kim12:gtonly
Our:init

Figure 10: Correspondence benchmark. This figure demonstrates
quality of correspondences produced by our method (red,magenta)
relative to prior work: Huang et al. [2012] (black,gray), Kim et
al. [2012a] (blue). Each point on a curve indicates fraction of
correctly predicted correspondences for a given Euclidean error
threshold. We execute each algorithm on ground truth models only
(gtonly) and on the largest subset for which it could be run (all,
1000). Note that while we perform similar to previous techniques
on small datasets with fewer variations, we gain substantially on
datasets with significant part-level deformations (e.g., seats).

there is a deformation gap between chairs and benches in the seat
dataset). Our method improves pairwise correspondences (w.r.t. to
the template) by modeling part-wise deformations, and thus is more
capable of bridging such a gap by extrapolating deformation pa-
rameters. We also observe that modeling deformations allows more
accurate correspondences at finer scales (i.e., the left side of the
curve). Note that the most common source of error for bikes and
planes is near-symmetry under 180◦ rotation, learning local shape
features allow distinguishing between front and back parts. Unfor-
tunately with too little data our method can learn incorrect varia-
tions in the first few iterations, as it happens for bikes (magenta).

While compute times for our method are comparable to previous
techniques on small datasets (e.g., 5-30 minutes for our method on
Kim et al. [2012a] dataset in comparison to about 10 minutes for
Huang et al. [2012]), our method offers significant improvements
for larger datasets (e.g., a random subset of 1000 chairs was ana-
lyzed by our method in 2.6 hrs in contrast to Huang et al. [2012]
which took 6 hrs.). Since the amortized efficiency of our algorithm
improves with increasing data volumes, we expect this gap to widen
further as the shape collections grow in size.

We also show our results obtained using the initial template (red
dotted line). Note how results improve significantly after learning
since quality of correspondences greatly benefits from understand-
ing part-wise deformations.

All
400

Stool
72

Deformed Rigid Deformed Rigid

Dining
187

Swivel
141

Deformed RigidDeformed Rigid

Figure 8: Co-aligned shapes. We use template deformation parameters (r, d) to align all shapes from the set of 400 chairs in COSEG dataset
to their corresponding mean part arrangements and scales (left image). And compare it to just using rigid transformations r to co-align
shapes (right image). Note that our deformation model leads much sharper co-alignments by factoring out the dominant deformation modes.

91%

98%

89%

90%

96%

98%

98%

98%

98%

98%

Initial
segment.

Initial
template

Final
template

Co-aligned
points

Rigidly
aligned
points

Initial fitting results

Final fitting results

Auto resultAuto init

Figure 11: Robustness to initial template. Each row corresponds to
six different automatic segmentations that produce different initial
templates. The percentages under each template indicate labeling
accuracy of the whole dataset of goblets. Our algorithm further
automatically learns parameters for each initial template resulting
in different final templates. Note that all initial templates converge
to very similar final template parameters, labeling accuracies and
co-alignments regardless of the initial quality. The inset further il-
lustrates example segmentations produced with the automatically-
picked template with the minimal average fitting score.

Robustness to template initialization Figure 11 shows results ini-
tialized from different seed templates. Note that while initial tem-
plates are very diverse and commonly do not match well to the rest
of the collection, the final templates are very similar in learned vari-
ations, labeling accuracy and final co-alignments of all points.

Generality of learned parameters We further validate whether
the template that we learn can be generalized to new data. We se-
lect random subsets of shapes from 7442 chairs dataset, such that
smaller sets are always included in larger sets, and learn a set of
templates using the subset. We further use the learned set of tem-
plates to establish correspondences among a different set of 100
models (none of these models were part of the training set). The
accuracies of resulting correspondences are presented in Figure 12
(left plot, dark green curve). Note that the accuracy increases as
size of the dataset grows, and almost achieves the quality of corre-
spondences learned from all 7000 models (red horizontal line) after
training on just a 1000. This suggests that the learned templates can
be efficiently used to analyze new data.

Scalability and timing Finally, we discuss scalability and compu-

Class N |Tinit|
Total
tlearn
sec

Ave.
tlabel
sec

Trimble 3D Warehouse (polygonal soups)
Chairs 111 2 1.8K 22

CommPlane 86 1 344 4
Seats 7442 2 38K 32

Planes 3114 1 12K 7
Helicopters 471 1 15K 18

Bikes 452 1 5.4K 11
Co Seg (manifold shapes)

FourLegged 20 1 95 4.6
Lamps 20 1 145 8.6

Candelabra 20 1 101 8.4
Guitars 44 1 219 7.7
Chairs 20 2 95 6.4

Goblets 12 1 39 1.4
Vase 28 1 130 1.2

Chairs (400) 400 3 14K 37
Vase (300) 300 1 3K 8.4

Table 2: Data statistics. This table provides number of models N,
number of initial templates used in analysis of a collection Tinit,
total learning time tlearn and average per-shape fitting time with the
final set of templates. The last three columns correspond to experi-
ments with manually-refined initial templates.

tational complexity of our algorithm. Let us define an input collec-
tion of N models that can be described by Tmax templates. Note that
every model is added to a Learning Set exactly once, moreover at
least one model is included in a Learning Set at every iteration (our
algorithm terminates when |SL| = 0). Thus, our algorithm executes
for at most N iterations, where each iteration involves re-fitting
models in Fitting Set, O(KLTmax) and, possibly, an agglomerative
clustering O(K2

L). Thus, our method is linear in the number of mod-
els N as long as number of templates that describe all geometric
variations Tmax does not depend on the collection size. Finally, fit-
ting any new collection of N ′ models to existing set of templates is
O(Tmax · N ′). Note that except for agglomerative clustering, all the
other steps can be performed in parallel.

The right plot in Figure 12 demonstrates that number of templates
Tmax and the time required to compute them do not depend on the
number of models in the collection (note that the curve flattens
out because our procedure terminates after reaching the maximal
number of iterations). Table 2 further includes compute times and
statistics for all the datasets.

6 Conclusion

We presented a shape analysis tool to derive structure from large,
unorganized, diverse collections of 3D polygonal models. Given a
collection of polygonal models (and optionally an initial template),

0 500 1000 1500

65

75

85

95

Number of models%

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

(

τ=
0
.
2
4
8
7
5
) Accuracy vs dataset size

Our:all
Train on a subset
Fuzzy:gtonly

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

Number of models

T
i
m
e

(
h
r
s
)

Time vs dataset size

4
6 6

8
11

15
10

7
5 5

4

Figure 12: Learning templates from a subset of models. We
learned a set of templates on subsets of different size of 7442 seats
dataset. The left plot shows how size of the subset influences frac-
tion of correct correspondences for a fixed Euclidean error thresh-
old. The right plot shows the time require for learning the varia-
tions (does not include the labeling time), and numbers next to data
points indicate number of final templates. These results suggest that
variations can be learned in near constant time from a randomly
selected subset of all the shapes.

we jointly partition the models into clusters with similar structure,
learn a part-based deformable model of the shape variations within
each cluster, provide consistent segmentations for all the models
with similar parts, and provide correspondences between seman-
tically equivalent points across all models in the collection. Our
algorithm executes out-of-core, has time complexity linear in the
size of the collection, and thus scales to handle very large data sets.
It also performs favorably on benchmark data sets for consistent
segmentation and surface correspondence in comparison to previ-
ous work.

Limitations. Despite these features, the current algorithm has sev-
eral limitations that require further investigation. First, the shape of
each part is currently represented by an oriented box, and corre-
spondences are assigned based on closest points. While this make
our method well suited for “boxy” parts that protrude away from the
rest of the shape (e.g., airplane wings, chair legs, etc.), the method
does not fare so well in presence of parts with complex shapes in
close proximity to others (e.g., bike frames). It would be interest-
ing to investigate the accuracy/speed trade-offs of alternative shape
representations (e.g., a set of meshes for each part). Second, our
template does not explicitly model relative spatial relationships be-
tween parts, which is sufficient for many man-made objects where
parts often appear in consistent global arrangements, but would not
be as good for articulated shapes. A constellation model is an alter-
native [Fergus et al. 2003], which might provide better results for
some object classes at greater computational expense. Third, our
template learning procedure requires initial template that includes
all possible parts. Since our automatic template initialization pro-
cedure only creates templates from a single segmentation, it is not
suitable for diverse collections where there might be no shape that
includes all parts. While currently we expect the user to refine the
initial template and, possibly, add more parts to the initial template,
but in the future, we would like to develop a fully automatic alter-
native. Fourth, our method is greedy, and thus is not guaranteed to
converge to an optimal set of templates.

In the future, we plan to investigate new tools enabled by our analy-
sis for applications including exploration of geometric collections,
part-based shape modeling, and shape reconstruction. Furthermore,
we would like to generalize our part-based templates to other types
of 3D data with other types of part relationships such as hierarchi-
cal decompositions, contextual information, etc. We expect that the
structural understanding of 3D collections can find many applica-
tions in robotics, computer vision, and graphics.

Acknowledgements. We acknowledge Qi-Xing Huang for dis-
tributing code and data. We thank Aleksey Efros and the anony-
mous reviewers for their comments and suggestions. The project
was partially supported by NSERC, NSF (CCF-0937139 and CNS-
0831374), Adobe, Intel (ISTC-VC), Google, and Marie Curie Ca-
reer Integration Grant 303541.

References

AMAZON, 2012. Amazon mechanical turk,
https://www.mturk.com/.

AMIT, Y., AND TROUVE, A. 2007. POP: patchwork of parts mod-
els for object recognition. IJCV 75, 2, 267–282.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Efficient
approximate energy minimization via graph cuts. IEEE trans-
actions on PAMI 20, 12, 1222–1239.

ESLAMI, S. M. A., AND WILLIAMS, C. 2012. A generative model
for parts-based object segmentation. In NIPS.

FELZENSZWALB, P. F., AND HUTTENLOCHER, D. P. 2005. Pic-
torial structures for object recognition. IJCV 61, 1, 55–79.

FELZENSZWALB, P., GIRSHICK, R., MCALLESTER, D., AND
RAMANAN, D. 2010. Object detection with discriminatively
trained part-based models. IEEE PAMI 32, 9 (sept.), 1627 –1645.

FERGUS, R., PERONA, P., AND ZISSERMAN, A. 2003. Object
class recognition by unsupervised scale-invariant learning. In
IEEE CVPR.

FISHER, M., SAVVA, M., AND HANRAHAN, P. 2011. Character-
izing structural relationships in scenes using graph kernels. ACM
SIGGRAPH 30, 34:1–34:12.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. Consistent seg-
mentation of 3D models. Proc. SMI 33, 3, 262–269.

GU, C., AND REN, X. 2010. Discriminative mixture-of-templates
for viewpoint classification. In ECCV.

HU, R., FAN, L., , AND LIU, L. 2012. Co-segmentation of
3d shapes via subspace clustering. Computer Graphics Forum
(Proc. SGP) 31, 5, 1703–1713.

HUANG, Q., KOLTUN, V., AND GUIBAS, L. 2011. Joint shape seg-
mentation with linear programming. In ACM SIGGRAPH Asia,
125:1–125:12.

HUANG, Q.-X., ZHANG, G.-X., GAO, L., HU, S.-M.,
BUTSCHER, A., AND GUIBAS, L. 2012. An optimization ap-
proach for extracting and encoding consistent maps. SIGGRAPH
Asia.

JAIN, A., ZHONG, Y., AND DUBUISSON-JOLLY, M.-P. 1998. De-
formable template models: A review. Signal Processing 71, 2,
109 – 129.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010.
Learning 3D mesh segmentation and labeling. In ACM SIG-
GRAPH, 102:1–102:12.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. SIGGRAPH.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition
using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954–
961.

KIM, V. G., LI, W., MITRA, N., DIVERDI, S., AND
FUNKHOUSER, T. 2012. Exploring collections of 3D models
using fuzzy correspondences. Trans. on Graphis (Proc. of SIG-
GRAPH).

KIM, Y. M., MITRA, N. J., YAN, D., AND GUIBAS, L. 2012. Ac-
quiring 3d indoor environments with variability and repetition.
SIGGRAPH Asia.

LOPEZ-SASTRE, R., TUYTELAARS, T., AND SAVARESE, S. 2011.
Deformable part models revisited: A performance evaluation for
object category pose estimation. In ICCV Workshop on Chal-
lenges and Opportunities in Robot Perception.

NAN, L., XIE, K., AND SHARF, A. 2012. A search-classify ap-
proach for cluttered indoor scene understanding. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 31, 6.

NGUYEN, A., BEN-CHEN, M., WELNICKA, K., YE, Y., AND
GUIBAS, L. 2011. An optimization approach to improving col-
lections of shape maps. SGP 30, 5, 1481–1491.

OVSJANIKOV, M., LI, W., GUIBAS, L., AND MITRA, N. J. 2011.
Exploration of continuous variability in collections of 3D shapes.
ACM SIGGRAPH 30, 4, 33:1–33:10.

SHAPIRA, L., SHALOM, S., SHAMIR, A., COHEN-OR, D., AND
ZHANG, H. 2010. Contextual part analogies in 3d objects. IJCV
89, 2-3, 309–326.

SHEN, C.-H., FU, H., CHEN, K., AND HU, S.-M. 2012. Structure
recovery by part assembly. SIGGRAPH Asia.

SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND
COHEN-OR, D. 2011. Unsupervised co-segmentation of a set
of shapes via descriptor-space spectral clustering. ACM SIG-
GRAPH Asia 30, 6, 126:1–126:9.

SORKINE, O., 2007. Least-squares rigid motion using svd,
http://igl.ethz.ch/projects/ARAP/svd_rot.pdf.

TRIMBLE, 2012. Trimble 3D warehouse,
http://sketchup.google.com/3dwarehouse/.

VAN KAICK, O., TAGLIASACCHI, A., SIDI, O., ZHANG, H.,
COHEN-OR, D., WOLF, L., , AND HAMARNEH, G. 2011. Prior
knowledge for part correspondence. CGF Eurographics 30, 2,
553–562.

VAN KAICK, O., ZHANG, H., HAMARNEH, G., AND COHEN-OR,
D. 2011. A survey on shape correspondence. CGF 30, 6, 1681–
1707.

WANG, Y., ASAFI, S., VAN KAICK, O., ZHANG, H., COHEN-
OR, D., AND CHENAND, B. 2012. Active co-analysis of a set
of shapes. SIGGRAPH Asia.

WEBER, M., WELLING, M., AND PERONA, P. 2000. Towards
automatic discovery of object categories. In IEEE CVPR.

WEBER, M., WELLING, M., AND PERONA, P. 2000. Unsuper-
vised learning of models for recognition. In ECCV.

XU, K., LI, H., ZHANG, H., DANIEL COHEN-OR, Y. X., AND
CHENG, Z.-Q. 2010. Style-content separation by anisotropic
part scales. SIGGRAPH Asia.

XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012. Fit
and diverse: Set evolution for inspiring 3D shape galleries. ACM
Trans. on Graph (Proc. of SIGGRAPH) 31.

ZHENG, Y., COHEN-OR, D., AND MITRA, N. J. 2013. Smart
variations: Functional substructures for part compatibility. CGF
Eurographics.

