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Abstract—This is an overview of the keynote presentation
on SBSE at the Sixth IEEE International Symposium on
Theoretical Aspects of Software Engineering (TASE 2012),
held on the 4th-6th July 2012 in Beijing, China.

Search Based Software Engineering (SBSE) is the
name given to a field of research and practice in which
computational search and optimisation techniques are used
to address problems in Software Engineering [1]. This has
proved to be a widely applicable and successful approach,
with many applications right across the full spectrum of
activities in software engineering.

The approach has produced important research results and,
more recently, has witnessed more widespread uptake within
industry [2], [3], [4], [5], [6], [7]. There are also a number
of tools for SBSE applications including tools for testing
[8], [9], [10], [11] modularisation [12], and bug fixing [13].

This talk aimed to provide an overview of SBSE, its
foundations and motivation, illustrated by some applications
and findings from recent studies and concluding with a look
ahead to future challenges and opportunities. There are many
surveys, overviews and reviews on SBSE which provide a
wealth of material on SBSE and its applications and so there
is no need for a further paper to provide such an overview at
this stage. The author’s position on future developments in
SBSE towards more dynamic adaptive automated software
engineering are described in a forthcoming keynote paper at
the sixth ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2012) [14].

Readers interested in finding out more about SBSE will
find excellent surveys and overviews covering requirements
[15], predictive modelling [16], [17], non-functional
properties [18], program comprehension [19], design [20]
and testing [18], [21], [22], [23]. There is also a recent
bibliometric analysis of ten years’ of SBSE literature
(2001-2010) [24]. An overview of the use of Evolutionary
Computation on Software Engineering [25] and a more
general position paper on the use of Artificial Intelligence
techniques in Software Engineering [26] can also be found
elsewhere. Recent surveys on regression testing [27] and
mutation testing [28] also contain sections on search based
aspects of these two areas of literature.

Those new to SBSE seeking a more general introductory
text may like to consult the recent tutorial paper [29]. The
tutorial seeks to take the reader from the position of no
previous knowledge of SBSE to a point at which he or she is
ready to undertake their first experiments. It gives advice on
techniques, applications approaches as well as the conduct
of experiments and the publication of results on SBSE.
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