
Overview of TASE 2012 talk on Search Based Software Engineering

Mark Harman
CREST Centre, University College London, Malet Place, London, WC1E 6BT, UK.

Abstract—This is an overview of the keynote presentation
on SBSE at the Sixth IEEE International Symposium on
Theoretical Aspects of Software Engineering (TASE 2012),
held on the 4th-6th July 2012 in Beijing, China.

Search Based Software Engineering (SBSE) is the
name given to a field of research and practice in which
computational search and optimisation techniques are used
to address problems in Software Engineering [1]. This has
proved to be a widely applicable and successful approach,
with many applications right across the full spectrum of
activities in software engineering.

The approach has produced important research results and,
more recently, has witnessed more widespread uptake within
industry [2], [3], [4], [5], [6], [7]. There are also a number
of tools for SBSE applications including tools for testing
[8], [9], [10], [11] modularisation [12], and bug fixing [13].

This talk aimed to provide an overview of SBSE, its
foundations and motivation, illustrated by some applications
and findings from recent studies and concluding with a look
ahead to future challenges and opportunities. There are many
surveys, overviews and reviews on SBSE which provide a
wealth of material on SBSE and its applications and so there
is no need for a further paper to provide such an overview at
this stage. The author’s position on future developments in
SBSE towards more dynamic adaptive automated software
engineering are described in a forthcoming keynote paper at
the sixth ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2012) [14].

Readers interested in finding out more about SBSE will
find excellent surveys and overviews covering requirements
[15], predictive modelling [16], [17], non-functional
properties [18], program comprehension [19], design [20]
and testing [18], [21], [22], [23]. There is also a recent
bibliometric analysis of ten years’ of SBSE literature
(2001-2010) [24]. An overview of the use of Evolutionary
Computation on Software Engineering [25] and a more
general position paper on the use of Artificial Intelligence
techniques in Software Engineering [26] can also be found
elsewhere. Recent surveys on regression testing [27] and
mutation testing [28] also contain sections on search based
aspects of these two areas of literature.

Those new to SBSE seeking a more general introductory
text may like to consult the recent tutorial paper [29]. The
tutorial seeks to take the reader from the position of no
previous knowledge of SBSE to a point at which he or she is
ready to undertake their first experiments. It gives advice on
techniques, applications approaches as well as the conduct
of experiments and the publication of results on SBSE.

REFERENCES

[1] M. Harman and B. F. Jones, “Search based software
engineering,”Information and Software Technology, vol. 43,
no. 14, pp. 833–839, Dec. 2001.

[2] W. Afzal, R. Torkar, R. Feldt, and G. Wikstrand, “Search-
based prediction of fault-slip-through in large software
projects,” in Second International Symposium on Search
Based Software Engineering (SSBSE 2010), Benevento, Italy,
7-9 Sep. 2010, pp. 79–88.

[3] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu,
K. Sen, N. Tillmann, and W. Visser, “Symbolic execution for
software testing in practice: preliminary assessment,” in33

rd

International Conference on Software Engineering (ICSE’11).
New York, NY, USA: ACM, 2011, pp. 1066–1071.

[4] S. L. Cornford, M. S. Feather, J. R. Dunphy, J. Salcedo, and
T. Menzies, “Optimizing Spacecraft Design - Optimization
Engine Development: Progress and Plans,” inProceedings of
the IEEE Aerospace Conference, Big Sky, Montana, March
2003, pp. 3681–3690.

[5] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux,
“FloPSy — Search-based floating point constraint solving for
symbolic execution,” in22nd IFIP International Conference
on Testing Software and Systems (ICTSS 2010), Natal, Brazil,
November 2010, pp. 142–157, LNCS Volume 6435.

[6] S. Yoo, R. Nilsson, and M. Harman, “Faster fault finding at
Google using multi objective regression test optimisation,”
in 8

th European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’11), Szeged, Hungary, September
5th - 9th 2011, industry Track.

[7] J. Wegener and O. Bühler, “Evaluation of different fitness
functions for the evolutionary testing of an autonomous
parking system,” inGenetic and Evolutionary Computation
Conference (GECCO 2004), Seattle, Washington, USA, Jun.
2004, pp. 1400–1412, LNCS 3103.

[8] N. Alshahwan and M. Harman, “Automated web application
testing using search based software engineering,” in26

th

IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), Lawrence, Kansas, USA, 6th - 10th
November 2011, pp. 3 – 12.

[9] G. Fraser and A. Arcuri, “Evosuite: automatic test suitegener-
ation for object-oriented software,” in8th European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE
’11). ACM, September 5th - 9th 2011, pp. 416–419.

[10] Y. Jia and M. Harman, “Milu: A customizable, runtime-
optimized higher order mutation testing tool for the full C
language,” in3rd Testing Academia and Industry Conference -
Practice and Research Techniques (TAIC PART’08), Windsor,
UK, August 2008, pp. 94–98.



[11] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: A tool for
search based software testing for the C language and its eval-
uation on deployed automotive systems,” in2

nd International
Symposium on Search Based Software Engineering (SSBSE
2010), Benevento, Italy, September 2010, pp. 101 – 110.

[12] B. S. Mitchell and S. Mancoridis, “On the automatic
modularization of software systems using the bunch tool,”
IEEE Transactions on Software Engineering, vol. 32, no. 3,
pp. 193–208, 2006.

[13] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer,
“GenProg: A generic method for automatic software repair,”
IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 54–72, 2012.

[14] M. Harman, “Dynamic adaptive search based software
engineering,” in 6

th IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM
2012), Lund, Sweden, 2012.

[15] Y. Zhang, A. Finkelstein, and M. Harman, “Search based
requirements optimisation: Existing work and challenges,” in
International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ’08), vol. 5025.
Montpellier, France: Springer LNCS, 2008, pp. 88–94.

[16] W. Afzal and R. Torkar, “On the application of genetic
programming for software engineering predictive modeling:
A systematic review,”Expert Systems Applications, vol. 38,
no. 9, pp. 11 984–11 997, 2011.

[17] M. Harman, “The relationship between search based software
engineering and predictive modeling,” in6th International
Conference on Predictive Models in Software Engineering,
Timisoara, Romania, 2010.

[18] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of
search-based testing for non-functional system properties,”
Information and Software Technology, vol. 51, no. 6, pp.
957–976, 2009.

[19] M. Harman, “Search based software engineering for program
comprehension,” in 15

th International Conference on
Program Comprehension (ICPC 07). Banff, Canada: IEEE
Computer Society Press, 2007, pp. 3–13.

[20] O. Räihä, “A survey on search–based software design,”
Computer Science Review, vol. 4, no. 4, pp. 203–249, 2010.

[21] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-
Walawege, “A systematic review of the application and empir-
ical investigation of search-based test-case generation,” IEEE
Transactions on Software Engineering, pp. 742–762, 2010.

[22] M. Harman, “Open problems in testability transformation,”
in 1st International Workshop on Search Based Testing (SBT
2008), Lillehammer, Norway, 2008, keynote paper.

[23] P. McMinn, “Search-based software test data generation:
A survey,” Software Testing, Verification and Reliability,
vol. 14, no. 2, pp. 105–156, Jun. 2004.

[24] F. G. Freitas and J. T. Souza, “Ten years of search based
software engineering: A bibliometric analysis,” in3rd Inter-
national Symposium on Search based Software Engineering
(SSBSE 2011), 10th - 12th September 2011, pp. 18–32.

[25] M. Harman, “Software engineering meets evolutionary
computation,” IEEE Computer, vol. 44, no. 10, pp. 31–39,
Oct. 2011.

[26] ——, “The role of artificial intelligence in software
engineering,” in 1

st International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering
(RAISE 2012), Zurich, Switzerland, 2012.

[27] S. Yoo and M. Harman, “Regression testing minimisation,
selection and prioritisation: A survey,”Journal of Software
Testing, Verification and Reliability, vol. 22, no. 2, pp.
67–120, 2012.

[28] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,”IEEE Transactions on
Software Engineering, vol. 37, no. 5, pp. 649 – 678,
September–October 2011.

[29] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search
based software engineering: Techniques, taxonomy, tutorial,”
in Empirical software engineering and verification: LASER
2009-2010, B. Meyer and M. Nordio, Eds. Springer, 2012,
pp. 1–59, LNCS 7007.


	References

