
App Store Mining and Analysis: MSR for App Stores

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London, Malet Place, London, WC1E 6BT, UK.

Abstract—This paper introduces app store mining and
analysis as a form of software repository mining. Unlike other
software repositories traditionally used in MSR work, app
stores usually do not provide source code. However, they do
provide a wealth of other information in the form of pricing
and customer reviews. Therefore, we use data mining to extract
feature information, which we then combine with more readily
available information to analyse apps’ technical, customer
and business aspects. We applied our approach to the 32,108
non-zero priced apps available in the Blackberry app store
in September 2011. Our results show that there is a strong
correlation between customer rating and the rank of app
downloads, though perhaps surprisingly, there is no correlation
between price and downloads, nor between price and rating.
More importantly, we show that these correlation findings
carry over to (and are even occasionally enhanced within) the
space of data mined app features, providing evidence that our
‘App store MSR’ approach can be valuable to app developers.

I. INTRODUCTION

App stores provide a rich source of information about apps
concerning their customer-, business- and technically- fo-
cussed attributes. Customer information is available concern-
ing the ratings accorded to apps by the users who have down-
loaded them. This provides both qualitative and quantitative
data about the customer perception of the apps. Business in-
formation is available concerning the downloads and price of
apps. Technical information is also available in the descrip-
tions of apps, but it is in free text format, so data mining is
required to extract the technical details required for analysis.

This is perhaps a unique situation in the history of
software engineering: never before has there been a nexus
of readily available information that combines the users’
view, the developers’ claims and the sales information
pertinent to a large corpus of software products from many
different providers. The combination of these three types
of information provides a rich and inter-related set of
data from which we can analyse and understand this new
software engineering paradigm of app development. We
argue that app store data mining and analysis will support
the nascent app development industry, providing insights
into the added value of features under consideration for
new products and next releases.

To support these claims, we mine and analyse
relationships between the technical, business and user
perspectives for the Blackberry app store, showing how
the findings can be used to inform and guide developers
and managers. We study the relationships between three
areas of interest: technical (through features offered),
customer perceptions (through ratings and download
rankings) and business (through price). In order to focus
on the relationship between all three of these concerns, we
consider only those apps for which there is a non-zero price.

This is the first time that such an empirical analysis of
app relationships has been attempted in the literature. With
this paper we seek to introduce the study of what might
be termed ‘App Store Repository Mining’, which is closely
related to more traditional approaches to Mining Software
Repositories, as we explained in the Related Work Section
(Section V).

II. APP ANALYSIS FRAMEWORK

Our approach to app store analysis consists of the four
phases shown in Figure 1. The first phase extracts raw
data from the app store (in this case BLACKBERRY APP
WORLD1, though our approach can be applied to other app
stores with suitable changes to the extraction front end).
In the second phase we parse the raw data extracted in the
first phase to retrieve all of the available attributes of each
app relating to price, ratings and textual descriptions of
the app itself. The third phase uses data mining to extract
feature information from the textual descriptions and the
final phase computes metrics concerning the technical,
business and customer information extracted. The rest of
this section explains the first three steps of our extraction
and analysis approach in more detail.

Figure 1. Overall App Analysis Architecture: A four phase approach
extracts, refines and stores app information for subsequent analysis.

Phase 1 (Data Extraction): We implemented a web crawl-
ing system to collect the raw webpage data from the app
store. The crawler first collects all category information of
the app store and then scans each category page to find the
list of addresses of all the apps in each category, using this to
locate and extract raw data on each app within each category.
Phase 2 (Parsing): The raw data is parsed according to a set
of pattern templates, the attributes of which specify a unique
searchable signature for each attribute of interest. Some
attribute fields are populated by humans, so we created
templates that account for the various ways in which the
human might provide the equivalent information. However,
once this manual step is complete the entire process is
fully automated (until such time that the app store changes
structure). We developed patterns to capture information
about Category, Description, Price, Customers’ Rating, and
the Rank of Downloads of each app. To apply our approach

1http://appworld.blackberry.com/webstore/

http://appworld.blackberry.com/webstore/

to a different app store we need modify only the data
extractor and the parsing phase to accommodate the different
app store structure and data representations respectively.
Phase 3: (Data Mining Features): There are many ways
to define a ‘feature’. For our purposes, feature information
is data mined from app descriptions, because we do not
have access to app source code. We define a feature to be a
property, captured by a set of words in the app description
and shared by a set of apps.

Since app descriptions are written in natural language,
extracting features from the description text requires data
mining techniques more usually associated with Natural
Language Processing (NLP). We developed a simple
five-step NLP algorithm to extract feature information and
implemented it using the Natural Language Toolkit (NLTK),
a comprehensive natural language processing package in
python [6].

Our feature extraction algorithm is presented as
Algorithm 1 below. The first step identifies feature
patterns, thereby identifying the ‘coarse features’ of apps.
Fortunately, developers often use informal patterns to list
and clarify the features released. A feature pattern consists
of three parts: the phrases that signify the start of a feature
list, the feature list itself and closing phrase that signifies
the end of the feature list.

From the feature list, we filter out noise words, which
we determine to be those from the English language
STOPWORDS set in the NLTK data package. We then
perform a word frequency and co-location analysis to find
words that associate frequently, built on top of NLTK’s
TrigramCollocationFinder classes. This produces a set of
‘featurelets’; groups of commonly occurring co-located
words. We then cluster featurelets into features using a
greedy based clustering algorithm (Algorithm 2 below).
The clustering similarity measure is defined in terms of the
number of words shared by two featurelets.

Algorithm 1 Feature Extraction Algorithm
Require: apps

rawFeatures = []
featureLets = []
for all apps do

if featurePattern exists in currentApp.descreption then
rawFeatures.append (extractFeaturePattern (currentApp))

end if
end for
for all rawFeatures do

refineRawFeatures (currentRawFeature)
end for
featureLets = findTrianGramCollocation (refineRawFeatures) {NLTK}
features = getGreedyClusters (featureLets)
return features

III. METRICS FOR APP ANALYSIS

In order to compute information about the features of
an app, we introduce some simple metrics that capture
the attributes of a feature, f in terms of the corresponding
attributes of all apps that posses the feature f . This section
formalises the definitions of these metrics to support
replication and future work2.

2Data from this paper is available at http://www.cs.ucl.ac.uk/staff/Y.Jia/
projects/app store mining analysis/.

We shall define our metrics with respect to an app
database, which contains the information extracted for the
app store. Let AR(a, d), AD(a, d) and AP (a, d) denote the
rating, rank of downloads and price, respectively, of the app
a in the app database d. Let ♯(s) denote the size (cardinality)
of set s. Let S(f, d) = {a1, . . . , am} be the largest m such
that feature f is shared by all m apps a1, . . . , am in an
app database d. We can extend AR(a, d), AD(a, d) and
AP (a, d) to the features extracted from app descriptions, by
defining the rating, rank of downloads and price of a feature,
f to be the average rating, downloads and price for all the
apps that share f . More formally, we extend the metric X
defined from (app,database) pairs to reals, to a metric F
defined from (feature, database) pairs to reals, as follows:

F (f, d) =

∑
ai∈S(f,d)

A(ai, d)

♯(S(f, d))

Algorithm 2 Greedy Feature Cluster Algorithm
Require: featureLets
Require: greedyThreshold

greedyClusters = []
greedySimilarities = []
for all featureLets do

greedyClusters.add (featureLet)
end for
for i = 0 → len (featureClusters) - 1 do

currCluster = greedyClusters[i]
for j = 0 → len (featureClusters) - 1 do

currSimilairy = getSimilarity (currCluster, greedyClusters[j])
greedySimilarities.add (currSimilairy)

end for
if max (greedySimilarites) > greedyThreshold then

maxIndex = getMaxIndex (greedySimilarites)
mergeClusters (currCluster, greedyClusters [maxIndex])

end if
end for
return greedyClusters

IV. CORRELATION ANALYSIS

We start by exploring three correlations, each for both
apps and the features we extract from them. For each we
shall use a Spearman’s Rank Correlation.
RQ1: What is the correlation between the Price (P) and
the Rating (R) for apps and also for the features we extract
from them?
RQ2: What is the correlation between the Price (P) and the
rank of Downloads (D)?
RQ3: What is the correlation between the Rating (R) and
the rank of Downloads (D)?

To answer these first three questions we constructed an
app store database from the Blackberry store, taken by
extracting information from all non-free apps present on the
1st of September 2011. Summary data concerning the 19
categories in this appstore database and the answers to our
three research questions are presented in Table IV (leftmost
7 columns). Correlations between Price(P), Rating(R) and
Downloads(D) are presented in the rightmost 6 columns for
features and for the apps themselves.

Perhaps somewhat surprisingly, we found a correlation
between neither the price of an app and its rating, nor
between the price and the downloads of an app. Neither
did we find any correlation between price and rating nor
between price and downloads for the features we extracted.
This finding applies to both the appstore as a whole and to

http://www.cs.ucl.ac.uk/staff/Y.Jia/projects/app_store_mining_analysis/
http://www.cs.ucl.ac.uk/staff/Y.Jia/projects/app_store_mining_analysis/

almost all of the categories within it3. This would suggest
that, despite the plethora of apps and fierce competition,
customers of non-free apps may not be as price sensitive
as one might have thought.

However, as can been seen from Table IV, we did find a
strong correlation between the rating and the downloads of
the apps in almost every category (and also within the app
store as a whole). Even more interestingly, this correlation
tends to carry over to (and is sometimes even stronger for)
the features we extract using our data mining techniques.
This finding may offer useful guidance to developers in
determining which features to consider when designing
apps. Therefore, we devised a further research question and
corresponding experiment to test the true strength of these
feature-based correlation findings.
RQ4: What is the chance of producing a similar feature
correlation in each category purely at random?

The metric values for a feature are computed as averages
over the apps that share the feature. Could it be that our
correlations could have been replicated by random sets of
apps; ‘pseudo features’, devoid of any true meaning. If so,
then our correlations would be useless.

To answer this question we constructed pseudo features by
randomly sampling sets of apps. These pseudo features de-
note a sample from the population for which the null hypoth-
esis holds (any correlation is merely a randomly occurring
artefact of the data). We constructed pseudo feature samples
of size 30 for each category and plotted these along with
the correlation values for true features and apps in Figure 2.

Using a box plot we can visually assess the degree of sig-
nificance of the correlations we found. For example, where
the correlation found for the true features lies outside of the
whiskers of the box plot, this means that the true feature
correlation is outside 2.7 standard deviations from the mean
for the pseudo features. For a Gaussian distribution this cor-
responds to rejecting the null hypothesis at the 99% level [7].

In order to ensure that we did not find our correlations
simply because they happened to use ‘just the right’ number
of apps per feature, we constructed our pseudo features using
the same distribution of numbers of apps as for the true fea-
tures we extracted. We also repeated the whole experiment
with purely random distributions of numbers of apps per
pseudo feature. We obtained very similar results for both ex-
periments. However, space only permits us to include one set
of box plots4, so we include those for the ‘same size’ exper-
iment. In this experiment the pseudo features have an iden-
tical size distribution to our true features, so it can only be
the composition of true features that yields correlations that
are significantly stronger than the pseudo feature sample.

In Table IV, correlation between ratings and downloads
is at least as strong for features as for apps in 12 out of
19 cases. Furthermore, Figure 2 reveals that more than half
of these are highly significant. We can use this analysis to
automatically identify those cases where correlation results

3There is a mild correlation between price and rating for features in the
‘Sports and Recreation’ Category, but there are not even mild correlations
between price and rating nor between price and downloads for any of the
other categories.

4The other box plots are available at the website: http:
//www.cs.ucl.ac.uk/staff/Y.Jia/projects/app store mining analysis/.

are most reliable, thereby increasing the actionability of
our findings and overall approach. This analysis can point
the developer to surprises in app features that they may
not have otherwise considered. For example, within the
travel category, which enjoys a highly significant strong
feature correlation, the feature {near, wifi, hotspot},
which one might expect to be important to users, scores
lower for both rating and download metrics than the feature
{get, nearby, restaurants}.
Perhaps travelling users care more about feeding themselves
than their devices. This finding might surprise developers.

We can also make observations about the store structure.
For example, ‘Games’, ‘Utilities’ and ‘Sports & Recreation’
categories have stronger correlations among apps than
features. Our results provide evidence to suggest that these
diverse categories may benefit from further refinement
to identify more coherent sub-categories; when removed,
overall app correlation drops from 0.79 to 0.75, while
feature correlation remains unchanged.

V. RELATED WORK
Recent work on mining software repositories has

produced scalable techniques for exploring the wealth of
source code and associated documentation that can be found
in software repositories [5]. This work explores information
that can be mined from many sources including emails,
change logs, configuration files, user documentation, bug
reporting systems and, of course, the source code itself. In
this way, a large amount of information is available about
the systems under investigation.

If one views an app store as a form repository, then our
work can also be thought of as being akin to mining software
repositories. However, the technical information we mine
is that provided by the free text description of each app.
We mine this using techniques inspired by work on mining
natural language descriptions for technical information.
In this way, our work resembles work on mining other
forms of natural language product information [1]. Though
there has been work on app store analysis [2], we believe
that ours is the first paper to data mine and analyse
features and their relationship to non-technical information,
reformulating the App Store Analysis problem as one for
which the MSR community is well placed to exploit.

Previous work on Mining Software Repositories has
tended to focus on understanding, predicting and, ultimately
guiding and controlling the process of software evolution
[4], [9]. Our goal is to extend this, by combining mined
technical data with available non-technical user and business
data to understand their inter-relationships. The number
and granularity of the software products we consider also
differs from previous work: Mining Software Repositories
typically uses a white box analysis of multiple applications
[3] of software products of (sometimes) very large size [8].
By contrast, to mine app stores, we use a black box analysis
and are likely to consider potentially many more software
products, but of smaller size and without necessarily having
available source code.

VI. CONCLUSION AND FUTURE WORK
Appspace is very different from traditional software

development spaces: the granularity is finer and there is

http://www.cs.ucl.ac.uk/staff/Y.Jia/projects/app_store_mining_analysis/
http://www.cs.ucl.ac.uk/staff/Y.Jia/projects/app_store_mining_analysis/

Name of Categories Number of Price (£) Rank of Downloads Rating Feature Correlation App Correlation
Non-free Apps Mean Mean Median Max Mean P,R P,D R,D P,R P,D R,D

Reference & eBooks 11,584 4.27 30,388 31,215 1,155 0.12 0.20 0.17 0.76 0.02 0.03 0.83
Themes 10,936 3.12 21,055 21,255 18 1.68 -0.28 -0.45 0.82 -0.10 -0.05 0.83
Games 2,604 2.64 15,919 13,560 153 2.13 -0.31 0.06 0.47 -0.17 -0.21 0.81
Utilities 1,362 4.61 16,294 13,998 63 2.32 0.19 0.31 0.40 0.33 0.43 0.81
Entertainment 908 5.76 18,413 16,376 134 1.86 0.25 0.39 0.83 -0.10 -0.01 0.76
Travel 764 4.81 25,439 26,113 553 0.67 -0.12 -0.11 0.88 -0.28 -0.26 0.85
Health & Wellness 626 15.95 19,852 18,296 266 1.58 -0.52 -0.42 0.61 -0.21 0.02 0.63
Education 576 5.68 22,222 21,768 1,595 1.38 0.20 0.06 0.87 -0.06 0.01 0.78
Productivity 503 6.32 15,124 11,924 252 2.54 -0.31 -0.28 0.76 0.42 0.33 0.76
Music & Audio 499 2.05 24,523 27,248 204 0.99 -0.25 -0.32 0.82 0.07 0.16 0.79
Photo & Video 393 2.51 21,126 22,879 15 1.40 -0.33 -0.25 0.91 0.02 0.06 0.82
Business 350 12.57 19,063 18,032 817 1.79 0.03 0.08 0.88 0.01 0.08 0.73
Maps & Navigation 245 12.90 17,140 13,909 655 2.16 0.06 -0.29 0.77 0.09 0.13 0.32
Sports & Recreation 239 4.81 18,808 16,019 943 2.05 0.60 -0.36 0.26 0.26 0.21 0.67
Finance 193 4.38 19,593 16,619 251 1.93 0.01 0.37 0.76 -0.10 -0.02 0.77
IM & Social Networking 150 4.42 14,242 11,628 22 2.55 0.15 0.02 0.90 0.16 0.15 0.81
News 73 2.40 17,485 15,391 1,393 1.73 0.38 0.29 0.95 0.04 -0.02 0.75
Weather 58 7.51 12,392 10,642 309 2.44 -0.06 -0.07 0.92 -0.10 -0.03 0.77
Shopping 45 2.70 14,785 11,708 2,543 2.33 -0.38 -0.26 0.38 0.07 0.12 0.54
All Categories 32,108 4.21 23,651 24,329 15 1.17 0.07 -0.09 0.89 0.10 0.12 0.79

Table I
Blackberry App World: The first 7 columns present summary data computed for each category. Download information is provided by Blackberry App

World as rank over all apps (free and non free). To give a sense of the distributions of download rank positions, we present the mean, median and
maximum ranks for each category. The final 6 columns present the Spearman rank correlations we computed. We present correlation values for the
features we data mined from app descriptions (the three columns labeled ‘Feature Correlation’) and also the correlations we computed for the apps

themselves (the three columns labeled ‘App Correlation’). In all 6 of these columns, the single letter labels stand for (P)rice, (R)ating and (D)ownloads.

Figure 2. Significance of Spearman Rank Correlations. The box plots show the distributions of correlations between customer rating and downloads
obtained from a sample of 30 randomly generated ‘pseudo features’. This can be visually compared to the true feature correlation values (solid circles)
and the true app correlation values (solid triangles). Where true correlation values lie outside of the box, the correlation can be thought of as significant,
whereas those that lie outside of the whiskers are very highly significant (equating to approximately the 99% confidence interval).

a ready source of information on price, customer rating
and, with a little data mining, the features offered by apps.
These attributes make appspace ideal for empirical analysis.

Our results demonstrate the value of app store analysis
and open up a potentially rich avenue for future Software
Repository Mining research. For example, future work
can and will surely consider other app stores, data mining
algorithms, properties (including non functional properties),
metrics and analyses. Our work could also be extended to
app store prediction, optimisation and time-series mining
and analysis. Future work may also develop models of the
evolution of app stores and the apps they contain. We hope
that this paper will serve to stimulate this exciting new
research agenda of App Store Repository Mining.

REFERENCES

[1] H. Dumitru, M. Gibiec, et al. On-demand Feature Recommen-
dations Derived from Mining Public Product Descriptions. In
ICSE ’11, pp. 181–190. ACM, Hawaii, USA, 21-28 May 2011.

[2] B. Eaton, S. Elaluf-Calderwood, et al. Dynamic Structures
of Control and Generativity in Digital Ecosystem Service

Innovation: The Cases of the Apple and Google Mobile App
Stores. Working Paper Series 183, The London School of
Economics and Political Science, April 2011.

[3] N. Gruska, A. Wasylkowski, et al. Learning from 6,000
Projects: Lightweight Cross-project Anomaly Detection. In
P. Tonella and A. Orso, eds., ISSTA ’10, pp. 119–130. ACM,
Trento, Italy, 12-16 July 2010. ISBN 978-1-60558-823-0.

[4] A. E. Hassan. Mining Software Repositories to Assist
Developers and Support Managers. In ICSM ’06, pp.
339–342. IEEE, Philadelphia, PA, USA, 24-27 Sept. 2006.

[5] —. The Road Ahead for Mining Software Repositories. In FoS-
M ’08, pp. 48–57. IEEE, Beijing, China, Sept. 28-Oct. 4 2008.

[6] E. Loper and S. Bird. NLTK: The Natural Language Toolkit.
In TeachNLP ’02, pp. 69–72. Association for Computational
Linguistics, 7-12 July 2002.

[7] L. D. Mueller and L. Altenberg. Statistical Inference on
Measures of Niche Overlap. Ecology, 66(4):1204–1210, 1985.

[8] W. Shang, B. Adams, et al. Using Pig as a Data Preparation
Language for Large-Scale Mining Software Repositories
Studies: An Experience Report. JSS, 2011. To appear.

[9] A. Zaidman, B. V. Rompaey, et al. Mining Software
Repositories to Study Co-Evolution of Production and Test
Code. In ICST ’08, pp. 220–229. IEEE, Lillehammer, Norway,
9-11 April 2008.

	Introduction
	App Analysis Framework
	Metrics for App Analysis
	Correlation Analysis
	Related Work
	Conclusion and Future Work
	References

