
Crawlability Metrics for Web Applications
Nadia Alshahwan, Mark Harman
University College London, UK

{mark.harman, nadia.alshahwan.10}@ucl.ac.uk

Alessandro Marchetto, Roberto Tiella, Paolo Tonella
Fondazione Bruno Kessler, Trento, Italy
{marchetto, tonella, tiella}@fbk.eu

Abstract—Automated web crawlers can be used to explore and
exercise portions of a web application under test. However, the
possibility to achieve full exploration of a web application through
automated crawling is severely limited by the choice of the
input values submitted with forms. Depending on the crawler’s
capabilities, a larger or smaller portion of web application will
be automatically explored.

In this paper, we introduce web crawlability metrics to
quantify properties of application pages and forms that affect
crawlability. Moreover, we show that our metrics can be used to
identify the boundaries between those parts of the application
that can be successfully crawled automatically and those parts
that will require manual intervention or other crawlability
support. We have validated our crawlability metrics on real web
applications, for which low crawlability was indeed associated
with the existence of pages never exercised during automated
crawling.

I. INTRODUCTION

Web crawlers are a foundational technology for automating
web engineering and web testing activities. Web crawling
technology is best known as the first stage in web searching,
forming the initial list of pages visited for subsequent indexing
[11]. Crawlers are also useful in testing and validity checking,
to find broken links and other bugs in websites [1]. Automated
exploration of a web application under test can expose failures,
such as crashes, errors and exceptions [3]. Crawlers are also
important for automating the construction of models of web
structures [6]. Such models can be used as the basis for test
case generation [4], [18].

However, some websites are more crawlable than others
[16]. We use the term crawlability in this paper to capture
that property of a web site (or substructure such as an
individual web page) that makes it amendable to automated
web crawling. A site is completely crawlable if an automated
web crawler can cover all pages in the site without any human
intervention.

Complete crawlability is almost always impossible and
impractical, and in some cases also undesirable, depending on
the context. However, for developers, wishing to ensure that all
aspects of their web application are properly exercised during
automated testing, high degrees of crawlability are essential.

Automated crawling is the enabling technology used by
many automated web testing techniques [4], [18]. Crawlability
metrics can support and improve the effectiveness of such
techniques. In fact, based on crawlability metrics, testers can
prioritize those parts of the system that have low crawability

for either more sophisticated techniques or for human inter-
vention and manual testing. This can make their available test
effort more effective since it can be targeted at those less
crawlable parts of the system that are most likely to require
such effort. Alternatively the metrics might point to parts of the
website that could be re-engineered to better facilitate ongoing
automated testing and maintenance. Hence software engineers
need to understand and measure crawlability. For this to be
possible, the first step is the provision of crawlabilty metrics.

To the best of our knowledge, our work is the first to
investigate the notion of crawlability and its quantification
through metrics. Preliminary results of our research have
already been published [17]. However, the metrics considered
in our previous work [17] did not take the crawler’s capabilities
into account, but instead investigated crawler capability sepa-
rately, merely as an influencing factor. In the present work,
we propose some metrics that can be used with different
crawlers, since they incorporate the crawler’s capabilities as
the degree of exploration actually achieved by the crawler.
More specifically, the proposed metrics combine a dynamic
measurement of the exploration performed by a crawler with
given capabilities (e.g., the code coverage or the fan-out
measured during crawling) with a static measurement that
approximates the size all possible alternative explorations (e.g.,
the lines of code, the cyclomatic complexity or the cyclomatic
complexity after conditioned slicing).

The primary contributions of this paper are as follows:
• Three crawlability metrics, combining crawler-

dependent (dynamic) and crawler independent (static)
information. We also describe how these metrics can be
used to support web testing.

• Experimental data, showing that the proposed metrics
are a good indicator and predictor of crawlability, i.e.,
they indicate the presence of unexplored pages.

• The WATT crawler, which can be configured with
variable capabilities and can be used to experiment with
the application of crawlability metrics in various contexts,
including web testing.

II. CRAWLABILITY

Intuitively, the crawlability of a Web application measures
how difficult it is for a crawler with given capabilities to ex-
plore all the pages reachable from the home page. When such
exploration involves form submission, it depends on the ability
of the crawler to generate inputs that explore all different
pages possibly generated in response to form submission. So

it depends on the input generation capabilities of the crawler.
It also depends on the notion of “different” pages generated
in response to a form submission, in that different concrete
pages may be indeed instances of the same “conceptual” page,
differing just by some irrelevant details about the displayed
information (e.g., date and time information shown at the top
of the page).

Hence, instead of an absolute definition of crawlability, we
give a definition which is relative to: (1) the conceptual model
of the pages to be crawled; and, (2) the crawler’s capabilities:

a) [Conceptual Web application model]: we consider
a conceptual Web application model containing the set of
conceptual client pages the Web application can provide to
the user. A conceptual client page represents an equivalence
class of all concrete pages that are conceptually regarded
as equivalent. The model may also include the server side
components that generate the conceptual client pages, as well
as the submission relationship between forms contained in
client pages and the associated server side actions.

The UML Conallen model [9] of a Web application is an
example of a conceptual model that is pretty close to the one
referenced in this work. Client pages are not distinguished
by the concrete content, which may vary from time to time.
Rather, they are characterized by their conceptual role in the
application. Multiple different concrete pages may be actually
instances of the same conceptual page. For example, the
concrete content of the result of a search may vary from time
to time, but conceptually there is just one client page, showing
the search result.

b) [Crawler’s capabilities]: we characterize a crawler
by its specific crawling capabilities. Such capabilities include
the algorithm used to generate input data when forms are to be
filled-in to continue the exploration of the Web application and
the algorithm used to recognize equivalent pages that should
not be crawled again.

Common crawler’s capabilities include generation of: (1)
random strings; (2) legal (test) credentials; (3) numbers; (4)
emails; (5) dates. Common criteria used by crawlers to decide
whether a page has already been explored or not (i.e., whether
two pages instantiate the same conceptual page) are: (1) page
name or title; (2) string comparison (e.g., page diff); (3) tree
comparison, considering the HTML parse trees of the pages.

A. Definition of crawlability

c) [Crawlability of a Web application]: The crawla-
bility of a Web application is the degree to which a crawler
with given capabilities is able to explore all conceptual client
pages in the conceptual model of the Web application.

d) [Crawlability of a form]: The crawlability of a form
is the degree to which a crawler with given capabilities is able
to explore all conceptual client pages produced in response
to form submission, as in the conceptual model of the Web
application.

Forms and form submission represent the main source of
low crawlability (in fact, links are easily explored by crawlers),
hence in the following we focus on form crawlability, under

the assumption that once the crawlability of all forms is
determined (estimated), the crawlability of the whole Web
application can be also determined by aggregating the values
computed for forms.

B. Metrics

Since usually the conceptual model of the Web application
being crawled is unavailable, it is not possible to measure
crawlability directly, by running the crawler and measuring
the proportion of conceptual client pages (in the model) that
are explored by the crawler after a given amount of time.

Typically, we are interested in the crawlability of a Web
application for which no conceptual model is available, but
for which we have the possibility to run a given crawler
and to compute static and dynamic metrics to estimate the
application/form crawlability.

In this case, crawlability is measured indirectly. Dynamic
and static metrics computed for the Web application are used
to characterize its crawlability. These metrics are actually
indicators (or indirect measures) of crawlability, the validity
of which must be assessed empirically (see Section V of this
paper). The basic idea is to estimate crawlability of a form
from the ratio of two quantities: (1) a dynamically-determined
metrics related to pages the crawler actually discovered behind
a form, when trying different inputs at runtime; and, (2)
a statically-determined metrics related to all pages that can
be generated on the server-side as a response to a form
submission,

1) Static metrics: Crawlability of forms depends crucially
on how input values are processed by the server-side code.
Typically, on the server side input values are first validated
and only when valid they trigger the generation of new pages.
Moreover, under different conditions, different (conceptual)
pages are produced. In fact, the server side code generates
the next client page depending on the submitted input (we
assume the session state to be part of the input). The existence
of different page generation statements that are executed under
different conditions is an indicator of a server side component
which produces different (conceptual) pages depending on
the input values it receives upon form submission. In order
to quantify such a variety of behaviors of the server code,
we consider three metrics, having an increasing degree of
sophistication:

The first, simplest metric that characterize the number of
pages potentially generated is just the number of statements
in the server script activated by the submission of a form:

• STM [Statements]: Number of statements that can be
potentially executed to process the requests coming from
a client-side form.

To compute STM we consider also the server components
(e.g., functions) transitively invoked by the script handling
the form. We resort to a simple static dependency analysis to
discover such indirectly needed components. These constribute
to the STM count.

The second metric we consider is McCabe’s cyclomatic
complexity, which measures the number of independent paths

in a program. Specifically, we use an interprocedural variant
of the cyclomatic complexity, which includes also the con-
tribution from transitively called functions, consistently with
how STM is computed.

• ICC [Interprocedural Computational Complexity]:
Number of independent paths in the interprocedural con-
trol flow graph.

In practice, for programming languages with no uncondi-
tioned jumps, we can obtain the number of independent paths
of each procedure as the number of conditional and loop
statements, incremented by 1. However, for called functions
the increment is not applied, since the base execution path is
already accounted for in the main component.

Sometimes, a single server side component manages dif-
ferent form submissions at the same time, or handles the
same form submission differently, depending on the session
state and hidden parameter values. In such cases, different
statements will be responsible for processing the input received
from different forms or from the same form under different
session/hidden variable states. Such input will lead to different
client page generation statements. In order to determine which
portion of the server component is responsible for managing
each alternative form/state, we take advantage of program
slicing [14]. Specifically, we use conditioned program slicing
[8] to determine the portion of the server side code that
is executed when session and hidden parameters assume
given, constant values. We then compute the interprocedural
cyclomatic complexity on such conditioned slice, under the
assumption that this is a substantially improved estimate of
the independent page generation paths activated by a given
form.

• SICC [Sliced Interprocedural Cyclomatic Complex-
ity]: ICC computed on the conditioned slice of the main
server component activated by form submission.

Let us consider the PHP server component shown in Figure
1. The component is both in charge of (a) presenting a form
to allow a new user to register to a web application; and,
(b) validating form values submitted by the user and possibly
creating a new user in the system.

Looking at the code, we can see that if the component is
activated by an HTTP-GET request, the “registration” form is
presented to the user (line 20). If an HTTP-POST request is
submitted instead, form parameters are checked and if they
are correct, the actual registration task is executed (code not
shown) and the user is directed to a confirmation page.

When an HTTP-POST request is submitted,
$_SERVER["REQUEST_METHOD"] is set to ”POST”
and $_POST["action"] is set to ”register” (because of
the hidden field ’action’ set to ’register’ at line 32). When
computing the conditioned slice of the main component
under these assumption, we obtain that the condition at line
20 evaluates to false, regardless of the user input, hence the
’then’ branch can be sliced away; similarly, conditions at lines
35 and 36 evaluate to true; the remaining conditions depend
on user inputs. As a result of slicing away all statements

1 <?php
2 function valid_data($id,$pwd1,$pwd2) {
3 if (empty($id)) {
4 return "userid must not be empty";
5 }
6 if (preg_match("/[ˆa-zA-Z0-9]/",$id)) {
7 return "userid must contain alphanums only";
8 }
9 if (empty($pwd1) || $pwd1 != $pwd2) {

10 return "passwords must not be empty and must
be equal";

11 }
12 return NULL;
13 }
14

15 function userid_exists($id) { // ICC=3
16 ... }
17

18 session_start();
19 $request = $_SERVER[’REQUEST_METHOD’];
20 if ($request == "GET") {
21 if (!isset($_SESSION[’message’])) {
22 $_SESSION[’message’] = "";
23 }
24 ?>
25 <h1>New User</h1>
26 <form action="registration.php" method="post">

27 <p style="color:red;"><?php echo $_SESSION[’
message’]; ?></p>

28 Name: <input name="userid" type="text"/>

29 Password: <input name="passwd1" type="
password"/>

30 Password Confirmation: <input name="passwd2"
type="password"/>

31 <input type="submit" value="Register"/>
32 <input name="action" type="hidden" value="

register"/>
33 </form>
34 <?php
35 } else if ($request == "POST") {
36 switch($_POST["action"]) {
37 case "register":
38 $userid = $_POST[’userid’];
39 $passwd1 = $_POST[’passwd1’];
40 $passwd2 = $_POST[’passwd2’];
41 $tmp = valid_data($userid,$passwd1,$passwd2)

;
42 if (!is_null($tmp)) {
43 $_SESSION[’message’]=$tmp;
44 header("Location: registration.php");
45 } else if (userid_exists($userid)) {
46 $_SESSION[’message’]="user id already

exists";
47 header("Location: registration.php");
48 } else {
49 $_SESSION[’message’]="";
50 $_SESSION[’userid’] = $userid;
51 // registration code ...
52 header("Location: confirm_registration.php

");
53 }
54 break;
55 default:
56 header("Location: internal_error.php");
57 }
58 } else {
59 header("Location: internal_error.php");
60 }
61 ?>

Fig. 1. Example of PHP component

between 20 and 35, four conditions are dropped or have a
known value (20, 21, 35, 36) in the main component, such
that SICC = ICC - 4 = 8. Similarly, when an HTTP-GET
request is submitted, we obtain SICC = ICC - 10 = 2.

2) Dynamic metrics: Static metrics do not account for the
ease of exploration of the pages generated by a crawler with
given capabilities. In order to take this into account, we define
two metrics about the level of exploration reached by a crawler
with given capabilities, when it generates input data for a given
form.

The first, simpler dynamic metric is:
• CSTM [Covered Statements]: Number of statements

of server components executed to process the requests
coming from a client-side form.

When a form is exercised by the user in the browser or by
a crawler, some server-side components are triggered by the
application and some code is executed in order to process and
answer the requests coming from the form. It’s worth noticing
that according to the inputs used in the requests and the state
of the application, different pieces of code can be executed.
Given a form f of an application, to measure CSTM we need
to: (i) execute the application by exercising the form f, and
(ii) profile the execution to collect information about the code
statements executed for processing the requests related to the
form f.

The second dynamic metric we consider is:
• FOUT [Fan OUT]: Number of distinct client pages

downloaded by the crawler when a given page/form is
reached.

Crawlers with poor capabilities will result in low FOUT
values when they reach forms that are hard to crawl.

3) Crawlability metrics: To measure crawlability we com-
bine dynamic metrics related to the set of pages actually
explored with static metrics, indicating the number of client
pages possibly generated when a form is submitted to the
server. Specifically, we consider the following three combi-
nations as the most interesting ones:

CRAW0 =
CSTM

STM
(1)

CRAW1 =
FOUT

ICC
(2)

CRAW2 =
FOUT

SICC
(3)

CRAW0 is the well-known coverage ratio. CRAW1 and
CRAW2 give the number of distinct client pages explored by
a given crawler per independent path in the associated server
component.

The variant with SICC makes use of a more precise estimate
of the independent paths that can be actually traversed when
a form is submitted from a client in a specific state.

III. APPLICATION TO WEB TESTING

Testing tools that aim at page coverage are typically based
on web crawling [4], [18]. Given a base URL, they automati-
cally navigate links starting from that URL and use automated

Fig. 2. Application of crawlability metrics to web testing

input generation techniques to process forms. The primary
three problems with these tools are that: (i) not all forms can be
automatically filled by such tools; and (ii) after running them
we do not precisely know how much application coverage has
been achieved; (iii) it is not clear which application inputs
should be changed in order to increase such a coverage. The
testing tool is making decisions that could affect page cov-
erage. In particular, the testing tool may generate inadequate
inputs when exploring specific areas of the web application.
Directing the tester to these areas could be useful to focus the
human effort necessary for improving the quality of testing and
achieving higher coverage, while saving time and resources.

We propose an application of our crawlability metrics that
provides the tester with this kind of information. Crawlability
metrics point the tester to certain areas of the application that
could possibly lead to new unexplored pages. Furthermore,
they guide the tester by better focusing and limiting the manual
effort spent during the testing activity.

Figure 2 summarizes the most relevant activities of the
proposed framework. The URL for the starting page of the web
application under test is provided by the tester and crawling
starts from that point. The crawler downloads the web page
and identifies any forms it contains. Input values for these
forms are automatically generated by taking advantage of the
crawler’s capabilities. The crawler then submits those inputs
and the process is repeated for each encountered page.

In addition to the crawling loop described above, the identi-
fied forms are analyzed and crawlability metrics are calculated
for each form. Forms are then ranked by increasing crawla-
bility and the ranking is displayed to the tester. Top ranked
(least crawlable) forms are further inspected by the tester
to determine if additional inputs can be used to extend the
web application portion that was explored automatically. The
input values provided by the tester are then used to generate
additional test cases that could lead to new target pages being
covered. These pages are processed in the same way, returning
control to the tester when more manual intervention is needed.
The process can continue until the tester is satisfied or no new

Fig. 3. A simple demonstration of how crawlability metrics can be used to
achieve more coverage

pages are encountered.
Figure 3 is a simple demonstration of the result of the

approach. Client pages of the web application downloaded
automatically by the crawler are represented as UML classes,
following the notation by Conallen [9]. A composition rela-
tion associates each client page with the forms it contains
(e.g., Page 1 and Form 2). Links to navigate from a client
page to another are stereotyped as �link�. The server side
code executed in response to form submission is stereotyped
as �server� and is accessed from forms via �submit�
relationship (see server code Script 1). The client pages
constructed in response to form submission by the server code
are connected to the server pages via �build� relationships
(see client page Page 3).

When the crawler cannot explore a given page, this is
indicated in Figure 3 as a dashed relationship between classes.
For instance, Page 3 is never visited by the crawler and
one reason for that could be that the automatically generated
input values for Form 2 do not pass the validation performed
on the server (by Script 2), such that navigation to Page
3 does not take place and the user is redirected to Page
1. As a consequence of the unreachability of Page 3, the
client pages Page 4 and Page 5 are also never explored by
the crawler. When input values are automatically generated
for Form 1, the executed server code (Script 1) constructs
the client page Page 6, but the crawler fails to make the
server code generate another possible client page produced in
response to the submission of Form 2, i.e., Page 7. One reason
for that could be that very specific values are required in order
for the server code to generate this page and the capabilities
of the crawler might be insufficient to generate such inputs
(within a reasonable amount of time).

The FOUT metrics for Form 1 and Form 2 are in this
example FOUT (Form1) = FOUT (Form2) = 1 (the edges
to count are the �build� relationships outgoing from the
server code handling each form submission). Let us assume
that after conditioned slicing the code in Script 1 and in Script
2 contains two alternative paths, such that SICC(Form1) =
SICC(Form2) = 2. The corresponding values of the crawla-
bility metrics CRAW2 for Form 1 and Form 2 for this example
will be CRAW2(Form1) = CRAW2(Form2) = 0.5. In
fact, in the first case only half of the client pages generated in
response to form submission have been explored, while no
new client page has been explored when the second form
was crawled (the user is redirected to the home page). By
providing additional inputs, the tester may be able to explore

also Page 3, and from here Page 4 and Page 5, as well as
Page 7. In general, low crawlability forms indicate the need
for the tester’s attention, since the crawler was able to explore
only a small fraction of the code/independent paths on the
server and the uncovered code/paths may indeed be associated
with distinct client pages that are still to be explored and
may require additional input to be reached and to be properly
tested. Notice that in this example we consider CRAW2 as
crawlability metric but the same could happen for the other
crawlability metrics.

IV. THE WATT CRAWLER

We have developed a crawler, called WATT (Web Applica-
tion Testing Tool) that can be used to experiment with our ap-
proach. WATT can be configured with different combinations
of capabilities. It also implements some similarity algorithms
to determine if a page is new or should be regarded as a re-
occurrence of a previously visited page.

The tool can be configured to use one of three input
generation strategies: default, empty and random. When the
‘default’ strategy is chosen, the value in the defval attribute
of a field in the form definition is used to fill out the
field. The ‘empty’ strategy uses only empty strings. When
the ‘random’ strategy is used, the crawler chooses a random
value for enumerable field types (such as drop-down menus,
checkboxes and radio buttons). Random strings are generated
for unbounded field types such as text. WATT can additionally
be configured to use more advanced input generation methods,
when using random. Email addresses, numbers and valid dates
can also be generated randomly, in addition to strings. The
type of input to be generated is chosen randomly, with higher
priority given to strings and numbers.

WATT can be configured to automatically login to appli-
cations that require authentication. A valid user name and
password pair have to be provided by the user. The crawler
will then automatically recognize login forms when crawling
the application and will use the provided credentials to login.
A login form is identified by the presence of one field of type
password.

The crawler starts from a URL provided by the tester and
explores the application in a depth first visit. The next action
(form or link) is chosen randomly from the set of untried
available actions on the last visited page. If all actions on
the last visited page have been visited before, the crawler
selects randomly from all actions. A trace is saved, with the
sequence of actions performed together with information about
encountered forms and links, input values used. A trace is
terminated when a page with no links is reached, when no
new page is encountered, or when a user defined number of
actions is reached. The process is repeated (because it involves
some non deterministic choices) until a user defined time limit
is reached.

The structure of the output HTML is used to decide if a
visited page is conceptually new or has been visited before.
The sequence of HTML tags in the output page is extracted
and compared to the structure of previously visited pages.

Fig. 4. Histogram showing DFOUT and CRAW2 for forms of WebChess

In some cases two pages can be conceptually the same but
have slightly different structure. A simple example of this is
a page that displays items in table format. If two instances of
this page are encountered but contain a different number of
items in each table, a structural comparison would put them
in different equivalence classes. To avoid (or minimize) this,
we use a similarity measure. If the similarity measure is above
a predefined threshold, the two pages are considered to be of
the same class. For two pages Pi and Pj , their similarity is
calculated using the following formula:

Sim = 2× |LCS|/(|Seq(Pi)|+ |Seq(Pj)|)

Where Seq(Pi) and Seq(Pj) are the sequences of HTML
tags for pages Pi and Pj , respectively; LCS is the longest
common subsequence between Seq(Pi) and Seq(Pj). If no
pages that satisfy the similarity measure are found, the new
sequence is assigned to a new class.

V. EVALUATION

The aim of the experiments we conducted was to validate
empirically the proposed crawlability metrics. Specifically,
the goal is to determine whether low crawlability values are
associated with the existence of unexplored parts of a web
application.

A. Research questions

The overall goal of the evaluation can be decomposed into
the following research questions:

• RQ1 [Crawlability as indicator of unexplored pages]:
Are the crawlability metrics good indicators of crawla-
bility, thus of the presence of unexplored pages?

• RQ2 [Role of conditioned slicing]: Does conditioned
slicing improve crawlability metrics based on the com-
putation of the interprocedural cyclomatic complexity?

RQ1 is the main research question that motivated our work:
crawlability metrics are supposed to be useful to highlight
forms that lead to unexplored pages. We answer to RQ1
by means of two pieces of evidence: (1) we verify that
the ranking by increasing crawlability correspond to (i.e.,
negatively correlates with) the ranking of forms by unex-
plored pages; and, (2) we train a binary classifier based on
crawlability metrics to discriminate completely explored forms
from partially explored ones. The first piece of evidence is
purely observational, since it deals just with the existence of

a negative correlation. The second piece of evidence is much
stronger, since metrics are used as predictors of forms that
have been explored only partially during crawling. Hence, the
second part of the validation is clearly more important and
relevant for testing.

RQ2 deals with our conjecture that without slicing the
cyclomatic complexity is a poor indicator of the independent
paths that lead to different client page generation. This is due
to the common practice of implementing multiple behaviors in
a single server component to accommodate different requests
or requests made in different states. For this research question
we use the same pieces of evidence as for RQ1, but we focus
on the comparison between SICC and ICC. We expect an
improvement (in correlation and/or predictive power) when
SICC is used instead of ICC.

B. Metrics

To answer the research questions above, we compute the
crawlability metrics described in Section II then, we manually
determine the number of missing pages among those outgoing
from a form.

These are the client pages built by the server component
executed after form submission that are never visited by the
crawler. In Figure 3 they are the client pages reachable from
the�server� components Script 1 and Script 2 along dashed
lines. We count the number of such client pages, missing in
the model downloaded by the crawler, and indicate them as
the metrics DFOUT:

• DFOUT [Delta Fan OUT]: Number of distinct client
pages that the crawler is unable to download when a given
form is reached.

To answer RQ1, we measure the Spearman’s rank corre-
lation between crawlability metrics and DFOUT. We expect
low crawlability to be associated with high DFOUT, hence
a negative correlation between crawlability and DFOUT. We
also train a threshold-based classifier on our metrics. More pre-
cisely, we apply the leave-one-out cross-validation procedure,
by performing the following steps: (a) forms are manually
classified as crawlable or not, depending on the conditions
DFOUT = 0,DFOUT 6= 0; (b) a classifier is trained on
all but one sample, by determining the threshold for the
crawlability metric that maximizes the F-measure (harmonic
mean of precision and recall); (c) the class predicted for the
sample that was left out is marked as correctly or incorrectly
classified; (d) steps (b), (c) are repeated for all the samples.
The ratio of correctly classified samples over all samples gives
the accuracy of the classifier.

We compare our results with the accuracy obtained by the
’a priori’ classifier (a.k.a. biased classifier), i.e. the classifier
which predicts whether a sample belongs to a class or the
other based on the a-priori probabilities. To answer RQ2 we
consider correlation and prediction accuracy with and without
conditioned slicing (i.e., using SICC vs. ICC).

Web app PHP files Lines of PHP code Downloads
FAQForge 19 834 5,264
WebChess 24 2,701 24,751
News Pro 30 5,473 n.a.
TimeClock 62 14,980 22,328

TABLE I
WEB APPLICATIONS SUBJECTED TO AUTOMATED CRAWLING IN THE

EXPERIMENTS

Discovered Total Requests on
Web app Pages Forms Traces Requests Forms
FAQForge 22 23 6,676 99,340 27,116
WebChess 28 65 784 25,228 12,095
News Pro 58 17 12,033 89,892 16,979
TimeClock 65 21 112 111,463 38,751

TABLE II
CRAWLER ACTIVITY PER APPLICATION

C. Subjects

For the evaluation we applied our metrics to four open-
source PHP applications taken from code repositories available
on the Internet (e.g. Sourceforge1) and already used by other
researchers in their works about Web testing [3], [2], [23]:
FaqForge 1.3.2, Webchess 0.8.4, Utopia News Pro 1.4.0 and
TimeClock 1.0.4. Table I summarizes the size of the applica-
tions, in terms of their PHP files and PHP-executable lines
of code. It also reports the number of user downloads (if
provided by the repository). FaqForge is a small application
to create and manage documents. Webchess is a medium
size application that allows a community of users to play
chess together by means of a web interface. Utopia News Pro
is a medium size template-based news management system.
Timeclock is a medium size web application that provides
features to track the employee working time for daily activities
and vacation.

D. Experimental procedure

For each application, the following steps have been per-
formed:

1) We downloaded and installed the application.
2) We ran the crawler for 10 hours, a summary of the

activity performed is listed in Table II).
3) We ran our tool to analyze the PHP code of the appli-

cation to measure the crawlability metrics for the set of
discovered forms.

4) We manually determined DFOUT for each discovered
form (this required both executing the applications and
looking at the application code). This task has been
performed by one of the authors not involved in crawling
and in crawlability measurement.

5) We trained a threshold-based classifier on each of our
metrics and evaluated its accuracy. We correlated our
metrics with DFOUT.

1http://sourceforge.net

Web app Rho P-value
CRAW0 = Coverage

FAQForge -0.049 0.823
WebChess 0.172 0.172
News Pro -0.661 0.003
TimeClock -0.395 0.003

CRAW1 = FOUT / ICC
FAQForge -0.23 0.290
WebChess -0.05 0.681
News Pro -0.76 0.002
TimeClock -0.87 2.11e-7

CRAW2 = FOUT / SICC
FAQForge -0.09 0.681
WebChess -0.72 1.41e-11
News Pro -0.54 0.04
TimeClock -0.86 5.22e-7

TABLE III
SPEARMAN’S RANK CORRELATION RESULTS

The WATT tool was configured with the following capa-
bilities activated: random string, credentials and numbers. In
fact, our previous studies [17] indicate that this combination
is associated with the best crawler’s performance.

E. Experimental results

Figure 4 shows the manually determined values of DFOUT
(in blue/dark gray) and CRAW2 (in red/light gray) for each
form of WebChess. Values are ordered from left to right
by increasing values of the metric CRAW2. Similar plots
have been produced for the other three applications and for
the alternative crawlability metrics CRAW0, CRAW1. From
these plots, we can argue that a threshold-based classifier is
quite likely to be able to discriminate fully explored from
partially explored forms, based on the crawlability metrics. A
negative correlation is also quite apparent: CRAW2 increases
in the region where DFOUT goes to zero.

Spearman’s ρ correlation coefficients between the ranking
by increasing DFOUT and increasing CRAWi with i =
0, 1, 2, are listed in Table III, along with the corresponding
p-values.

We can notice that: (a) a moderate to strong negative cor-
relation exists (statistically confirmed) between DFOUT and
CRAW2 for WebChess (ρ =-0.72), News Pro (ρ=-0.54) and
TimeClock (ρ=-0.86); (b) a strong negative correlation also
exists (statistically confirmed) between DFOUT and CRAW1

for News Pro (ρ=-0.76) and TimeClock (ρ=-0.87); (c) a moder-
ate negative correlation exists (statistically confirmed) between
DFOUT and CRAW0 for News Pro (ρ=-0.66) and TimeClock
(ρ=-0.39); (d) no correlation could be established between
DFOUT and our metrics for the application FAQForge.

The accuracy (ratio of successfully classified forms) for
classifiers trained on each of our metrics is shown in Table
IV along with the baseline accuracy of the ‘a priori’ classifier.
All classifiers perform quite poorly on FAQForge. This is an
expected result, given the lack of any significant correlation
between crawlability metrics and DFOUT for this application.
If we restrict our analysis to the three applications (bottom

Web app CRAW0 CRAW1 CRAW2 a Priori
FAQForge 0.35 0.39 0.61 0.87
WebChess 0.51 0.51 0.95 0.62
News Pro 0.82 0.94 0.88 0.59
TimeClock 0.92 0.95 0.95 0.75

TABLE IV
ACCURACY FOR CLASSIFIERS TRAINED RESPECTIVELY ON CRAW0 ,

CRAW1 AND CRAW2 VS. THE ‘A PRIORI’ CLASSIFIER

Fig. 5. Histogram showing DFOUT and CRAW2 for forms of FaqForge

of Table IV) for which a correlation does exist between
crawlability metrics and DFOUT, we can notice that: (a) in
two out of three cases all crawlability metrics are superior
to the ‘a priori’ classifier; (b) in all three cases CRAW2 is
superior to the ‘a priori’ classifier; (c) in two out of three cases
CRAW2 is superior to CRAW0 and CRAW1;

RQ1: These results provide support to our main research
hypothesis, namely that crawlability is an indicator of unex-
plored pages. This is confirmed by the correlation between
crawlability metrics and DFOUT and by the accuracy of the
classifier trained on our crawlability metrics. The support is
partial, since it was obtained for three subjects (WebChess,
News Pro, TimeClock) out of four using CRAW2 (see Table
III), and two (News Pro, TimeClock) out of four for CRAW1

and CRAW0. For the application FAQForge, crawlability met-
rics are not good indicators of unexplored web site portions.

RQ2: Computing the interprocedural cyclomatic complexity
after conditioned slicing improved the ranking by increasing
crawlability of WebChess, for which the correlation is statisti-
cally significant. For TimeClock the difference of Rho between
SICC and ICC is negligible. For News Pro the use of condi-
tioned slicing leads to a decrease of the correlation. Hence,
our research hypothesis about the usefulness of conditioned
slicing is only partially supported by the experimental results.
Such usefulness seems to be quite application-dependent. We
argue that while dispatcher-based web applications, where a
single script handles all requests, are expected to benefit from
conditioned slicing, modern web applications, that are already
properly modularize, are unaffected or negatively affected
(e.g., when the sliced code remains highly complex, due to
the input processing it performs) by conditioned slicing.

F. Discussion

We split the discussion by web application analyzed:
FaqForge. Only a small portion of this application is

devoted to checking and processing the inputs coming from the
user through forms. In fact, such a task is mainly delegated by

the application to the database access layer (e.g., an INSERT
may fail if inappropriate data is passed, which later results
in empty or error pages displayed to the user). This feature
makes the crawler able to explore most discovered forms
exhaustively. In fact, the observed DFOUT is greater than 0
only for 3 out of 23 forms discovered by the crawler.

The lack of a good performance of our metrics as indicators
of crawlability and hence of unexplored pages can be mainly
due to a set of forms which have low crawlability, but are
not associated with any unexplored page. They correspond to
the leftmost histograms in the plot for FaqForge shown in
Figure 5. The low crawlability of these forms is due to the
existence of lots of statements / many independent paths in
the server code that are not eliminated by conditioned slicing.
Such paths are associated with presentation variants of the
generated pages, which do not depend on the input. In fact,
the branches taken at the decision points for such paths are
known, once the state of the form originating the server request
is set, but the conditioned slicing technique we are using is not
smart enough to determine that these conditions are not open
for the forms being analyzed. If we remove these forms from
the ranking, we obtain rho = -0.66 and p-value = 0.006607.

Visual inspection of the histogram in Figure 5 (left) reveals
that the ranking is indeed useful and meaningful, with the
exception of the leftmost forms. In fact, the three forms with
DFOUT > 0 are at position 9, 10 and 12, out of 23. We can
notice that between position 1 and 12 the crawlability metrics
assume values which are very close to each other, while after
position 12 there is a substantial increase. This corresponds
roughly to a partition of the forms into low crawlability and
high crawlability ones. We can notice that all three forms
having DFOUT > 0 belong to the low crawlability group.

WebChess. We observed that only CRAW2 correlates
with DFOUT and is a good predictor of the presence of
unexplored pages. By analyzing the application and its code,
we noticed that WebChess can be considered as a quite
monolithic application. Most of the features (user preferences
update, games management, etc.) are controlled by a huge
PHP page (“mainmenu.php”), accessed by the user from the
main client page by means of several forms (e.g., update user
preference form, accept or reject invitation to play, etc.). As
“mainmenu.php” contains the code that implements both logic
and interface of several features, the complexity of its code
(measured by ICC) is definitely over-estimating the different
client pages that may be generated by each specific form. The
slicing-based metric SICC, instead, provides a better estimate,
since it isolates the code related to each form and it considers
only the complexity of this code.

News Pro and TimeClock. We observed that all the crawla-
bility metrics correlate with DFOUT in a statistically signifi-
cant way and are good predictors of the presence of unexplored
pages. By looking at the application code, we noticed that
this is well-organized and structured for both applications. In
fact, each application feature (e.g., user account management
and office creation for TimeClock) executed from a form is
implemented by a specific PHP code in a dedicated page (e.g.,

in TimeClock the “createUser.php” page controls the creation
of a new user account) and a large amount of PHP code is
devoted to check and process user inputs. Hence, in News Pro
and TimeClock the control-flow complexity of each PHP code
related to a form is a good indicator of the number of distinct
client pages that can be generated, even when conditioned
slicing is not used.

Overall Considerations Overall, results indicate that, a part
from a subject (namely FAQForge), crawlability metrics are
good indicators of the presence of unexplored pages. The rank-
ing produced by the crawlability metrics or the output of the
classifier are potentially very useful to understand which parts
of the application need further (manual) crawling and testing
effort. Metrics performance varies with the typology of the
application under test. Monolithic applications which comprise
a single or few huge components with a lot of responsibilities
require a quite resource-consuming metric such as CRAW2,
which leverages the conditioned slicing approach to discern
every single feature related to each form. On the other hand,
applications which split clearly their features on different com-
ponents require cheaper metrics such as CRAW0 or CRAW1.
Furthermore CRAW1 performs better than CRAW0 again at
the price of a slightly more demanding algorithm.

G. Threats to validity

External validity threats affect the generalization of results.
The main limitations to the generalization of the obtained
results are related to the limited number of applications consid-
ered and their representativeness with respect to the application
domain and characteristics (e.g., we only considered four PHP
applications). Further replications of the experiment can better
support the obtained results. However, we chose four real
applications belonging to different domains so as to make the
context of our experiment as realistic and effective as possible.

Internal validity threats concern external factors that may
affect a dependent variable. The most relevant threat concern-
ing the internal validity is related to the subjectivity of some
tasks performed in the experiment. In particular, the manual
task involved in the computation of DFOUT. To limit this
threat we tried to adopt a shared procedure with well defined
guidelines to decide when a client page generated by the server
is absent from those downloaded by the WATT crawler.

Construct validity threats concern the relationship between
theory and observation. Our definition of the crawlability met-
rics CRAW was motivated by arguments about its dependence
on the crawler’s capabilities and on static metrics computed on
the scripts handling the forms. However, different definitions
of crawlability metrics may lead to different results.

Conclusion validity threats concern the relationship between
the treatment and the outcome. We used a widely adopted,
non-parametric statistical technique to determine the corre-
lation between the ranking by crawlability and the desired
ranking (by DFOUT), i.e., Spearman’s rank correlation. We
also used the standard cross-validation procedure to assess the
performance of the classifier.

VI. RELATED WORK

In web applications, metrics have been used especially for
usability, maintainability and evolution. Emad Ghosheh et
al. [12] compare a number of papers that define and use web
maintainability metrics. These are mostly source code metrics
that predict maintainability of web applications. Warren et
al. [22] created a tool to collect a number of metrics to measure
web application evolution over an interval of time. Palmer [20]
defined and validated a number of usability metrics for web
applications. Navigability was among the metrics that were
proved by the study to correlate to a web application’s success.
Although navigability and crawlability have similar context,
navigability in Palmer’s paper is defined in terms of sequence
and layout. Dhyani et al. [10] conducted a survey of web
application metrics that can be used in improving content.
Bellettini et al. [4] presented TestUML, a tool that implements
a testing technique for web applications in which metrics (e.g.,
number of pages or number of objects) are used to evaluate
the coverage level and decide when to stop the testing process.
To our knowledge, our proposal of metrics is the first one that
addresses the crawlability of pages and forms directly.

Testability metrics have been defined and used for tradi-
tional software such as Object Oriented software for predicting
testing effort. For instance, Bruntink and Deursen [7] evaluated
and defined a set of testability metrics for Object Oriented
programs and analyzed the relation between classes and their
JUnit test cases. Jungmayr [15] suggests that testability metrics
can be used to identify parts of the application causing a
lower testability level by analysing test critical dependencies.
However, their metric is related to fault prediction while in
our case we define a crawlability metric to identify areas that
could lead to additional coverage.

Available open source and commercial crawlers provide
a way to navigate a web application to download its struc-
ture or report broken links. For example, webSPHINX [19]
is an open source customizable spider that provides basic
functionalities. JSpider2 is another open source crawler that
records a web application’s structure to a database. However,
both crawlers do not provide any support for automated form
filling and submission. Teleport Pro3 is a commercial crawler
that provides a few additional features. The crawler gives
the user the ability to provide authentication information to
access password protected parts of an application. It also
parses JavaScript to extract links. Benedikt et al. [5] developed
the crawler VeriWeb that can be provided with input profiles
that are used to fill forms. Girardi et al. [13] conducted a
comparison of crawlers. They concluded that: (i) the crawlers
have different strengths and weaknesses; (ii) some commercial
crawlers offer more completeness; and (iii) the ability of
crawlers to cover an application is closely related to their
capabilities.

Raghavan and Garcia-Molina developed the crawler HiWE
[21], that has quite advanced capabilities. This crawler uses

2http://j-spider.sourceforge.net/
3http://www.tenmax.com/teleport/

user provided values, data sources and built-in input categories
(e.g. email, address) to fill forms. To identify error pages,
HiWE uses a policy to identify the most significant part of the
output HTML page (e.g. middle frame, main table) and string
matching to identify common error messages. Our crawler
uses HTML structure and a similarity measure to identify
conceptually different pages. Marchetto et al. [18] reverse
engineer a model for Web 2.0 applications by meqans of
dynamic analysis. Coverage criteria are then applied to the
model to extract effective test cases.

Our previous work on crawlability metrics [17] focused on
the relationship between crawler’s capabilities and level of web
site exploration achieved. We identified the key capabilities
necessary to maximize the chances of exploring a large portion
of the application under test. This paper extends our previous
work in four main directions: (1) a novel way to compute
crawlability metrics, which takes the crawler’s capabilities into
account by combining dynamic and static exploration metrics;
(2) a novel crawlability metrics, based on the computation
of code coverage; (3) the WATT tool, which implements our
approach to crawlability based testing; (4) novel experimental
results, on additional case studies.

VII. CONCLUSIONS

Automated web crawling is a foundational technology for
the automation of many tasks associated with web system
design, maintenance and testing. Using web crawlability met-
rics, a software engineer can assess the degree of automated
crawling that can be achieved, in order to improve the testing
activity by complementing automated crawling with manual
exploration of the low crawlability portion of the web appli-
cation under test.

This paper introduced crawlabilty metrics that are aimed at
providing support to the tester, who uses a crawler to automate
the testing process, but who needs also information about
where and why the crawler is likely to perform badly. We val-
idated the proposed metrics using a set of experiments on real
world web applications, using our tool WATT. Results indicate
that our crawlability metrics are, indeed, well correlated to true
web site crawlability for those sites studied and that they are
good predictors of the presence of unexplored pages. Simple
crawlability metrics, such as CRAW0, are quite effective with
well modularized web sites. On the other hand, dispatcher-
based web sites, which involve large scripts, responsible for
the processing of multiple forms and conditions, may require
the use of more sophisticated metrics, such as CRAW2, which
resort to conditioned slicing.

REFERENCES

[1] E. Al-Masri and Q. H. Mahmoud, “Investigating web services on
the world wide web,” in Proceedings of the 17th International
Conference on World Wide Web (WWW’ 08), J. Huai, R. Chen,
H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and X. Zhang, Eds.
Beijing, China: ACM, Apr. 2008, pp. 795–804. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367605

[2] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Practical fault localization
for dynamic web applications,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser. ICSE
’10. New York, NY, USA: ACM, 2010, pp. 265–274.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in web applications using dynamic test generation
and explicit-state model checking,” IEEE Transactions on Software
Engineering, vol. 36, pp. 474–494, 2010.

[4] C. Bellettini, A. Marchetto, and A. Trentini, “TestUml: user-metrics
driven web applications testing,” in SAC ’05: Proceedings of the 2005
ACM symposium on Applied computing. New York, NY, USA: ACM,
2005, pp. 1694–1698.

[5] M. Benedikt, J. Freire, and P. Godefroid, “Veriweb: Automatically
testing dynamic web sites,” in Proceedings of 11th International World
Wide Web Conference, Honolulu, Hawaii,USA, 2002.

[6] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, “Graph structure in the
web,” Computer Networks, vol. 33, no. 1-6, pp. 309 – 320,
2000. [Online]. Available: http://www.sciencedirect.com/science/article/
B6VRG-40B2JGR-S/2/12aa9d9476c06da265c9686161c86908

[7] M. Bruntink and A. van Deursen, “An empirical study into class
testability,” J. Syst. Softw., vol. 79, no. 9, pp. 1219–1232, 2006.

[8] G. Canfora, A. Cimitile, and A. D. Lucia, “Conditioned program
slicing,” Information and Software Technology, vol. 40, no. 11-12, pp.
595 – 607, 1998.

[9] J. Conallen, Building Web Applications with UML. Reading, MA:
Addison-Wesley Publishing Company, 2000.

[10] D. Dhyani, W. K. Ng, and S. S. Bhowmick, “A survey of web metrics,”
ACM Comput. Surv., vol. 34, no. 4, pp. 469–503, 2002.

[11] J. Edwards, K. S. McCurley, and J. A. Tomlin, “An adaptive
model for optimizing performance of an incremental web crawler,”
in Proceedings of the 10th international conference on World
Wide Web (WWW’01), 2001, pp. 106–113. [Online]. Available:
http://doi.acm.org/10.1145/371920.371960

[12] E. Ghosheh, J. Qaddour, M. Kuofie, and S. Black, “A comparative
analysis of maintainability approaches for web applications,” in AICCSA
’06: Proceedings of the IEEE International Conference on Computer
Systems and Applications. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 1155–1158.

[13] C. Girardi, F. Ricca, and P. Tonella, “Web crawlers compared,” Interna-
tional Journal of Web Information Systems, vol. 2, pp. 85–94, 2006.

[14] M. Harman and R. M. Hierons, “An overview of program slicing,”
Software Focus, vol. 2, no. 3, pp. 85–92, 2001.

[15] S. Jungmayr, “Testability measurement and software dependencies,” in
Proceedings of the 12th International Workshop on Software Measure-
ment. Aachen: Magdeburg,Shaker Publ., 2002, pp. 179–202.

[16] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y.
Halevy, “Google’s deep web crawl,” The Proceedings of the Very Large
Database Endowment (PVLDB), vol. 1, no. 2, pp. 1241–1252, 2008.
[Online]. Available: http://www.vldb.org/pvldb/1/1454163.pdf

[17] A. Marchetto, R. Tiella, P. Tonella, N. Alshahwan, and M. Harman,
“Crawlability metrics for automated web testing,” STTT, vol. 13, no. 2,
pp. 131–149, 2011.

[18] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax
web applications,” in International Conference on Software Testing
Verification and Validation (ICST). Lillehammer, Norway: IEEE
Computer Society, April 2008.

[19] R. C. Miller and K. Bharat, “Sphinx: a framework for creating personal,
site-specific web crawlers,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7,
pp. 119–130, 1998.

[20] J. W. Palmer, “Web site usability, design, and performance metrics,”
Info. Sys. Research, vol. 13, no. 2, pp. 151–167, 2002.

[21] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,”
in Proceedings of the 27th International Conference on Very Large
Data Bases, ser. VLDB ’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, pp. 129–138. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645927.672025

[22] P. Warren, C. Boldyreff, and M. Munro, “The evolution of websites,” in
IWPC ’99: Proceedings of the 7th International Workshop on Program
Comprehension. Washington, DC, USA: IEEE Computer Society, 1999,
p. 178.

[23] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and
implementation, ser. PLDI ’07. New York, NY, USA: ACM, 2007,
pp. 32–41. [Online]. Available: http://doi.acm.org/10.1145/1250734.
1250739

