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Abstract—Search Based Software Engineering (SBSE) uses
fitness functions to guide an automated search for solutions
to challenging software engineering problems. The fitness
function is a form of software metric, so there is a natural
and close interrelationship between software metics and SBSE.
SBSE can be used as a way to experimentally validate metrics,
revealing startling conflicts between metrics that purport to
measure the same software attributes. SBSE also requires new
forms of surrogate metrics. This topic is less well studied and,
therefore, remains an interesting open problem for future work.
This paper1 overviews recent results on SBSE for experimental
metric validation and discusses the open problem of fast
approximate surrogate metrics for dynamic adaptive SBSE.

I. INTRODUCTION

Search Based Software Engineering (SBSE) is concerned
with the development of techniques, based on computational
search, to solve hard problems in software engineering. The
term ‘search based software engineering’ was introduced in
2001 [1]. Since then there has been an explosion of activity in
this area. Many different computational search algorithms have
been used including genetic algorithms, simulated annealing,
hill climbing, and genetic programming.

SBSE has been applied to a wide variety of software
engineering problems spanning the entire spectrum of activities
that can be broadly characterised as software engineering,
including requirements analysis, project management, software
design and redesign, coding and implementation, testing, bug
fixing, maintenance, reengineering and refactoring [2].

SBSE involves reformulating software engineering problems
as search problems [3]. This reformulation requires a represen-
tation of the problem to be solved and a fitness function with
which we can measure progress towards the achievement of the
overall software engineering objective [4]. Naturally, as software
engineers, we have many different candidate representations for
our problems, and usually a number of these are amenable to the
SBSE approach. Also, because of the rich and vibrant research
of the software metrics and measurement community, the would-
be search based software engineer does not have far to look
when selecting a fitness function: In 2004, Harman and Clark
argued that ‘metrics are fitness functions too’ [5]. In this paper,
we seek to develop this agenda of metrics as fitness functions.

The 2004 paper [5] focused largely on the observation
that search based software engineering could be used as a

1This short paper is an invited paper, written to accompany the keynote
given by Mark Harman at the 4th International Workshop on Emerging
Trends in Software Metrics (WeTSOM 2013). It overviews joint work with
John Clark and Mel Ó Cinnéide on metrics as fitness functions, SBSE for
experimental metric validation and Dynamic Adaptive SBSE.

mechanism for investigating the validity of software metrics.
The goals of this research programme have been further
developed since 2004, notably in work on search based
transformation and refactoring [6], [7], [8], [9], [10].

Recently, Ó Cinnéide et al. [11] demonstrated a practical
system that exploits search based refactoring as a means of
dynamically validating software metrics.

In this position paper we overview the work in this research
programme. This strand of work can be characterised as
‘SBSE for metrics’. We also consider the other side of this
coin, showing that the metrics community has a lot to offer
the SBSE research agenda: ‘Metrics for SBSE’.

Specifically, we will explain why we believe a new
form of metrics research is required to develop surrogate
fitness functions for the emergent paradigm of Dynamic
Adaptive Search Based Software Engineering [12]. This is a
comparatively less well studied topic and one that the authors
believe deserves greater attention.

II. METRICS ARE FITNESS FUNCTIONS TOO

In a recent paper at the 6thACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement (ESEM), we (Ó Cinnéide et al. [11]) developed
the idea of metrics as fitness functions, specifically using
search based refactoring as a means to evaluate metrics. This
work was a development of an idea first put forward in
2004 [5], but which remained unimplemented, and therefore
unevaluated, until the 2012 ESEM paper. This section presents
an overview of this approach and some of our recent findings.

Our approach to metric validation uses SBSE to search for
sequences of refactorings, experimentally examining the degree
of agreement and disagreement between metrics’ assessments
of the sequence of refactored versions of the code. We do not
evaluate a metric in isolation. Rather, we compare the effect of
one metric (when used as a fitness function) with the effects on
other metrics. Our search process only applies a refactoring if
it improves at least one of the metrics under consideration. The
other metrics may improve, disimprove or remain the same. This
allows us to explore the relationship between different metrics.

If the metrics are measuring the same thing, then should they
not tend to agree on the impact of refactorings? In a perfect
world, the answer to this question would always be ‘yes’. How-
ever, metrics can never reside in a perfect world; there are too
many imponderables. We used SBSE to explore just how imper-
fect is the world of metrics, focussing specifically on cohesion
metrics. Our results revealed a startling level of disagreement
between metrics, all of which claim to measure cohesion.
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Our previous work demonstrated the way in which SBSE can
be used to assess metric agreement in a rigorous experimental
setting and to pinpoint areas of weakness and divergence of
outcomes. Our approach provides a way to experimentally
assess metrics using a relative form of the standard foundational
‘representation condition’ of software measurement [13]. That
is, we cannot easily assess how well metrics conform to
the judgement of human experts (the absolute form of the
representation condition), but we can assess their relative
conformance to each other using Search Based Refactoring.

We applied our approach to five popular cohesion metrics,
evaluating them on eight real-world Java systems consisting
of approximately 300KLoC. The metrics studied were five
cohesion metrics: Tight Class Cohesion (TCC) [14], Lack of
Cohesion between Methods (LCOM5) [15], Class Cohesion
(CC) [16], Sensitive Class Cohesion (SCOM) [17] and
Low-level Similarity Base Class Cohesion (LSCC) [18].

In order to experimentally evaluate metrics using SBSE,
we introduced ‘metametrics’ to measure the performance of
metrics. These metametrics are ‘metrics that measure metrics’.
We believe many such metametrics might be defined and that
this may be a profitable avenue for future research in software
metrics and, in particular, for metrics validation. In this brief
overview, we present some results from our previous study
of one such metametric: volatility.

As defined in our ESEM paper
“A volatile metric is one that is changed often by
refactorings, whereas an inert metric is one that is
changed infrequently by refactorings”.

Volatility is a measure of how sensitive (or fine-grained)
a metric is. Volatility may have a number of applications and
ramifications. For example, should a metric be found to be
volatile, then a software developer may not be so concerned
by minor differences in metric outcomes between different
software systems. By contrast, large changes in a comparatively
inert metric between two successive releases of a system
would be more worrying.

Table I (taken from our ESEM 2012 paper) shows the volatil-
ity of the 5 metrics we studied, averaged across all systems.
Our results revealed that LSCC, CC and LCOM5 are all highly
volatile metrics. Almost all (in fact 99%) of the refactorings ap-
plied affect them. TCC is notably different. The TCC metric dis-
plays far less volatility (in general) than LSCC, CC and LCOM5.

Therefore, in general, perhaps developers concerned
about cohesion should take more notice of relatively small
fluctuations in TCC between successive releases than similar
fluctuations observed for LSCC, CC and LCOM5. In this way,
our experimental metric validation can be useful to researchers
investigating the properties of metrics and their performance
and also to developers, guiding their interpretation of the
significance of changes in metrics’ values.

Our results indicate that volatility is not merely a property
of metrics, but, as one might expect, it is a product of metric
and system measured. This observation can be useful in
practice: a developer can use our approach to pre-determine
whether a metric is volatile for the application on which they
are working, and this can inform decisions made about the
outcome of subsequent measurements of the application.

LSCC TCC SCOM CC

TCC 0.60
SCOM 0.70 0.58
CC 0.10 0.01 -0.28
LCOM5 -0.17 -0.21 -0.46 0.72

TABLE II
SPEARMAN RANK CORRELATION COEFFICIENTS BETWEEN EACH PAIR OF
METRICS ACROSS ALL REFACTORINGS AND ALL APPLICATIONS. NOTICE

THAT LCOM5 MEASURES lack OF COHESION, SO A NEGATIVE CORRELATION
COEFFICIENT INDICATES A POSITIVE CORRELATION. THESE RESULTS TAKEN

FROM THE PREVIOUS ESEM 2012 PAPER [11].

Table II (also from the ESEM 2012 paper) shows the correla-
tion between increases and decreases in one metric outcome and
the others as the system is refactored to optimise for a metric. As
can be seen TCC, LSCC and SCOM exhibit collective moderate
positive correlation, while CC and LCOM5 show mixed
correlation ranging from moderate positive correlation (LCOM5
and SCOM) to strong negative correlation (LCOM5 and CC).

We further categorised each pair of metrics as follows:
Agreement:
Both metric values increase, both decrease, or both remains
unchanged.

Dissonant:
One value increases or decreases, while the other remains
unchanged.

Conflicted:
One value increases, while the other decreases.

Across the entire set of refactorings we studied, we found
that 45% were in agreement, 17% were dissonant and a
(surprisingly large) 38% were conflicted. The figure of 38%
for the conflicted category is startling; how can all these
metrics be measuring the same thing when they so often yield
conflicting outcomes? These findings illustrate the value of
our approach as a means of validating software metrics.

Our findings provide a technical underpinning for the
oft-expressed concern that the attributes we seek to measure
can be illusive and perhaps even partly unmeasurable. Such
a high degree of conflict for metrics that are designed to
measure the same thing, indicates that there is a problem.

Many a developer has reacted to a metrics programme with
a degree of concern bordering on outright hostility. Perhaps
such antagonism is justified. Our findings suggest that concern
is well-founded, at least in the case of cohesion measurement.

More generally, our approach provides a means to establish
the experimental scientific evidence to support (or refute)
concerns about a set of related metrics. Much more research
is needed to validate metrics and to identify those that can
be stable.

We use cohesion merely as an illustration. The approach to
experimental metric evaluation using ‘SBSE and metametrics’
can be applied to any set of software product metrics. SBSE
is increasingly applied, not only to software products, such as
code [19], [20], [21], designs [22], [23], [24], [25], [26] and
test cases [27], [28] but to software process problems such as
requirements analysis [29], [30] and project management [31],
[32]. Therefore, an interesting avenue for future work lies in the
use of SBSE on process simulations to experimentally compute
novel metametrics that assess software process metrics.
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JHotDraw JTar XOM JRDF JabRef JGraph ArtOfIllusion Gantt All
(1007) (115) (193) (13) (257) (525) (593) (750) (3453)

LSCC 96 99 100 92 99 100 99 96 98
TCC 86 53 97 46 61 72 84 71 78
SCOM 79 70 93 92 79 89 77 80 81
CC 100 98 100 92 99 100 100 99 100
LCOM5 100 100 100 100 100 100 100 99 100

TABLE I
METRIC VOLATILITY AS A PERCENTAGE. THIS SHOWS THE PERCENTAGE OF REFACTORINGS THAT CAUSED A CHANGE IN A METRIC. THE NUMBER IN

PARENTHESES IS THE NUMBER OF REFACTORINGS THAT WERE PERFORMED ON THIS APPLICATION. RESULTS TAKEN FROM THE PREVIOUS ESEM 2012 PAPER
[11].

Our initial application of this approach may have yielded
findings that seem rather negative and dispiriting for the
metrics community, but there is a positive message in our
previous work. We believe that, armed with a means to
evaluate metrics in a rigorous experimental context, we can
move forward our understanding of what aspects of software
can be measured and how best to measure them.

We also believe that metrics have a significant — as
yet largely untapped — potential, even when they do not
completely faithfully capture the attribute they seek to measure.
This potential will be most keenly felt by the field of SBSE;
the very field of work that we used to quantify the doubts
over cohesion metrics. This is the potential of fast approximate
metric surrogates, a topic to which we turn in the next section.

III. METRICS ARE FITNESS FUNCTIONS TOO II: THE NEED
FOR DYNAMIC ADAPTIVE FAST APPROXIMATE METRICS

One of the foremost challenges for software metrics re-
searchers is to construct suitable metrics that capture precisely,
and as closely as possible, the attributes of software systems they
seek to measure. All applications of software metrics hitherto
investigated broadly envisage a scenario in which the metric
guides the decision maker in their management of the software
development process or their assessment of the processes and
products involved in software development [13], [33].

As such, it makes sense for researchers to focus on
accurately and precisely capturing the attributes of concern.
Surely, it would be unthinkable to construct metrics that are
deliberately more abstract (less precise) than they need to be;
why would we want to define a metric that does not measure
exactly what we want it to measure?

However, the research agenda of dynamic adaptive search
based software engineering [12] creates a use-case for software
metrics that has exactly this property: we need approximate
metrics that can act as surrogates for more computationally
expensive measurements. The surrogates we seek are metrics
that retain some of the essence of the more computationally
expensive metric, but which sacrifice some degree of precision
for computational performance. The surrogate can thus be used
to cheaply assess an approximate fitness to guide a search
based approach for dynamic adaptivity.

Most SBSE fitness functions measure software properties on
an ordinal scale [34]. It is rare to find examples of ratio or inter-
val scale metrics in search based software engineering applica-
tions. Indeed, perhaps it is, generally speaking, rare to find such
metrics in software engineering (search based or otherwise).

This prevalence of ordinal scale metrics means that we
are afforded a considerable degree of flexibility in the search
for approximate surrogate metrics. So long as we preserve
ordering we shall be faithfully retaining the guidance of the
more computationally expensive measurement.
Surrogate metrics for Speed: It has been repeatedly shown
that many SBSE algorithms are highly robust: so long as the
fitness function offers some guidance towards improvements
in fitness, it can serve as the guidance for the search process
[2]. A fitness function that is incorrect some of the time, but
correct for the majority of invocations, retains some selection
pressure towards fitter individuals; the search process will still
tend to reach optima but will do so less quickly.

In traditional applications of computational search, there is
a trade-off. We can use an approximate fitness function (that
can be computed cheaply) and this may still guide us towards
optima. We seek a suitable balance of the trade-off between the
faithfulness of the fitness function surrogates and the alacrity
with which they can be computed. With the right balance, the
less faithful surrogate search process will reach sufficiently high
quality results faster than the same search guided by the com-
putationally expensive but completely faithful fitness function.

Though the surrogate fitness function might even mislead
the search on some occasions, by promoting a less fit candidate
solution over a truly fitter alternative, the overall effect is still
positive due to the savings in fitness function computation
time. This saving can be considerable because fitness function
computation dominates the overall computational complexity in
many cases. This observation about the value of fast surrogate
fitness functions has motivated a great deal of work within the
optimisation and computational search community targeting the
definition of suitable fitness function surrogates (for example
the work of Branke et al. [35]).
Software Engineering is Different: One might think that
search based software engineering would be no different to
any other optimisation problem. That is, we would need fitness
function surrogates for precisely the same reasons. We would
seek to investigate similar trade-offs for software engineering
applications between faithfulness of fitness function surrogates
and the overall alacrity of the search process.

However, software engineering is unlike any other
engineering application of computational search. It has
previously been argued that the virtual nature of software
makes software engineering the ideal application for search
based techniques [36]. This motivates the study of SBSE as
a specific sub-discipline [37] at the interface of computational
search and software engineering.
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The argument goes like this: Computer software is unlike
any other engineering material, due to its virtual nature (all
other engineering materials being physical). Fitness functions
can be computed directly on the engineering artefact to be
optimised. By contrast, other engineering applications of
optimisation require a simulation of a model of the engineering
artefact. For these non-software-based engineering applications,
fitness is computed, not on the engineering artefact itself, but
on these simulations.
Adaptivity Needs New Metrics: In this paper we would like
to extend this argument about the special ‘search-friendly’
nature of software further: it is not just the directness of fitness
computation that makes search based software engineering
so different from other potential engineering applications of
computational search. The inherent potential for adaptivity
of deployed software offers search based software engineering
a unique potential: the engineering artefact can be dynamically
optimised as it is being used. Few other engineering materials
can be optimised in such a manner: in-situ once deployed.

Any adaptivity in a physical engineering materials is tightly
constrained by the physical properties of the engineering
material and there has to be a physical mechanism to realise
the adaptation. Such adaptation will require considerable
pre-planning and its execution may draw heavily on energy
and other resources.

For example, some buildings adapt to the direction of sunlight,
but this is a very limited and pre-determined set of changes
(and may require mechanical work that consumes considerable
energy). By contrast, software can potentially be adapted by
dynamically re-configuring the code to meet new operating
environments. This is the research agenda known as dynamic
adaptive search based software engineering (DASBSE) [12].

Any approach that seeks dynamic adaptivity must necessarily
compute many fitness evaluations between adaptations so
surrogate fitness computation will need to be fast. The time
between adaptations need not be instantaneous, but, depending
on the context, adaptive optimisation computation may have
to complete within days, hours, minutes or even seconds.
Example: Suppose we want to re-configure a system to
adapt to fluctuations in power and bandwidth available on
a smartphone. We can use multi-objective optimisation to
construct a ‘pareto program surface’: the space of potential
programs that trade off these different properties. This could
be done at compile time to explore the design space with
respect to non-functional properties [38].

However, what if we could compile that same optimisation
capability into the deployed software system, so that the
smartphone could dynamically adapt to changes in available
power and bandwidth during operation?

We would need to run the optimisation as some form of
background process. This process would need to evaluate
potential modifications with regard to their likely bandwidth
and power consumption. For either such property, it will not be
practical to execute the modification; we shall merely be able
to compute a fast approximate surrogate for these attributes.

This example is one of many in which non-functional
properties are paramount and for which we might seek surrogate
metrics. This agenda also creates interesting connections
between software metrics, SBSE and predictive modelling [39].

IV. APPENDIX: FURTHER READING
For metrics researchers new to the field of SBSE and

Dynamic Adaptive SBSE, this appendix provides some pointers
to the literature.

There have been several surveys on of SBSE, each focussing
on different aspects such as requirements [29], predictive
modelling [40], SBSE for the cloud [41], machine learning
and AI [42], design [26] and testing [43], [44], [45], [46].
Other recent surveys on mutation testing [47] and regression
testing [48] contain sections describing the use of SBSE to
attack the problems in these domains.

The relatively new area of Dynamic Adaptive SBSE is
described in the ESEM 2012 keynote paper [12], while a more
detailed description of the use of genetic programming to
construct pareto program surfaces can be found in the ASE
2012 keynote paper [38].

There are also papers that set out open problems and future
research agendas in SBSE for program comprehension [49],
software maintenance [50], predictive modelling [39], testing
[45], [51], bug fixing [52] and testability transformation [53].

A brief review of the growth in evolutionary computation
for software engineering can be found in the IEEE Computer
article [54]. For more comprehensive surveys of the whole field
of SBSE, there is a complete survey [2], [55], which maps the
entire SBSE area and provides trend analysis. While this paper
presents a complete survey, there is also a ten year retrospective
[37] that provides a shorter survey, focussed on a bibliometric
analysis of the literature. There is also a detailed analysis and
survey of the growth and development of SBSE in Brazil [56].

Finally, there are many tools that implement SBSE
techniques, covering a range of applications including test data
generation [27], [57], [58], [59], [60], modularisation [25],
refactoring [61], bug fixing [62], mutation testing [63] and
requirements optimisation [64].

V. THE DAASE PROJECT
The research agenda briefly outlined in this paper forms

the focus of the DAASE project (DAASE: Dynamic Adaptive
Automated Software Engineering, grant number EP/J017515).

DAASE is a major research initiative running from June
2012 to May 2018, funded by £6.8m from the Engineering
and Physical Sciences Research Council (the EPSRC). DAASE
also has matching support from University College London and
the Universities of Birmingham, Stirling and York, which will
complement the 22 EPSRC-funded post doctoral researchers re-
cruited to DAASE with 26 fully funded PhD studentships and 6
permanent faculty positions (assistant and associate professors).

The DAASE project is keen to collaborate with leading
researchers and research groups. We are also interested in
collaboration with industrial parters and other organisations
interested in joining the existing DAASE industrial partners
which include AirFrance/KLM, Berner & Mattner, British
Telecom, DSTL, Ericsson, GCHQ, Honda, IBM, Park Air
Systems, Microsoft and Visa Europe. We have a programme
for short and longer term visiting scholars (at all levels from
PhD student to full professor) and arrangements for staff
exchanges and internships with other organisations.

For more information, contact Lena Hierl, the DAASE
Administrative Manager (crest-admin@ucl.ac.uk) or
Mark Harman, the DAASE project director.
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