
Dynamic Adaptive Search Based Software Engineering∗

Mark Harman1, Edmund Burke2, John A. Clark3 and Xin Yao4

1CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
2University of Stirling, Stirling, FK9 4LA Scotland, UK.

3Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.
4School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

ABSTRACT
Search Based Software Engineering (SBSE) has proved to be
a very effective way of optimising software engineering prob-
lems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored. This paper sets out the
agenda for Dynamic Adaptive SBSE, in which the optimi-
sation is embedded into deployed software to create self-
optimising adaptive systems. Dynamic Adaptive SBSE will
move the research agenda forward to encompass both soft-
ware development processes and the software products they
produce, addressing the long-standing, and as yet largely
unsolved, grand challenge of self-adaptive systems.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Search Based Software Engineering (SBSE), Evolution, Au-
tomatic Programming, Measurement, Testing

Keywords
SBSE, Search Based Optimization, Self-Adaptive Systems,
Autonomic Computing

1. INTRODUCTION
Current software development practices achieve adaptiv-

ity at only a glacial pace, largely through enormous human
engineering skill and effort. We force highly experienced
engineers to waste their time and expertise adapting many
tedious implementation details. Often, the resulting soft-
ware is equally inflexible: users often find themselves rely-
ing on their innate human adaptivity to compensate with
‘workarounds’. This has to change.

To address the twin goals of adaptivity and automation,
we advocate a development of the Search Based Software

∗This position paper is written to accompany Mark Har-
man’s keynote talk at the 6th International Symposium on
Empirical Software Engineering and Measurement (ESEM
12) in Lund, Sweden. It is joint work with Edmund Burke,
John Clark and Xin Yao, funded by the EPSRC programme
grant DAASE (EP/J017515/).

Copyright is held by the author/owner(s).
ESEM’12, September 19–20, 2012, Lund, Sweden.
ACM 978-1-4503-1056-7/12/09.

Engineering (SBSE) agenda that we call ‘Dynamic Adap-
tive Search Based Software Engineering’. We seek greater
software engineering automation through the development
of hyper heuristics for SBSE. At the same time we seek
greater adaptivity through the use of dynamic optimisation;
optimisation embedded into the deployed software to re-tune
its performance parameters and even to replace large por-
tions of code with automatically re-evolved code.

2. SBSE
Search Based Software Engineering (SBSE) is the name

given to a field of research and practice in which computa-
tional search (as well as optimisation techniques more usu-
ally associated with Operations Research) are used to ad-
dress problems in Software Engineering [39]. The SBSE ap-
proach seeks to optimise software engineering processes and
products using generic, robust, flexible, scalable and insight-
rich computational search. SBSE provides a mechanism for
managed automation of software engineering activities.

SBSE has proved to be a widely applicable and success-
ful approach, with many applications right across the full
spectrum of activities in software engineering, from initial
requirements, project planning, and cost estimation to re-
gression testing and onward evolution. Few aspects of devel-
opment and deployment of software systems have remained
untouched by the SBSE research agenda.

There is also an increasing interest in search based opti-
mization from the industrial sector, as illustrated by work
on testing involving Berner and Mattner and Daimler [49,
64], Ericsson [3], Google [69] and Microsoft [14, 50], and
work on requirements analysis and optimisation involving
Ericsson [70], Motorola [9] and NASA [20].

The increasing maturity of the field has led to a number of
tools for SBSE applications, including AUSTIN (for C lan-
guage test data generation, [49]), Bunch (for modularisation,
[55]), Code-Imp (for automated refactoring, [56]), eTOC (for
Java class testing, [63]), EvoSUITE (for Java test data gen-
eration, [26]), GenProg (for automated bug patching, [52]),
MiLu (for higher order mutation testing, [46]), ReleasePlan-
ner (for Requirements Optimisation, [58]), and SWAT (for
PHP server-side test data generation [5]).

Figure 1: Yearly SBSE publication rates 1976-2010.
Source: SBSE Repository [72].

Interest and research activity concerning SBSE has grown
rapidly in the past ten years (see Figure 1) and there are now
many excellent surveys and reviews on SBSE from which
more information can be obtained. Rather than repeating
this information, here are some pointers to specific SBSE
surveys and reviews on:

• Requirements [71];

• Predictive Modelling [1, 34];

• Non-Functional Properties [2];

• Program Comprehension [32];

• Design [61] and

• Testing [2, 4, 33, 54].

In addition to this topic-specific SBSE literature, there are
several more general SBSE surveys [18, 27, 31, 37, 40] and a
review covering the relationship between other Artificial In-
telligence techniques and SBSE [38]. There is also an SBSE
tutorial aimed at those with no prior knowledge of SBSE
who seek to adopt and apply search based optimization to
software engineering problems of their own [42].

3. HYPER HEURISTIC SBSE
Current work on SBSE has produced significant advances

in automated software engineering, particularly in the realms
of testing, bug fixing and decision support. SBSE also shows
great promise as a technique for handling non-functional
properties and noisy, incomplete, and conflicting informa-
tion concerning fitness.

Current SBSE automates specific problems in isolation,
rather than the entire software engineering process. A dra-
matic increase in the breadth of automation lies within the
grasp of the SBSE research and practitioner community.
Such a ‘holistic’ optimisation-centric approach would ensure
that SBSE achieves its full potential as a means to embed
automated processes throughout the full range of software
development and deployment activities.

To illustrate this vision for a more holistic SBSE, sup-
pose we automate large parts of the development process us-
ing computational search: requirements engineering, project
planning and testing could then become unified into a single
automated activity.

To achieve a generic and holistic optimisation that con-
nects diverse engineering activities, we turn to hyper-heuristic
search [13] as a methodology for selecting or generating
heuristics. That is, while most heuristic methods in the
literature operate on a search space of potential solutions to
a particular problem, a hyper-heuristic operates on a search
space of heuristics. A Hyper Heuristic Search Based Soft-
ware Engineering would address two important open ques-
tions in SBSE:

1. To reach deeper, we need a holistic SBSE: Why
do we currently need to design special search based
algorithms for each problem instance? This is unre-
alistic: every software engineer cannot be expected to
be a computation search algorithm designer too.

2. To reach wider, we need a generic SBSE: Why
do we currently optimise silos of software engineering
activity? This is unrealistic: engineering decision mak-
ing needs to take account of requirements, designs, test
cases and implementation details simultaneously.

The Hyper Heuristic SBSE research agenda will raise fun-
damental questions. For example: how best do we draw the
dividing line between adaptive automation for small changes
and human intervention to invoke more fundamental adap-
tion and to provide oversight and decision making? While
automation is important, it is essential to understand the
points at which human oversight, intervention, resumption-
of-control and decision making should impinge on automa-
tion [35].

In the context of SBSE, this dividing line is the fine line
between automated decision taking and automated decision
support. Previous work on SBSE has tended to focus on
automated decision making for those aspects of the devel-
opment thought to occur later in the cycle, such as testing.
The community has tended to reserve decision support for
the early development cycle activities such as requirements
analysis, and estimation. However, in a more holistic SBSE,
there will be a far more intimate relationship between deci-
sion making and decision support, posing new methodolog-
ical, engineering and pragmatic constraints and concerns.

Our vision of this new Hyper Heuristic Search Based Soft-
ware Engineering is that it will provide the intellectual and
technical tools to address the challenge of deeper, more holis-
tic SBSE that cuts across the traditional software engineer-
ing boundaries such as requirements, design, modelling and
testing. This vision is unashamedly experimental [67] and
empirical [12]. It also aligns well with more agile and adap-
tive development practices, in which different software en-
gineering activities such as design, re-factoring, testing and
requirement elicitation are seen as iterative, integrated and
inter-related activities, rather than as separate phases of de-
velopment.

We also believe that the same Hyper Heuristic Search
Based Software Engineering agenda will allow SBSE to reach
a wider practitioner audience, by moving us from the be-
spoke to the generic. Instead of designing bespoke opti-
misation algorithms for specific instances, we advocate the
design of ‘reasonably good’ hyper heuristic optimisers that
have the generality to be applied more readily ‘out of the
box’. The results obtainable from a carefully crafted, spe-
cific, bespoke algorithm will surely out-perform those of a
generic hyper heuristic SBSE algorithm.

We do not dispute this. Rather, we seek to surrender a
little result quality for a lot of generality, believing that this
balance of the meta objectives of quality and applicability
will better address the factors that will influence uptake of
SBSE. Our motivation is that ease of applicability will often
trump quality of results, at least for the initial adopters,
without whom there will be no take up. Has it not ever
been thus in all technological development?

The hyper heuristic approach will require little tuning and
will reduce the need for specific details, thereby significantly
reducing the time to deployment and use. The key question
will be whether sufficient optimisation power can be main-
tained so that the increased usability of the approach out-
weighs the reduction in result quality. This, in itself, is of
course a twin-objective, cost-benefit optimisation trade off.

4. DYNAMIC ADAPTIVE SBSE
Self-adaptivity has been a goal of software and systems en-

gineering research for some time, with work on architectures
to support adaptive middleware [11, 59], Artificial Immune
Systems (AIS) [45] for intrusion detection [47] and fault tol-
erance [68] and the vision of autonomic systems [29].

This research agenda is far from fully achieved; many au-
thors still seek to address the outstanding grand challenge
of self-adaptive systems, with large integrated projects such
as the Self Managing Situated Computing project [25] and
conferences and workshops, such as the Dagstuhl Seminar
on Software Engineering for Self-Adaptive Systems [16].

SBSE has a potential to make a significant contribution
to the realisation of this grand challenge. Unlike all other
engineering optimization problems it is for software that op-
timisation has the most potential, because of the virtual na-
ture of this extraordinary engineering material [36]. While
computational search has been successfully applied to the
design of engineering artefacts in civil, mechanical and elec-
tronic engineering, the search process cannot directly opti-
mise these materials; the search ranges over a design space,
guided by a simulation of a model of reality.

The search space and guidance are very different when we
apply computation search to software. We find a new and
potent possibility for search based optimisation: we can di-
rectly optimise the engineering material: the programs them-
selves. This opens up the possibility for in-situ, on the fly,
optimisation to re-balance, re-configure, and even to rede-
velop the deployed software as it operates. This is the goal
of Dynamic Adaptive Search Based Software Engineering.

The SBSE community has already developed techniques
for tuning the performance of systems by identifying perfor-
mance affecting parameters and treating them as configura-
tion search spaces [19, 48]. There have also been exciting
recent breakthroughs in the use of genetic programming to
re-design aspects of systems to fix bugs [8, 65], to migrate
to new platforms and languages [51] and to optimise non-
functional properties [66].

These results can be thought of as early indications of the
potential for Dynamic Adaptive SBSE. The work on param-
eter tuning shows that we can identify and tune performance
parameters. If we can do this off-line, why not perform the
tuning on-line. That is, compile into the deployed software
an optimization algorithm that can identify and tune param-
eters that affect non-functional requirements. In this way,
we would have self-monitoring, self-optimising systems.

By focusing on non-functional requirements we may partly
escape the intricacies of requirements capture, with their
inherent uncertainties. Functional requirements analysis is
known to be plagued by difficulties of knowing exactly what
the customer wants [15], something the customer may not
even know themselves. Fortunately, the fitness function is
often clear and unequivocal when it comes to non-functional
requirements. The customer merely needs to state the non-
functional requirements that matter (perhaps with accept-
able tolerances, thresholds or ranges) and we can seek to
optimise for these requirements.

By focusing on non-functional properties, we shall not be
in a niche ghetto of ‘optimisable software space’. The tech-
nological and business winds of change are clearly prevailing
in a very non-functional direction. The advent of smart de-
vices as an important computational platform, raises issues
of power consumption, memory use and code size. The use
of internet-enabled computing, in context aware mobile sys-
tems demands attention to bandwidth and response time.
Cloud migration brings with it demands on throughput, heat
dissipation and other service level properties.

Notice how this migration, from what might be termed the
‘discrete’ world of functional properties to the more ‘contin-
uous’ world of non-functional properties, clearly illuminates
the age-old debate about the difference between those two
recalcitrant siamese twins: computer science and software
engineering.

A focus on non-functional requirements such as power
consumption, heat dissipation, throughput, response time,
memory profile, bandwidth and information leakage will ren-
der a kind of Software Engineering more akin to traditional
engineering disciplines. The inherent engineering character
of software development and deployment will become more
compelling than would have ever been thought by those who
even ventured to doubt that there was such a thing as soft-
ware engineering or that it could ever share the qualities
of traditional engineering disciplines [22, 44, 43]. The ris-
ing importance of non-functional properties will also mean
that software engineering will become ever more amenable
to SBSE-style approaches.

Identification and optimisation of performance sensitive
parameters will be one way to achieve Dynamic Adaptive
SBSE. However, this will still leave the code largely un-
changed. We will be extracting parameters, exposing them
at the ‘top level’ and then searching for sensible settings,
as the software executes. While this is likely to have many
practical benefits, it merely scratches at the surface of the
software.

Perhaps an even more exciting (yet demanding) challenge
would be to seek a re-development of part of the software as
deployed, while it executes, in situ, to replace the code with
a better alternative. This dynamic adaptive SBSE would
allow software to be more fundamentally adaptive. With
this form of search-based adaptivity, we could hope that
software systems would re-develop themselves, over time,
to handle changing environments, platforms and contexts,
while still seeking to meet the same overall functionality.

To some, such a vision of truly self-modifying code, might
seem more of a nightmare than a dream: surely such code
would be impossible to understand and to control? How
would we ever apply source code analysis to such dynami-
cally adapting code? Would the code not become unread-
able?

However, with hindsight it may seem like merely another
step on the pathway from assembler code to higher levels
of abstraction. We already cede to the compiler a great
deal of sovereignty over the code that it produces, seldom
interfering with (or even enquiring about) the optimisation
choices the compiler makes in producing object code.

With the advent of Dynamic Adaptive SBSE, we will make
a further step towards the goal of greater abstraction. What
we think of as source code today, may become the object
code of tomorrow. In a world where non-functional, perfor-
mance related requirements are ‘optimised in’ as the code
executes, the programmer can move to a higher plain of
abstraction. She will surely want to focus purely on the
functional requirements of the system and will be happy to
leave the optimisation of non-functional aspects to the SBSE
compiler (and the ‘on board re-evolver’).

We hope to reach the point at which we are able to use
Dynamic Adaptive SBSE to simultaneously meet the goals
cherished by early pioneers of declarative languages [21] as
well as the initial advocates of self-adaptive and autonomic
computing [29, 59]: The program would be written in a
purely declarative style. Why would anyone wish to code
for performance-related details when these can be ‘optimised
in’? Initial results from new forms of SBSE-inspired genetic
programming have indicated that this goal may be within
our reach:
Bug fixing: With automated bug fixing, it is already possi-
ble to find and fix non trivial bugs [30]. The changes made by
an automated patching system, are relatively small changes
compared to the overall size of the program. One might
think that they would simply be just that: a patch, deployed
as a temporary measure to buy time for the more trusted
code changers (the humans) to take over. However, there is
recent evidence that there may be a longer-term future for
such machine-generated patches [28].
Migration: Recent work on code migration using evolu-
tionary improvement [51] showed that it was possible to
automatically port the core computation of the unix util-
ity gzip from a desk top platform supporting C code to a
GPGPU platform supporting CUDA code. The automated
re-evolution of the core computation of this utility demon-
strates that it is not just patches that can be evolved, but
larger pieces of code. It also indicates that it is possible to
evolve new code for completely different architectures and
languages than those for which the original code was de-
signed. A key insight in this work is that the original pro-
gram can act as an oracle for the functional requirements of
the system to be re-evolved in this way [7].
Trading Functional and non-functional requirements:
Previous work on searching for alternative balances between
functional and non-functional requirements has also been
promising. White et al. [66] showed how different versions
of a pseudo random number generator could be evolved with
a range of power-consumption characteristics. Crucially,
in this work, functionality was sacrificed for non-functional
properties. This may seem a curious approach to adopt after
several decades of emphasis on correctness of functional re-
quirements. However, for battery-powered platforms, power
consumption is king:

correctness + flat battery = useless

A user might sacrifice the ‘sacred cow’ of complete func-
tional correctness (did we ever attain that anyway?) should
it come into stark conflict with longer battery life.

Indeed, do we not already do so when we switch off fea-
tures of our smart phones to enable longer lifetime to the
next re-charge?

The road to achieve our vision is not without challenges.
There are fundamental obstacles to be overcome in com-
putational search itself. It is still unclear whether it is even
theoretically possible to evolve and adapt software from just
a declarative description of functional requirements. There
is a need to understand what is and is not possible using
the SBSE approach and how efficient and effective such an
approach is in evolving software dynamically.

5. EXPERIMENTAL VS. EMPIRICAL
The essence of science and engineering and their consider-

able achievements rest upon the careful construction of ex-
periments, from which (often painstaking) observations are
made. Experimentation is the foundation stone on which
rests much of science, widely believed to be the principle
driver behind the growth of scientific knowledge. Experi-
mentation is the scientific credo enshrined in the Popperian
view of science [60].

There has been much debate about the role of experi-
mentation in computer science and software engineering too,
with many arguing the case for experimental approaches [10,
57, 62]. However, there is a subtle distinction between purely
experimental and empirical research in software engineering.
This distiction is less important (and thus under-emphasied)
in other science and engineering disciplines.

A scientific experiment is normally taken to mean the
careful observation of one or more dependent attributes,
under carefully controlled circumstances. The control of
circumstances is crucial; one often uses the phrase ‘under
laboratory conditions’ for such experiments.

By contrast, the term ‘empirical’ is typically used to de-
fine any statement about the world that is related to ob-
servation or experience. It is helpful to distinguish pure
experimentation from the more general class of empirical
investigation. Of course, a scientific experiment is an act of
observation and experience; the experience of the scientist
making those ‘careful observations’. Therefore, any experi-
mental approach is inherently empirical. Nevertheless, the
controlled scientific experiment enjoys a special place in the
scientific discovery process, because it is a way to determine
and measure the effect of one quantity on another.

There is a long history of empirical observation dating
back to the Babylonian astronomers, who provided data
charting the movements of the heavenly bodies, from which
present day astronomy continues to profit. As such, the
concept of empirical observation considerably predates the
scientific method of experimentation. Indeed, these ancient
empirical stargazers were not only forerunners of present day
astronomy, they were also astrologers, concerned as much
with magic and mysticism as there were with reason and
scientific experimentation [24].

Arbitrary empirical observations on their own, can pro-
vide no more than case studies in the observation of real
world phenomena. While real world empirical observations
have an important place in the testing of engineering arte-
facts in situ and in their final operation context, the first
duty of scientist and engineer lies within the realm of pure
experimentation, under laboratory conditions, where labo-
ratory control serves as a mechanism for removing selection
bias, confounding effect and miss observation.

6. SYNTHETIC DATA IN SOFTWARE EN-
GINEERING

In software engineering, pure experimentation often makes
use of synthetically generated problem instances. For exam-
ple, to understand the effect of a requirements analysis prob-
lem by generating instances of hypothetical requirements or
the effects of a data mining approach by construction of a
large number of different kinds of data set.

Curiously, in stark contrast to similar experimental work
in longer-established scientific and engineering disciplines,
pure experimentation is often frowned upon by computer
scientists and software engineers. However, under properly
controlled laboratory conditions it remains the primary way
in which scientists can investigate the effects of the inde-
pendent variables on the dependent variables — a principle
widely accepted in all fields of science and engineering.

Therefore, it is important not to overlook the value of
purely experimental studies. While laboratory conditions
are not the same as real world conditions, they can be con-
trolled. In empirical software engineering we need both lab-
oratory controlled data and data based on real world empir-
ical experimentation, not one or the other.

However, caution is needed. The empirical software engi-
neering researcher might fall into the trap of using synthetic
data as a surrogate for real data rather than as an augmenta-
tion; seeking to answer research questions that really should
be answered using real data. When using purely experimen-
tal research for appropriate questions the experiment must
be carefully designed.

Nevertheless, this does not mean that synthetic data has
no role to play in empirical software engineering. For ex-
ample, a data mining researcher might use synthetic data
to investigate whether their algorithm could reveal interest-
ing surprises about system behaviour. This is a question
clearly best answered by real data: a ‘surprise’ found in
synthetic data cannot really be a genuine surprise (by defi-
nition). However, synthetic data could be used to tests the
scalability of the data mining algorithm.

Naturally, similar issues arise as with pure experimenta-
tion in other sciences and engineering; field trials are always
required to augment laboratory testing. Fortunately, a ‘best
of both worlds’ is also sometimes possible. Repositories may
be large enough that one can find sufficiently many examples
to cover a wide range of possibilities in the fine granular-
ity required for experimental research questions. However,
there are questions that can only be answered with experi-
ments on synthetic data. For example, when exploring be-
haviour with corrupted, noisy and atypical cases, it may be
not only necessary, but desirable to use synthetic examples.

6.1 The Role of Synthetic data in SBSE
Synthetic data can be useful as a means of experiment-

ing with algorithms based on computational search. Such
experiments cannot fully answer whether some SBSE ap-
proach will be useful in practice; evidence for this must ulti-
mately accrue from empirical investigations using real world
systems. The generation of synthetic data sets also requires
care. For instance, the data must be reasonable and rep-
resent characteristics that may be found in the real world
data sets that the techniques may encounter. Nevertheless,
there are a number of experimental SBSE research questions
that can be addressed using purely experimental analysis on
synthetically generated data sets:

Scalability: How well does the algorithm scale with char-
acteristics of the data? Scalability concerns resource con-
sumption (typically space and time) of the search based al-
gorithm as the characteristics of the input data vary. Scal-
ability is a paramount concern in almost all software engi-
neering applications. The input data variation is not nec-
essarily merely a matter of the sheer size of the data set
(though this is often important). The performance of some
optimisation algorithms may also depend on other charac-
teristics, such as density of dependence relations, correla-
tions between elements and other non-size-based data char-
acteristics. A purely experimental approach allows precise,
fine-grained variation of data characteristics to explore the
relationship between empirical algorithmic scalability and
theoretical complexity bounds.

While general empirical and theoretical algorithm perfor-
mance may be known for arbitrary problems, the specific
software engineering problem in hand may exhibit pecu-
liar scalability trends. Scalability is influenced by choices
of representation and fitness function as well as the choice
of search algorithm. An empirical scalability study can also
determine the size and data characteristics at which an ‘in-
telligent’ search outperforms a purely random search, as has
been done for requirements engineering problems [73].
Robustness: How resilient are the results on the presence
of bias, noise, incompleteness and incorrectness in the in-
puts? Software engineering problems are often characterised
by noisy, incomplete and even inconsistent data. SBSE has
been argued to be well-suited to this paradigm [31]; search
algorithms are naturally robust in the presence of incomplete
and noisy data, and cope well with competing and conflicting
objectives. However, the degree to which the choice of algo-
rithms, fitness and representation cope with forms of bias,
noise and incompleteness is often best assessed in laboratory
conditions, where precise control can be exerted over the de-
gree of challenge with which the algorithm is presented.
Algorithmic Performance Comparison: How do a set
of search based algorithms compare for a problem over a
wide range of data sets. There has been much recent progress
in theoretical analysis of SBSE problems [6, 17, 41, 53]. Nev-
ertheless, there remain many SBSE problems for which the
only way to determine the best choice of search algorithm
remains entirely empirical. In these situations one would
certainly like to know how each algorithm performs on real
world problems. These real world results can often be com-
plemented by a more thorough purely experimental study,
in which the factors that affect the choice can be explored
in more detail. A study that exploits the full control afford
by an experimental design unfettered by the availability of
suitable real world data sets. Such a purely experimental
approach necessitates the separate research problem of in-
stance generation, a problem that has been considered in
comparative studies of SBSE algorithms for requirements
engineering [23].
Non-Functional Properties: How does the approach be-
have with respect to non-functional properties? Such prop-
erties of the search algorithm, such as its power consump-
tion, response to change and communication bandwidth have
not traditionally been the subject of intense investigation.
However, in order to realise the Dynamic Adaptive SBSE
agenda outlined in this paper, it will be necessary to com-
pile (or otherwise embed) the search based computation into
the deployed software to achieve search based adaptivity.

In this new paradigm of Dynamic Adaptive SBSE, non-
functional characteristics of the search algorithms will be
inherited by the software it is used to create. The com-
plex interplay between several non-functional properties and
the many problem characteristics that potentially influence
them will mean that a full and thorough empirical evalua-
tion will require a large and diverse body of data sets. Once
again, the best way to ensure controllability of experimental
method may be to create synthetic problem instances.
Adaptability: How well does a proposed SBSE approach
cope with changes in the context or environment? The Dy-
namic Adaptive SBSE agenda will require algorithms and
approaches that retain strong performance and result qual-
ity in the presence of changes in context and operating en-
vironment. Controlling for the operating environment of
an approach is something that, almost inherently, calls for
some form of laboratory experimentation, rather than a ‘real
world’ evaluation; achieving laboratory control of experi-
mental variables in a production deployed environment is
unlikely to be realistic. Of course, results from such labora-
tory experiments should be augmented with field trials, but
a field trial may not enable the researcher to report results
for a wide variety of challenging contexts, which a purely
experimental study can.

In many of the situations above, a purely experimental
study alone will be insufficient and should be augmented
with real world studies. Where real world data is abundant
(for example when studying open source code as the subject
of the empirical study), it may even be possible to find scale
and variety in the available real world data sets sufficient
to support a detailed experimental evaluation. However, in
many situations, it is the very nature of the research ques-
tions asked that prohibits the use of real world data. For
example, when attempting to assess scalability or robust-
ness beyond what could reasonably be currently expected,
the researcher must, to some extent, generate the experi-
mental data set in order for it to be demanding.

7. THE DAASE PROJECT
The research agenda briefly outlined in this paper forms

the focus of the DAASE project (DAASE: Dynamic Adap-
tive Automated Software Engineering).

DAASE is a major research initiative running from June
2012 to May 2018, funded by £6.8m from the Engineer-
ing and Physical Sciences Research Council (the EPSRC).
DAASE also has matching support from University Col-
lege London and the Universities of Birmingham, Stirling
and York, which will complement the 22 EPSRC-funded
post doctoral researchers recruited to DAASE with 26 fully
funded PhD studentships and 6 permanent faculty positions
(assistant and associate professors).

The DAASE project is keen to collaborate with leading
researchers and research groups. We are also interested in
collaboration with industrial parters and other organisations
interested in joining the existing DAASE industrial partners
which include Berner & Mattner, British Telecom, Ericsson,
GCHQ, Honda, IBM and Microsoft. We have a programme
for short and longer term visiting scholars (at all levels from
PhD student to full professor) and arrangements for staff
exchanges and internships with other organisations.

For more information, contact Lena Hierl, the DAASE
Administrative Manager (crest-admin@ucl.ac.uk) or Mark
Harman, the DAASE project director.

8. CONCLUSION
Dynamic adaptive search based software engineering is a

development of the SBSE research agenda in which we seek
to embed into the deployed code the optimisation techniques
developed over the past decade of SBSE research. In so-
doing we seek to address the goals espoused by advocates
of self-adaptive and autonomic computing, not merely to
fix faults and cope with anomalies, but as a routine and
natural means of on-line adaptivity to meet new challenges,
environments and platforms. The approach may be partic-
ularly effective in the emerging world of more continuous
non-functional properties.

We also look towards a Hyper-Heuristic future for SBSE,
in which hyper heuristic search is used to improve the appli-
cability and generality of SBSE techniques at the expense of
some loss in quality of results. We argue that this may prove
to be an important step in the wider practitioner uptake.

Both real world empirical studies and purely experimen-
tal studies (using laboratory-controlled synthetic examples)
will be required to evaluate the practical aspects of Dynamic
Adaptive SBSE. Theoretical analysis of problem character-
istics, algorithm choices and solution space properties will
also be needed to provide a sound scientific underpinning
for this optimisation-based approach to dynamic adaptivity.

Acknowledgements: We would like to thank those whose
ideas influenced this work (with apologies to those whom we
may have failed to list here specifically): Enrique Alba, Na-
dia Alshahwan, Andrea Arcuri, Peter Bentley, Lionel Briand,
Javier Dolado, Robert Feldt, Stephanie Forrest, Carlo Ghezzi,
Rob Hierons, Mike Holcombe, Yue Jia, Bryan Jones, Kiran
Lakhotia, Bill Langdon, Claire Le Goues, Spiros Mancoridis,
Phil McMinn, Tim Menzies, Riccardo Poli, Marc Roper,
Martin Shepperd, Paolo Tonella, Shin Yoo, Wes Weimer,
Joachim Wegener, David White, Andreas Zeller & Yuanyuan
Zhang. Thanks also to Lena Hierl for proof reading.

9. REFERENCES
[1] W. Afzal and R. Torkar. On the application of genetic

programming for software engineering predictive modeling:
A systematic review. Expert Systems Applications,
38(9):11984–11997, 2011.

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic review of
search-based testing for non-functional system properties.
Information and Software Technology, 51(6):957–976, 2009.

[3] W. Afzal, R. Torkar, R. Feldt, and G. Wikstrand.
Search-based prediction of fault-slip-through in large
software projects. In Second International Symposium on
Search Based Software Engineering (SSBSE 2010), pages
79–88, Benevento, Italy, 7-9 Sept. 2010.

[4] S. Ali, L. C. Briand, H. Hemmati, and R. K.
Panesar-Walawege. A systematic review of the application
and empirical investigation of search-based test-case
generation. IEEE Transactions on Software Engineering,
pages 742–762, 2010.

[5] N. Alshahwan and M. Harman. Automated web application
testing using search based software engineering. In 26th

IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 3 – 12, Lawrence,
Kansas, USA, 6th - 10th November 2011.

[6] A. Arcuri. It does matter how you normalise the branch
distance in search based software testing. In International
Conference on Software testing (ICST 2010), pages
205–214, Paris, France, 2010. IEEE Computer Society.

[7] A. Arcuri, D. R. White, J. A. Clark, and X. Yao.
Multi-objective improvement of software using co-evolution
and smart seeding. In 7th International Conference on

Simulated Evolution and Learning (SEAL 2008), pages
61–70, Melbourne, Australia, December 2008. Springer.

[8] A. Arcuri and X. Yao. A Novel Co-evolutionary Approach
to Automatic Software Bug Fixing. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC ’08),
pages 162–168, Hongkong, China, 1-6 June 2008. IEEE
Computer Society.

[9] P. Baker, M. Harman, K. Steinhöfel, and A. Skaliotis.
Search based approaches to component selection and
prioritization for the next release problem. In 22nd

International Conference on Software Maintenance (ICSM
06), pages 176–185, Philadelphia, Pennsylvania, USA, Sept.
2006.

[10] V. R. Basili, R. W. Selby, and D. H. Hutchens.
Experimentation in software engineering. IEEE
Transactions on Software Engineering, 12(7):733–743, July
1986.

[11] J. S. Bradbury, J. R. Cordy, J. Dingel, and
M. Wermelinger. A survey of self-management in dynamic
software architecture specifications. In D. Garlan,
J. Kramer, and A. L. Wolf, editors, Proceedings of the 1st
ACM SIGSOFT Workshop on Self-Managed Systems
(WOSS 2004), pages 28–33, California, USA, October 31 -
November 1 2004. ACM.

[12] L. Briand. Embracing the engineering side of software
engineering. IEEE Software, 2012. To appear.

[13] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and
R. Qu. A Graph-Based Hyper-Heuristic for Timetabling
Problems. European Journal of Operational Research,
176(1):177–192, 2007.

[14] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu,
K. Sen, N. Tillmann, and W. Visser. Symbolic execution
for software testing in practice: preliminary assessment. In
33rd International Conference on Software Engineering
(ICSE’11), pages 1066–1071, New York, NY, USA, 2011.
ACM.

[15] B. Cheng and J. Atlee. From state of the art to the future
of requirements engineering. In L. Briand and A. Wolf,
editors, Future of Software Engineering 2007, Los
Alamitos, California, USA, 2007. IEEE Computer Society
Press. This volume.

[16] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors. Software Engineering for Self-Adaptive
Systems (Dagstuhl Seminar), volume 08031 of Dagstuhl
Seminar Proceedings. Internationales Begegnungs und
Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2008.

[17] J. F. Chicano, J. Ferrer, and E. Alba. Elementary landscape
decomposition of the test suite minimization problem. In

M. B. Cohen and M. Ó. Cinnéide, editors, 3rd International
Symposium on Search Based Software Engineering (SSBSE
2011), volume 6956 of Lecture Notes in Computer Science,
pages 48–63, Szeged, Hungary, 2011. Springer.

[18] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons,
B. Jones, M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees,
M. Roper, and M. Shepperd. Reformulating software
engineering as a search problem. IEE Proceedings —
Software, 150(3):161–175, 2003.

[19] A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino,
F. Sarro, and E. Mendes. How effective is tabu search to
configure support vector regression for effort estimation? In
6th International Conference on Predictive Models in
Software Engineering (PROMISE ’10), Timisoara,
Romania, 12-13 September 2010. IEEE.

[20] S. L. Cornford, M. S. Feather, J. R. Dunphy, J. Salcedo,
and T. Menzies. Optimizing Spacecraft Design -
Optimization Engine Development: Progress and Plans. In
Proceedings of the IEEE Aerospace Conference, pages
3681–3690, Big Sky, Montana, March 2003.

[21] J. Darlington and R. M. Burstall. A system which
automatically improves programs. Acta Informatica,
6:41–60, 1976.

[22] E. W. Dijkstra. On a political pamphlet from the middle
ages (A response to the paper ‘social processes and proofs
of theorems and programs’ by DeMillo, Lipton, and Perlis).
ACM SIGSOFT, Software Engineering Notes, 3(2):14–17,
1978.

[23] J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. J.
Nebro. A study of the bi-objective next release problem.
Empirical Software Engineering, 16(1):29–60, 2011.

[24] P. Fara. Science: A 4000-year history. Oxford University
Press, 2009.

[25] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio.
Self-adaptive software meets control theory: A preliminary
approach supporting reliability requirements. In
P. Alexander, C. S. Pasareanu, and J. G. Hosking, editors,
26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 283–292,
Lawrence, KS, USA, November 2011. IEEE.

[26] G. Fraser and A. Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In 8th European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE ’11), pages 416–419. ACM, September 5th -
9th 2011.

[27] F. G. Freitas and J. T. Souza. Ten years of search based
software engineering: A bibliometric analysis. In 3rd

International Symposium on Search based Software
Engineering (SSBSE 2011), pages 18–32, 10th - 12th
September 2011.

[28] Z. P. Fry, B. Landau, and W. Weimer. A human study of
patch maintainability. In International Symposium on
Software Testing and Analysis (ISSTA’12), Minneapolis,
Minnesota, USA, July 2012. To appear.

[29] A. G. Ganek. Autonomic computing: Implementing the
vision. In Active Middleware Services, pages 2–3. IEEE
Computer Society, 2003.

[30] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer.
A systematic study of automated program repair: Fixing
55 out of 105 bugs for $8 each. In International Conference
on Software Engineering (ICSE 2012), Zurich, Switzerland,
2012. to appear.

[31] M. Harman. The current state and future of search based
software engineering. In L. Briand and A. Wolf, editors,
Future of Software Engineering 2007, pages 342–357, Los
Alamitos, California, USA, 2007. IEEE Computer Society
Press.

[32] M. Harman. Search based software engineering for program
comprehension. In 15th International Conference on
Program Comprehension (ICPC 07), pages 3–13, Banff,
Canada, 2007. IEEE Computer Society Press.

[33] M. Harman. Open problems in testability transformation.
In 1st International Workshop on Search Based Testing
(SBT 2008), Lillehammer, Norway, 2008.

[34] M. Harman. The relationship between search based
software engineering and predictive modeling. In 6th

International Conference on Predictive Models in Software
Engineering, Timisoara, Romania, 2010.

[35] M. Harman. Why source code analysis and manipulation
will always be important. In 10th IEEE International
Working Conference on Source Code Analysis and
Manipulation, pages 7–19, Timisoara, Romania, 2010.

[36] M. Harman. Why the virtual nature of software makes it
ideal for search based optimization. In 13th International
Conference on Fundamental Approaches to Software
Engineering (FASE 2010), pages 1–12, Paphos, Cyprus,
March 2010.

[37] M. Harman. Software engineering meets evolutionary
computation. IEEE Computer, 44(10):31–39, Oct. 2011.

[38] M. Harman. The role of artificial intelligence in software
engineering. In 1st International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering
(RAISE 2012), Zurich, Switzerland, 2012.

[39] M. Harman and B. F. Jones. Search based software

engineering. Information and Software Technology,
43(14):833–839, Dec. 2001.

[40] M. Harman, A. Mansouri, and Y. Zhang. Search based
software engineering trends, techniques and applications.
ACM Computing Surveys, 2012. To appear.

[41] M. Harman and P. McMinn. A theoretical and empirical
study of search based testing: Local, global and hybrid
search. IEEE Transactions on Software Engineering,
36(2):226–247, 2010.

[42] M. Harman, P. McMinn, J. Souza, and S. Yoo. Search
based software engineering: Techniques, taxonomy,
tutorial. In B. Meyer and M. Nordio, editors, Empirical
software engineering and verification: LASER 2009-2010,
pages 1–59. Springer, 2012. LNCS 7007.

[43] C. A. R. Hoare. The engineering of software: A startling
contradiction. In D. Gries, editor, Programming
Methodology, A Collection of Articles by Members of IFIP
WG2.3. Springer-Verlag, New York, NY, 1978.

[44] C. A. R. Hoare. How did software get so reliable without
proof? In FME ’96: Industrial Benefit and Advances in
Formal Methods: Third International Symposium of
Formal Methods Europe, number 1051 in LNCS, pages
1–17. Springer-Verlag, Mar. 1996.

[45] S. A. Hofmeyr and S. Forrest. Immunity by design: An
artificial immune system. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’99),
2:1289–1296, 1999.

[46] Y. Jia and M. Harman. Milu: A customizable,
runtime-optimized higher order mutation testing tool for
the full C language. In 3rd Testing Academia and Industry
Conference - Practice and Research Techniques (TAIC
PART’08), pages 94–98, Windsor, UK, August 2008.

[47] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith,
G. Tedesco, and J. Twycross. Immune system approaches
to intrusion detection - A review. Natural Computing: An
international journal, 6, Dec. 2007.

[48] K. Krogmann, M. Kuperberg, and R. Reussner. Using
genetic search for reverse engineering of parametric
behaviour models for performance prediction. IEEE
Transactions on Software Engineering, 36(6):865–877,
November-December 2010.

[49] K. Lakhotia, M. Harman, and H. Gross. AUSTIN: A tool
for search based software testing for the C language and its
evaluation on deployed automotive systems. In 2nd

International Symposium on Search Based Software
Engineering (SSBSE 2010), pages 101 – 110, Benevento,
Italy, September 2010.

[50] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux.
FloPSy — Search-based floating point constraint solving
for symbolic execution. In 22nd IFIP International
Conference on Testing Software and Systems (ICTSS
2010), pages 142–157, Natal, Brazil, November 2010. LNCS
Volume 6435.

[51] W. B. Langdon and M. Harman. Evolving a CUDA kernel
from an nVidia template. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, 2010.

[52] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38(1):54–72,
2012.

[53] P. K. Lehre and X. Yao. Runtime analysis of search
heuristics on software engineering problems. Frontiers of
Computer Science in China, 3(1):64–72, 2009.

[54] P. McMinn. Search-based software test data generation: A
survey. Software Testing, Verification and Reliability,
14(2):105–156, June 2004.

[55] B. S. Mitchell and S. Mancoridis. On the automatic
modularization of software systems using the bunch tool.
IEEE Transactions on Software Engineering,
32(3):193–208, 2006.

[56] I. H. Moghadam and Mel Ó Cinnéide. Code-Imp: A tool

for automated search-based refactoring. In Proceeding of
the 4th workshop on Refactoring Tools (WRT ’11), pages
41–44, Honolulu, HI, USA, 2011.

[57] A. Newell and H. A. Simon. Computer science as empirical
inquiry: symbols and search. Communications of the ACM,
19:113–126, 1976.

[58] A. Ngo-The and G. Ruhe. A systematic approach for
solving the wicked problem of software release planning.
Soft Computing - A Fusion of Foundations, Methodologies
and Applications, 12(1):95–108, August 2008.

[59] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,
and A. L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14:54–62,
May 1999.

[60] K. R. Popper. Conjectures and Refutations: The Growth of
Scientific Knowledge. Routledge, 2003.

[61] O. Räihä. A survey on search–based software design.
Computer Science Review, 4(4):203–249, 2010.

[62] W. F. Tichy. Should computer scientists experiment more?
IEEE Computer, 31(5):32–40, May 1998.

[63] P. Tonella. Evolutionary testing of classes. In Proceedings
of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’04), pages 119–128,
Boston, Massachusetts, USA, 11-14 July 2004. ACM.

[64] J. Wegener and O. Bühler. Evaluation of different fitness
functions for the evolutionary testing of an autonomous
parking system. In Genetic and Evolutionary Computation
Conference (GECCO 2004), pages 1400–1412, Seattle,
Washington, USA, June 2004. LNCS 3103.

[65] W. Weimer, T. V. Nguyen, C. L. Goues, and S. Forrest.
Automatically finding patches using genetic programming.
In International Conference on Software Engineering
(ICSE 2009), pages 364–374, Vancouver, Canada, 2009.

[66] D. R. White, J. Clark, J. Jacob, and S. Poulding. Searching
for resource-efficient programs: Low-power pseudorandom
number generators. In 2008 Genetic and Evolutionary
Computation Conference (GECCO 2008), pages
1775–1782, Atlanta, USA, July 2008. ACM Press.

[67] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in Software
Engineering. Kluwer Academic Publishers, 2000.

[68] S. Xanthakis, C. Karapoulios, R. Pajot, and A. Rozz.
Immune system and fault-tolerant computing. Artificial
Evolution (Lecture Notes in Computer Science),
1063:181–197, 1996.

[69] S. Yoo, R. Nilsson, and M. Harman. Faster fault finding at
Google using multi objective regression test optimisation.
In 8th European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE ’11), Szeged, Hungary,
September 5th - 9th 2011. Industry Track.

[70] Y. Zhang, E. Alba, J. J. Durillo, S. Eldh, and M. Harman.
Today/future importance analysis. In ACM Genetic and
Evolutionary Computation COnference (GECCO 2010),
pages 1357–1364, Portland Oregon, USA, 7th–11th July
2010.

[71] Y. Zhang, A. Finkelstein, and M. Harman. Search based
requirements optimisation: Existing work and challenges.
In International Working Conference on Requirements
Engineering: Foundation for Software Quality
(REFSQ’08), volume 5025, pages 88–94, Montpellier,
France, 2008. Springer LNCS.

[72] Y. Zhang, M. Harman, and A. Mansouri. The SBSE
repository: A repository and analysis of authors and
research articles on search based software engineering.
crestweb.cs.ucl.ac.uk/resources/sbse repository/.

[73] Y. Zhang, M. Harman, and A. Mansouri. The
multi-objective next release problem. In GECCO 2007:
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1129 – 1137, London, UK,
July 2007. ACM Press.

