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Abstract Digital content production and distribution has radicalanged our busi-
ness models. An unprecedented volume of supply is now om, effeetted by the
demand of millions of users from all over the world. Sincerasmnnot be expected
to browse through millions of different items to find whatyhaight like, filtering
has become a popular technique to connect supply and dernastEdusers are
first identified, and their opinions are then used to createmenendations. In this
domain, users’ trustworthiness has been measured acgdaone of the follow-
ing two criteria:taste similarity(i.e., “I trust those who agree with me”), spcial
ties (i.e., “I trust my friends, and the people that my friendsstfy The former
criterion aims at identifyingompetentisers, but is subject to abuse by malicious
behaviours. The latter aims at detectingll-intentionedusers, but fails to capture
the natural subjectivity of tastes. We argue that, in orddxe trusted, users must be
bothwell-intentioned and competent. Based on this observatierpropose a novel
approach that we cafiocial filtering We describe SOFIA, an algorithm realising
this approach, and validate its performance, in terms aff@oy and robustness, on
two real large-scale datasets.

1 Introduction

In his 2006 bestseller “The Long Tail” [1], Chris Andersonm@masizes how digital
distribution has dramatically changed retailers’ bussmasdels. Traditional retail-
ers have a limited space they can use to stock items; marieasarive them to
carry only a limited number of items, in particular, thosatthave the best chance
to sell, thus losing less popular ones. With the advent ofitkernet, retailers are
not bound by the same physical constraints, so that a muckrwatiety of items
can be offered from the ‘long tail’. As a result, while a tri#atal bookshop can
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hardly be expected to sell more than 100,000 differentti#e online service such
as Amazon.com can offer its costumers millions of diffeqemaducts. However, as
Anderson points out, providing people with a massive ch@cgointless, if that
means they have to browse through thousands, or even msilladpotentially rele-
vant items. Rather, people must be assisted in finding westwiant. Filters can be
used toconnect supply and demandaking it easier for users to find the particular
content that they would enjoy.

The most popular technique to realise this connection iklootative filtering
(CF) [7]. Most of the work on collaborative filtering has beftusing on iden-
tifying users with similar preferences, and then recomnrenitems that people
with similar tastes have approved. Traditional collabwedfiltering techniques have
worked quite well for the mass market and under the assumpfi@ollaborative
behaviours. However, these techniques have been subjalotise by malicious be-
haviours [11]: for example, malicious users could copy lsbnesers’ reviews, to
gain high similarity scores with them; they could subsedjyeinject inflated re-
views in the system, to trick those users into buying an itermioeversa, to disrupt
an item’s sales.

We argue thaaccurateandrobustfiltering techniques can be devised by exploit-
ing information from a user’s social network. We call thigpegachsocial filtering
The core idea is to give higher weight to recommendationsived fromtrusted
users. To be trusted, a user must be lvegl intentionecandcompetentTraditional
collaborative filtering techniques focus only on compegefie., the ability to give
useful - in a subjective way - recommendations), withoutsidering the fact that
competent users may indeed be malicious. Rather than getyirall recommenda-
tions from similar (i.e., competent) users, our approaacsigally looks for well-
intentioned users (i.e., users who are willing to providedst recommendations)
among those with whom we have stronger social relationships

Social ties are a warranty against malicious behaviorbeititust inference algo-
rithm is robust, it would be very costly for an attacker toldignough friendships
with ‘honest’ users to effectively subvert the system. kdiehe robustness of CF
systems is usually measured in terms of the proportion ofcinak nodes in the
network, under the assumptions that attackers are not aloieeate unlimited new
identities at will, and they are not aware of the judgemerfsessed by each peer
[18, 2, 16, 15]. In our approach, these assumptions can lppddy and the impact
of an attack becomes limited by the “intent” ranking of thiaeker, which is in turn
determined only by the connectivity of malicious nodes i s$bcial network.

The remainder of the paper is structured as follows: Se&idescribes the con-
cept motivating social filtering, focusing on the two distimspects of intent and
competence. In Section 3 we discuss SOFIA (SOcial Flltefilggrithm), that is, a
specific realisation of social filtering. In Section 4 we asal attacks against which
filtering must defend itself, and in Section 5 we demonsttiageaccuracy and ro-
bustness of SOFIA against two large real dataset, namebs&3t and Last.fm.
Finally, Section 6 concludes the paper.
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2 Philosophy of the Approach

Social filtering relies on the identification afustedrecommenders. In the scope
of this work, we call trusted a recommender that is both we#ntioned and com-
petent. The three questions we are thus trying to answel(Bréow to evaluate
intention; (2) how to evaluate competence; and (3) how toloethis information
to find trusted recommenders.

Intent - Trust over Users

We define intent as the thaillingnessof a user to provide honest judgemeénts
differentiating “spammers” from people who are legitimptesing the application.
Note that a judgement given with good intent is not necelgsasieful, since users
may have different tastes and preferences; this sectidnllwgtrate how to find
competent users among well-intentioned ones.

Users'’ intent can be represented aseb of trust that is, as a a directed graph
where nodes are users and an edge from AiderB indicates tha# considers a
well-intentioned one; in other worda, trustsB. Webs of trust are thus instances of
social networks where links represent assessments on tilagibar of nodes rather
than simple acquaintance.

The web of trust can be built in many different ways. For exenpy means
of explicit social network creation (e.g., “Add as a frierid"sites like MySpace or
FaceBook); using email/phone-book contacts; via autodnateation as described
in ReferralWeb [9], and so on. We are not concerned with whati§ic technique
is used to create the web of trust; however, we expect it tafbeudt, for malicious
nodes, to obtain endorsements from honest ones: this camdstkey for the ro-
bustness of social filtering. For this reason, we discoutiagereation of the web of
trust via automated matching purely based on users’ siityilar

The web of trust can then be traversed in order to obtpntatiorf information
about users we do not directly know and trust. We propose todiry means of the
transitive trust propagation patter®\ peerA obviously trusts the nodes that can be
reached from itself via an edge; sinBéelieves these nodes behave honestly, their
recommendations for other nodes are believed by some extent, and some trust
is propagated to them. The pattern repeats iterativelyagating trust to all nodes
reachable with a directed path starting frém

The principle of trust transitivity has been criticizedgrthe judgement of who
deserves trust is subjective [12, 8] (i.e., we are not guaeahto like all the friends
of our friends). However, we argue that benevolent intentike competence) is a
concept where subjectivity does not apply strongly. Moegpi the web of trust is

1 n the following, we will use the more general term ‘judgemeritstead of ‘recommendations’,
as our approach is equally applicable to recommendationsgndorsements of products or con-
tent) as to ‘negative’ or purely informative judgements (e'gvoid that restaurant” or “this is
relaxing music”).

2 \We use the word ‘reputation’ here in its most general sense, th#tésestimation in which a
person or object is held by the community or public’ (source: @xMictionary)
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built using evaluations of past behavior, reputation ptesiincentives to coopera-
tion via reciprocative behavior [17, 4].

Competence - Trust over Judgements

Together with intent, competence is a key component in atialg the trustworthi-
ness of recommenders. In this work, we defioenpetenthose users who are able
to make correct judgments; since the definition of “corr@atigments is inherently
subjective, competence is a subjective matter as well.

A sensible way of evaluating competence is via the so calteditation pattern
A bipartite graph is used to represenhetwork of judgmentasers (e.g.{A,B})
and judgments (e.g{X,Y}) form two disjoint sets of vertices; an ed@&, X) is
present if useA expressed the judgmeHlt If usersA andB agree on judgment
(i.e., there exist edges— X andB — X), thenA may consideB a competent user.
Using the co-citation pattern, she may th@opagate trust over competenoe the
other judgements th& expressed.

However, users’ competence is not sufficient to warrant tautheir judgements.
For instance, let us consider a malicious user Mallory, imgtio trick Alice in
believing a dishonest judgementstating that “Mallory’s Greasy Restaurant offers
very good food”. In order to do so, Mallory could simply coplid&’s judgements;
using the co-citation trust propagation pattern, Alice ldodeem Mallory a very
competent evaluator, and would consequently believejudgement too.

We argue that competence should thus be combined with ittédéentify trust-
worthy recommendeyshat is, recommenders who are willing to provide us with
honest judgements and that we are likely to find useful.

The Combined Approach

As discussed above, using tl@nsitivity trust propagation pattern alone is not
enough, as subjectivity of tastes, which is an intrinsicrabgeristic of judgements,
is lost. On the other hand, using the-citationtrust propagation pattern alone is
subject to abuse by malicious users.

We propose a novel approach that combines the strengths dfvth patterns,
while circumventing their individual weaknesses: we ekploe transitivity trust
propagation pattern on the web of trust to determine wedlritibned users, and the
co-citation trust propagation pattern on the network ofjpments to evaluate their
competence. By so doing, we are capable of inferring trust pudgements, in a
way that is both accurate and robust. The underpinning isl¢faat, in order to be
trusted, a judgement must have been expressed by a user bdtbvsilling (intent)
andable (competence) to give useful judgements. We call the newoamhisocial
filtering. Based on the interpretation of trust propagation oveniraad competence
we gave in the previous two sectioscan infer trust for a judgemeitexpressed
by a useD (Fig. 1) if:

1. there exists a directed path fra%to D in the web of trust (e.gA— B — C — D);
2. AandD both expressed at least one common judgement §).g.,



SOFIA: Social Filtering for Robust Recommendations 5

Users Judgements

_) Direct trust for judgements
- -3 Direct trust for users
....... ) Inferred trust for judgements

Fig. 1: Combined trust-propagation approach.

This is the first approach that aims at increasing the utilittecommendations,
by exploiting information coming from the social netwaakd from individual’'s
preferences at the same time. We are aware of only two othdsswehere the tran-
sitivity and co-citation trust propagation patterns hagerbused together, but with
rather different goals and following a different philosgpim [6], trust is propagated
usingeitherco-citation or transitivity in a social network where lintepresent sim-
ilarity in preferences; in [14], the transitive trust prggéion pattern is used as an
alternative tothe co-citation pattern, in order to bootstrap trust wheitronal
user similarity cannot be computed, again because of ladkfofmation. These
approaches work well in those scenarios where there isagst@rrelation between
social ties and individual preferences. On the contrary,amproach is best suited
to those scenarios where the social network is not just agate of users’ prefer-
ences. As we shall demonstrate in Section 5, when sepafatmation is available
about the web of trust and judgements, an approach thatmeadmut intent and
competencat the same timean yield the biggest increase in the utility of recom-
mendations, even in the absence of malign behavior. Befoirggdso, we discuss
how we have realised social filtering in practice.

3 Realization of the Approach

In the previous section, we have introduced social filtefiogh a conceptual view-
point, highlighting the advantages of propagating trugrdooth intent and compe-
tence, in order to give usetrmisted judgement3o be of practical use, an implemen-
tation of social filtering would need to attribute a numeraue to theamountof
trust a judgement deserves. This would ultimately allowsise rank judgements
and/or to filter out unreliable ones. In this section, we dbschow the transitive
and co-citation patterns have been uniquely combined inl&QGdur own imple-
mentation of social filtering. In describing our implemdita, we will refer to the
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general case of weighted social networks, with weightsesging the strength of
social ties. The user-judgement edges can be weighted bsepeesenting the level
of confidence of a user towards a given judgement. The unwazgtase is just a
specific instance of the more general one, with all instanédrust relationships
and/or judgements having the same weight.

Evaluating Intent

There exist various algorithms to quantify the amount otithat is propagated
transitively on a weighted social network. Desirable prtipe that most algorithms
guarantee aréonger paths disperse truéte., if there isatrustpath— ... - B —

C, then the amount of trust inferred frofnto C is not greater than the trust inferred
from A to B); adding paths increases truéte., if there are two paths from A to B,
then the trust that A infers for B is at least as high as if onlg path was present).

A popular approach that guarantees these properties isnltasion of a random
walk on the web of trust, as done by PageRank [19], the alguariised by Google
for ranking search results. The algorithm considers a nand@lk over the graph
of WWW pages and their links, starting from a random node anpipgtg with a
probability 1— o at each step. Nodes are then ranked according to the pritypabil
that this random walk stops at thénPages that receive many incoming links, and
pages that are being linked by another heavily-linked pagethen ranked higher.
Intuitively speaking, the same approach could be used tpgyate trust over a
social network: the higher the number of paths (equivaleriinks) leading to a
node (equivalent to a WWW page), the more reputable the nodssisved to be
(the higher it ranks).

The standard version of PageRank misses on subjectiviiy,rasks pages re-
gardless of the evaluating node. As a consequence, any ndtle system would
propagate trust to a nod€in the same way. To obtain a subjective version of the
algorithm, two simple changes are required: first, we foheestarting point of the
random walk to be the evaluating node itself (thus avoiditadke/that originate at
malicious nodes); second, rather than having the same Igititypaf jumping to an-
other node (as done in the original version of PageRank) heeesuch probability
to be proportional to the weight (i.e., the strength) of tgeeitself. A walk starting
at A will thus result in trust propagation fro®'s subjective viewpoint only. This
modified version of the original algorithm is sometimes refd to asPersonalised
PageRanKPPR).

Note that the original version of PageRank is subject to ISyttacké [5, 3]: in
scenarios where new virtual identities can be cheaply edea malicious nod&
could create an unlimited number of siblin88 S, ..., add a web of strong (fake)
ties betweerfy and its Sybil node§ to the social network, and exploit this setup
to gain a disproportionately large trust. To defend agatimsttype of attack, trust
propagation algorithms should limit the amount of trusthgai by any Sybil nod&

3 The most common PageRank definition corresponds teddibrium distributionof a random
walk, with a 1— a probability of jumping to a random node. The two definitions equivalent.

4 This style of attack is also known as ‘shilling’ in recommender syste'profile injection’ in
collaborative filtering, and ‘web spamming’ in webpage ranking
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by a function of the trust the& has ‘legitimately’ gained. Personalised PageRank
does exactly so: an attack&y can only divert, towards the Sybil region, those paths
that pass throug§ itself; if the probability that a random walk reacHgss p, then
the cumulative value of all one-step paths fr&gis o p; for two steps, it isx?p, and
so on. Thus, the maximal total rank for the Sybil region antetmy ;> , ap= l—pa .
The a parameter thus influences the resilience to Sybil attabkslower the value
of a, the better the robustness. Low valuesioélso increase subjectivity, as they
reward short paths over long ones, while wireapproaches 1 the outcome of the
algorithm becomes more and more similar, regardless ofiliator node. Finally,
the lower the value ofr the faster the convergence speed of the algorithm (aith
0.5, more than 99.9% of the overall ranking weight comes frothgaf length up to
10). Note, however, that low values afmay cause honest nodes who are ‘socially
far-away’ not to be considered, thus discarding potegtiadieful information. This
may affect the accuracy of our algorithm, with respect tditranal collaborative
filtering techniques where the full dataset is consideretesd. We will analyse
optimal choices ofr with respect to accuracy vs. robustness in Section 5.

In our realisation of social filtering, we have chosen to dgftersonalised Page-
Rank to quantify the transitive trust propagation over thaa network, as it com-
bines our requirements of subjectivity and robustness.

Evaluating Competence

The co-citation trust propagation pattern has been widelyied and applied to the
problem of ranking Web pages. One of the most famous algosittealising this
pattern is HITS [10]. HITS conceptually divides pages in tsubsets: authorities
(i.e., pages whose content satisfy the query), and hubsages that link to rel-
evant documents, that is, to authorities). Using an iteggirocess, HITS traverses
the linkage structure of Web documents, and computes botibaveight and an
authority weight for each visited page at every step, so that

1. Forward Step (from hubs to authorities): the weight gitean authority is pro-
portional to the sum of the weights of those hubs linking to it

2. Backward Step (from authorities to hubs): the weight giteea hub is propor-
tional to the sum of the weights of those authorities beingdd by it.

If weights expressing confidence are present in the netwigtkdgements, they can
be used as a multiplicative factor (i.e., a link with weiglat@s as two separate links,
each with weight 1). The process continues (renormalizinges at every iteration)
until it converges, and the top ranking pages, accordingei uthority scores, are
then returned.

The principle behind HITS is that good hubs link good autliwsj and good
authorities are linked by good hubs, in a mutually reinfogaivay. We argue that the
same principle holds in our scenario, where we can expecpetent users to give
valuable judgements, and valuable judgements to be givenrpetent users. If we
map users to hubs and judgements to authorities, we can rdifiT&zlike iterative
algorithm to rank judgements, which is our ultimate goaisMould not realise our
social filtering method though, as the following caveats thesaddressed first.
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(1) Solving the TKC Problenit has been demonstrated that the HITS algorithm
suffers from the “Tightly Knit Community” (TKC) syndrome 81: if a community
of users all gave the same (or very similar) judgements (tbsslting in a highly
connected bipartite graph), the competence weight of timenoenity would dis-
proportionately increase, with the judgements they expbeing excessively high-
ranked, even if they are not authoritative. A set of malisiosers could thus artifi-
cially create a TKC in order to artificially boost their rangi To solve this problem,
we adopt the solution proposed in SALSA [13]: we divide theghiethat each hub
transfers at each forward step by its outdegree (the sum mf¥geon outgoing
edges), and we do the same for authorities and their indegesech backward step.
After a forward step, the total weight transferred from ayi@rhub to its linked au-
thorities is thus equal to the weight on that hub; viceveadt®r a backward step,
the total weight that is redistributed from a single auttyaio the set of hubs linking
to it equals the weight gained by the authority. Thus, the sfinveights remains
constant at every step, removing the need for normalizafiorery desirable side-
effect of this alteration is that users who express “nicluglgements are rewarded
more than those expressing only mainstream (redundars) one

(2) Subijectivity of RankinddI TS-like algorithms provide non-subjective results,
as they are independent of the uBestarting the search. To cater for the subjectivity
required by our scenario, we initialize the algorithm sd tha only hub (user) with
anon-zero weight is the reference nadiéself (instead of assigning an equal weight
to any hub in the network). In so doing, the first forward stéthe algorithm only
considers the judgements given by the reference node, #ilosirig the ranking
results to his/her tastes. To limit the propagation of ttagtidgements that are too
dissimilar from the tastes oA, after each backward step, the weights associated
to each user are multiplied by a parameBee (0,1), and the trust given té\ is
increased by + 3. These two changes are similar, in spirit, to the modificegio
already suggested for PageRank, where we forced the randdkntevstart from
the very same node; thg parameter plays the same role thaplays in PageRank,
ensuring the convergence of the algorithm, with lower valagB impling faster
convergence and higher subjectivity.

(3) Catering for Well-Intentioned UserAs discussed in Section 2, trust propaga-
tion over competence alone is susceptible to attacks. Wmopeoto add robustness
to HITS-like algorithms, by incorporating users’ intensassment as follows. To
begin with, Personalised PageRank is run on the social metwtus obtaining a
vector with nodes’ reputation, as seen by the reference Aodé& then run the sub-
jective HITS-like algorithm, so that, at every backwardpstiust is redistributed
from judgements to users in a way thapieportional to users’ intentas measured
by PPR. In other wordggeputation becomes a multiplicative factor for backward
trust propagation As discussed in Section 3, a Sybil coalition can obtain @nly
limited amount of trust from the social network, so the antafrtrust that can be
transferred to malicious nodes is limited too.

We call the algorithm that results from modifying the HITi8el approach in the
three ways described above SOFIA, that is, SOcial Flitefilggprithm. The result-
ing pseudocode is shown in Algorithm 1. The result of runri@FIA is a vector
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Algorithm 1 SOFIA.

Parameters: a judgement bipartite netwok® = (V, E), whereV is the union of the set of users
U and the set of judgemenisan evaluating nod& € U; weights such thaty,; is the weight of
edge(u, j); an intent ranking vectar computed using Personalised PageRank over the web of
trust, so that, is the intent ranking of user, a 0< 3 < 1 parameter.
Returns: a trust vectof such thafj is the trust ranking of judgemeit
n < size ofU;m<«=size of Jt = 0Mta <= 1
while algorithm has not convergetb

{Forward Step: from users to judgements

f«<om

for all (u,j) € E do

§ e+ =

ZkeJ Wuk

ty

end for

{Backward Step: from judgements to users
t=0Mta=1-p8

for al (u,j) € Edo

iy«
ty =ty Bt
! N dveu Wyjlv !
end for
end while
return €

t containing atrust numeric value for each judgementJncomputed considering
both the intent and the competence of the usels s seen by the reference ndde
The normalization parameters -y Wuk, Y veu Wyjl'v) can be calculated outside the
loops, so the computational cost of the full algorithm isgmdional to the number
of edges irE times the number of iterations of the algorithm.

4 Attack Modd

In order to validate our social filtering algorithm, we havenducted a variety of
experiments on two very large real datasets. While ideal tasue accuracy, real
datasets are unsuitable to test the robustness of thethlgonihile varying threat
intensity. To demonstrate the robustness of SOFIA, we thus to manually inject
attacks on top of real datasets, and run experiments unfleredit configuration
settings. In this section, we analyse threat strategiesjrg their enactment and
corresponding experimental validation to Section 5.

In the scenario we are considering, the most plausible gaai attacker would
be to alter the rating of a certain judgemeqtit may do so either to trick a single
userA, or more extensively to deviate the judgements of all user&vour of (or
against)X. Let us analyse how an attacker could achieve such goalelfirgt case,
since the attacker wants to be rated®gs a very competent user, it could first copy
the judgements thak expressed, and then add a new judgemxénin the second
case, there is no single set of judgements the attacker ggnaseach user would
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have expressed different ones: copying popular judgemenit] yield to very little
reward, as a consequence of our strategy to reward usersavbaighe judgements
more; on the contrary, copying ‘niche’ judgements wouldd/ie very high appeal,
but to rather few users. We will thus model this attack as weletenl the targeted
attack, that is, by copying the judgements of a randomly eheosdeA and adding
the judgement foiX; however, rather than studying the impact of the attacldpn
we will study the ‘collateral damage’ that the attack has threousers.

To increase the impact of the attack itself (i.e., to incegth®e ranking of judge-
mentX), we also consider the case of an attacker who has the afolityeate an
unlimited number of Sybil identities, all endorsig We assume that each Sybil
can create any number of outgoing edges in the web of trust) the Sybil node
to any other user. They can also create any number of incostggs, originat-
ing within the Sybil coalition. However, what they cannot idocreate incoming
edges from honest nodes at will, since obtaining trust fratt-imtentioned peers is
costly. Itis thus reasonable to expect a low cut betweenthibaést” and the “Syhil”
region [20]. In our experiments, we will thus create Sybgioms that are highly in-
terconnected internally; we will then set the amount of magg links from honest
nodes as a parameter, and analyse the robustness of SG&)Adiv highly ranked
canX become) against it.

5 Experimental Validation

We have evaluated SOFIA along two dimensions: accuracy @ngstness against
Sybil attacks. Both experiments were conducted using data fwo real datasets:
the Citeseer online scientific digital library, and the Listmusic and social net-
working website. The key characteristics of these datametbriefly summarised
below.

The Datasets
Citeseer (http://citeseer.ist.psu. edu/oai.htnl)is an online sci-
entific literature digital library, containing over 750@@ocuments. From this
repository, we have extracted a social network based onafaithorship relation:
if A andB have co-authored papers together, then an edge between the two will
be added to the social network, with weightThe judgement network is built from
the citations instead: if a papXrauthored byA cites papel, then an (unweighted)
edge fromAto Y is added to the judgement network; the rationale is that,tirygc
Y, the authors oK have expressed the judgemeitis relevant with respect to the
topic discussed iiX”. To obtain a more manageable subset of the whole network,
we isolated a highly-clustered subset of 10,000 authoidt@ok in consideration
only the papers that had them as authors. The result is a 9820875 different
papers; 48,998 of them received at least one citation by btiemthers.

Last.fm (htt p: / /1 ast. f m)is a“social music” website that creates profiles
of musical tastes, by tracking which songs users listen roftem to. Users explic-
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itly create a social network by adding other users to thénfi-list. We gathered
our social network with a breadth-first crawl of 10,000 usesisg the Audioscrob-
bler Web Services availablelat t p: / / www. audi oscr obbl er. net/ dat a/
webser vi ces/ . We then considered the 50 most listened artists of eacharser
ended up with a total of 51,654 different artists. The judgetmetwork was finally
created by linking users to their most listened artistsqttepresenting the judge-
ment “userA likes to listen to songs b)), and by weighting each judgement edge
with the number of times the user listened to songs by thist art

Accuracy

To assess the accuracy of SOFIA in giving recommendatioespevformed the
following experiment on both datasets: we “hid” one randalgeA — X from the
judgement network, run SOFIA on the modified network, andluteoutput (i.e.,
a vector of weights) to rank all judgements fraNis viewpoint; this is equivalent
to producing recommendations, tailoredApbased on the computed ranking of
judgements. SincX is a judgement thak expressed (before we hid i),obviously
approves of it, so a good recommendation engine shouldnrétwat a very high
ranking. Thus, the highest the position Xfin the ranked list of judgements, the
better the accuracy of the ranking algorithm. In the Citedegaset, the experiment
is equivalent to guessing a missing citation from a papdrast.fm, it means finding
the missing artist in the top-50 chart of a user. In the foltayyall the results shown
(for a given algorithm and set of parameter) were computeh fi,000 individual
instances of the experiment.

The first set of experiments aimed at analysing the impadtttieatwo differ-
ent trust propagation patterns (transitivity and co-mtgtindividually had on pre-
diction accuracy; at the same time, we wanted to quantifyeffect that different
choices of parameters had on it (namely3 and the number of iterations). We thus
separated the two “halves” of SOFIA into:

Personalised PageRank (PRR) each useu is first ranked using PPR; the ranking
ry is then simply divided between all the judgementksas expressed (propor-
tionally to the edge weight). PPR thus enables us to meakariepact of trust
transitivity, while disregarding the network of judgemsnt

Non-SOcial Flltering Algorithm (N-SOFIA) all nodes in the web of trust are
given equal intent ranking, instead of relying on the PPRoutN-SOFIA thus
enables us to study the impact of the co-citation patterdendisregarding the
social network.

The first parameter we have studied is thember of iterationsieeded to ob-
tain satisfying results. Table 1 shows the percentiles @f#mking of the “hidden”
judgements, when running both PPR and N-SOFIA on the Citeltaset, witho
andf3 parameters chosen to optimize the results. As the tablessteorather small
number of iterations is enough to obtain very good resutisirfstance, after 10
iterations, 10% of the hidden judgements can be found indp& treturned results
(i.e., recommendations) of PPR, and at the very top for N48OIkalf of the hid-
den judgements (50th percentile) were returned withindpe2® recommendations
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Ranking percentiles

Algorithm Iterationg5[10[25]50] 75 90] 95
3|1| 2| 8[32/1614,293 -

PPR @ =0.3) 5/1| 2| 8|30/115|1,709(11,609
10|1| 2| 7|29|141]3,34120,287

3[1| 1| 3(12| 671,060 -

N-SOFIA (3 = 0.05) 51| 1| 3|12| 63|1,136 -
10/1| 1| 3|11| 721,020 -

Table 1: Hidden judgement ranking of PPR and N-SOFIA (best tesulbold) with different
numbers of iterations on the Citeseer dataset.

made by PPR, and in the top 11 by N-SOFIA, and s&. dm the following, the
number of iterations for both parts of the algorithm has besrio 5.

We then studied the impact that parametesnd had on the accuracy of PPR
and N-SOFIA on the specific datasets at farf@bles 2a and 2b report the results
for different values ofa on PPR, and of3 on N-SOFIA, respectively. The key
observation obtained from these numbers is that, on botisdet, N-SOFIA per-
forms better than PPR, suggesting that the information sie¢ais more valuable
than the information that can be inferred from the sociavoel. On both datasets,
the optimal value foi3 is much lower than the optimal value for, suggesting
that taste similarity propagates effectively on short pathly. Also, the optimal
values fora are remarkably lower in our experiments than the “tradaidmec-
ommendedy = 0.85 for PageRank, reflecting the fact these datasets rewghehi
subjectivity. We have also compared the accuracy of N-SQ#tA traditional Col-
laborative Filtering techniques (in particular, using tiesine-based similarity mea-

Ranking percentiles
Ranking percentiles Dataset B[5]10]25] 50] 75 90
Datase a|5[10[25] 50] 75 90 0.021] 1] 3 14 87 2,820
0.2]1| 2| 8| 33 132 3,076 Citeseer 0.051| 1| 3| 12| 63| 1,136
Citeseef 0.3|1| 2| 8| 30| 115| 1,709 0.3]1| 1| 4| 17| 93| 1,603
0.852| 4|11| 48| 242 3,473 Citeseer (CH) —|1| 1| 3| 15 88| —
0.3/5|14|75|361/2,107|15,064 0.01§2| 6(32|157| 822| 3,954
Last.fm| 0.5/5|12|66|344|2,18816,025 Last.fm 0.1{5|13|58|2691,30510,599
0.855[14(71(367|2,28915,648 0.3/8]20|89|404{1,742 9,878
@) Last.fm (CF)| —[3| 8|36|204{1,061 7,735

Table 2: (a) Impact o&r on hidden judgement ranking with Personalised PageRank. (dingb
B on hidden judgement ranking with N-SOFIA.

5 Note that the judgements returned with ranking higher thacarfe not mistakes: they are simply
other recommendations that these algorithms compute but, diaésuch judgements were never
made byA (unlike X), we have no way of measuring how accurate those are.

6 Note that a single optimal choice of these parameters do not asigigy intrinsically depend on
the characteristics of the dataset (in terms of “level of trarityt).
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Ranking percentiles

Algorithm [5]10]25] 50]  75]  90]95
SOFIA |2| 6|32|174 992 7,429 —
SOFIA (2) 3| 8|46|2401,34711,919 —
N-SOFIA |2| 6|32|157| 822| 6,954| —
PPR 5|12|66|344,2,18§16,025 —

Ranking percentiles

Algorithm|5]10[25]50] 75 90| 95
SOFIA |1] 1] 1| 4| 31| 855 -
N-SOFIA (1| 1| 3|12 631,136 —
PPR 1| 2| 8|30/115/1,70911,609

Table 3: (a) Hidden judgement ranking comparison on the Citesdaset. Ther and parameters
were tuned for best performance & 0.5, 8 = 0.3 for SOFIA, 3 = 0.05 for N-SOFIA,a = 0.3
for PPR). (b) Hidden judgement ranking comparison on the Lastdtaset¢ = 0.9 andB = 0.05
for SOFIA, a = 0.5 andB = 0.1 for SOFIA (2),3 = 0.01 for N-SOFIA,a = 0.5 for PPR).

sure): given that N-SOFIA produces recommendations baskdon the network
of judgements, while discarding social relations, we exp&SOFIA and tradi-
tional CF to exhibit similar accuracy. As Table 2b illusasifrows labeled CF), the
accuracy is indeed comparable on both datasets. Note thakathave not been
considered yet: once introduced, results will change dtiaally, with approaches
based on competence only (i.e., CF-like techniques) snfféhe most.

As a final set of experiments, we have compared the accuraByPBf and N-
SOFIA with SOFIA, under the best choice of parameters fohlutdtasets. Re-
sults are shown in Tables 3a and 3b, for Citeseer and Las¢$pectively. Using
the Citeseer dataset, SOFIA outperforms both algorithnith, $0% of the hidden
judgements being ranked in the top 4 positions, against AANf8OFIA and 30
for PPR. The accuracy gain of SOFIA is perhaps more strikihngmconsidering
up to 75% of the hidden judgements: using SOFIA, a user woultl tie hidden
judgement in the the top-30 list of recommended papersewtsing PPR the top-
115 would have to be investigated. Of particular relevasdieé observation that,
even now that malicious attacks aret considered, SOFIA outperforms N-SOFIA,
despite the fact that SOFIA throws away (potentially ugefuformation coming
from (honest) socially far-away nodes. This means that 3G@fffectively exploits
knowledge gathered from the social network to countersizadahis loss of data, and
the gain is higher than the cost for datasets that, like E#iesxhibit the intrinsic
property of having “socially close” nodes more likely to shéastes.

The performance gain of SOFIA on the Last.fm dataset is legdsrg. As Ta-
ble 3b demonstrates, SOFIA still outperforms PPR by a faofoR. However,
the performance of SOFIA and N-SOFIA are almost undistisigaible: with this
dataset, the loss of data that SOFIA suffers from not conisigdar away nodes,
and the added knowledge it gathers from the social netwailnioce each other out.
However, even in these circumstances, we argue that rutimnghole SOFIA, in-
stead of N-SOFIA alone, pays off: as we shall demonstrateaméext section, once
attacks are in place, SOFIA outperforms N-SOFIA by far, thie&ding the best re-
sults overall in terms of accuraendrobustness. Note that Table 3b also reports the
results of running SOFIA on an additional set of parameterw (abelled SOFIA
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(2)), in particular, with a lower value af; while accuracy becomes worse, we shall
demonstrate, in the next section, that robustness to atteomes better, as shorter
paths are considered, thus reducing the chance of trageasiattack region.

Robustness

As discussed in Section 4, we are interested in evaluatingnhoch an attacker,
with the ability of creating an unlimited number of Sybilgrcraise the ranking
of a given judgemenk. We assume that, while it is relatively cheap to create a
fully connected Sybil sub-network, it is costly for any Sylbde to enter the social
network of an honest node (i.e., to be directly trusted by @mekt user). We have
thus designed our experiments as follows: we have createthpletely connected
Sybil sub-network of 100 nodes, and attached it to the hqraesbf the web of trust
with a parametric numbek of attack edgeseach attack edge is given a weight of
1, and the honest node to which it connects is chosen at randlibi8ybil nodes
copy all the judgements given by a random “victif; and then create another
edge towards a malicious judgemenfin Last.fm, where judgements are weighted,
the weight is set as the maximum between the judgements efdtim). We then
study how the ranking oKX changes, before and after the attack, bottvamnd on
other random nodes in the netwofky different values of kOnce again, for each
algorithm and set of parameters, the results have beemeltaiith 1,000 instances
of the experiment. Note that the number of Sybil nodes is atgvant for PPR-
and SOFIA-like algorithms, where the impact of the attadkdimited by the total
ranking of the Sybil region. We have thus fixed the number dfilSyto 100, while
varyingk (which does influence the ranking of the Sybil region insjead

Table 4 shows how the ranking of malicious judgemx¥ntaries, with respect
to parametek, when enacting the attack on the Last.fm dataset (the sestithe
same experiment on the Citeseer dataset, not shown heeekoof space, are qual-
itatively equivalent, and all remarks expressed here die faa both datasets). The
o and parameters were the same as those used for the experimewts ishTa-
ble 3b. The first row of the table shows the rankingkoivhen no attack is in place.

Let us consider N-SOFIA and cosine-based collaborativerifilty (CF) first.
Since these algorithms do not take into account the sociatank, the number
of attack edgeg is irrelevant in these cases. As shown, the malicious jugggem
X comes always at the very top of the recommendations madédorictim node
V, even though, before the attack, such judgement was inipogt5K or above!
The ranking ofX becomes very high even for nodes who are not specifically un-
der attack, thus confirming the fact that both N-SOFIA anditi@nal collaborative
filtering techniques based on taste similarity only are lyighilnerable to Sybil at-
tacks. On the contrary, the impact of the attack on PPR is imardn this case,
being a victim is undistinguishable from being any node mnletwork, given that
individual opinions are not taken into consideration. As tible shows, even when
the Sybil region has conquered 100 attack edges, the rankthg malicious judge-
mentX is at position 2000 or above in 50% of the cases.
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Percentiles
Algorithm| k|Role 5] 10| 25| 50] 79| 90| 95
Any no attack2,5835,16512,91425,827%38,74146,48949,071
victim 1 1 1 1 1 1 1
N-SOFIA other 34/ 85 348 1,185 3,132 5,875 7,482
CE victim 1 1 1 1 1 1 1
other 25| 54| 214] 1,52227,367 —| -
1 2,2974,45910,73020,49333,327 - -
PPR 10 1,282,353 4,759 8,75713,37119,64826,846
100 334 559 1,092 2,012 3,101 4,434 5,290
1victim 6791,386 3,40611,18231,765 - -
other |2,2644,409 9,59919,18633,064 - -
SOFIA 10victim 41 1320 469 1,311 2,815 7,03934,725
other [1,0822,126 4,612 8,77914,71822,25426,959
100victim 1 2 13| 74 197 377 564
other 215 391 1,040 2,649 5,571 8,39510,179
victim 15| 46| 138 353 697 1,047 1,234
SOFIA (2 100Other 448 705 1,579 3,106 5,128 7,447 9,187

Table 4: Ranking of the “malicious judgement” after a Sybihekt on the Last.fm dataset.

The robustness of SOFIA is comparable to that of PPR whenidenirsg non-
victim nodes. The victim node clearly suffers instead, butchless than when
using N-SOFIA: for example, when the Sybil region has 10cattadges to the
honest part of the network, 50% of the times the maliciougégudentX is ranked at
around position 1300 or above by the victim node using SOFigtead of position
1 using N-SOFIA. The impact of the attack becomes non-nigdgidor victim nodes
running SOFIA once the number of attack edges reakhed 00. Note, however,
that this is a rather costly attack: in fact, it requiresking 1% of the 10,000-
node network into trusting dishonest nodes, and all thisreftist to change the
ranking of judgemenkX by a single nodé/, with X only gaining marginally in
other nodes’ viewpoints. This result supports the claim vealenat the end of the
previous section, that is, that running SOFIA pays off, astcuracy is at least as
good as that of N-SOFIA, but its robustness to Sybil attasksgay higher. Last but
not least, it is worth observing the impact of different aes of parameters on the
robustness of SOFIA; the last set of results shown in Table $hbtained using the
alternative set of parameters for SOFIA that were specifiethble 3b: while the
accuracy of the recommendations using this second set afrigders was shown
to be worse, the use of a lower value makes the system more attack-resilient.
As expected, there is a tradeoff between accuracy and rodssstand the desired
balance between the two features can be obtained by adjulkérparameters to the
specific characteristics and requirements of the domaiarad.h
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6 Conclusions

In this paper, we have proposedcial filtering a novel approach to realise accu-
rate and robust recommendation systems, based on a corobioftaste similarity
and user intent. We have illustrated SOFIA, our realisatibrocial filtering, and
demonstrated its accuracy against two real datasets, hasntd robustness against
attacks of different magnitude. As shown, SOFIA achievestibst results in sce-
narios where judgements are subjective, and where usdrsinitlar tastes tend to
form social ties.
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