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Abstract Digital content production and distribution has radicallychanged our busi-
ness models. An unprecedented volume of supply is now on offer, whetted by the
demand of millions of users from all over the world. Since users cannot be expected
to browse through millions of different items to find what they might like, filtering
has become a popular technique to connect supply and demand:trustedusers are
first identified, and their opinions are then used to create recommendations. In this
domain, users’ trustworthiness has been measured according to one of the follow-
ing two criteria:taste similarity(i.e., “I trust those who agree with me”), orsocial
ties (i.e., “I trust my friends, and the people that my friends trust”). The former
criterion aims at identifyingcompetentusers, but is subject to abuse by malicious
behaviours. The latter aims at detectingwell-intentionedusers, but fails to capture
the natural subjectivity of tastes. We argue that, in order to be trusted, users must be
bothwell-intentioned and competent. Based on this observation, we propose a novel
approach that we callsocial filtering. We describe SOFIA, an algorithm realising
this approach, and validate its performance, in terms of accuracy and robustness, on
two real large-scale datasets.

1 Introduction

In his 2006 bestseller “The Long Tail” [1], Chris Anderson emphasizes how digital
distribution has dramatically changed retailers’ business models. Traditional retail-
ers have a limited space they can use to stock items; market forces drive them to
carry only a limited number of items, in particular, those that have the best chance
to sell, thus losing less popular ones. With the advent of theInternet, retailers are
not bound by the same physical constraints, so that a much wider variety of items
can be offered from the ‘long tail’. As a result, while a traditional bookshop can
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hardly be expected to sell more than 100,000 different titles, an online service such
as Amazon.com can offer its costumers millions of differentproducts. However, as
Anderson points out, providing people with a massive choiceis pointless, if that
means they have to browse through thousands, or even millions, of potentially rele-
vant items. Rather, people must be assisted in finding what they want. Filters can be
used toconnect supply and demand, making it easier for users to find the particular
content that they would enjoy.

The most popular technique to realise this connection is collaborative filtering
(CF) [7]. Most of the work on collaborative filtering has beenfocusing on iden-
tifying users with similar preferences, and then recommending items that people
with similar tastes have approved. Traditional collaborative filtering techniques have
worked quite well for the mass market and under the assumption of collaborative
behaviours. However, these techniques have been subject toabuse by malicious be-
haviours [11]: for example, malicious users could copy honest users’ reviews, to
gain high similarity scores with them; they could subsequently inject inflated re-
views in the system, to trick those users into buying an item or, viceversa, to disrupt
an item’s sales.

We argue thataccurateandrobustfiltering techniques can be devised by exploit-
ing information from a user’s social network. We call this approachsocial filtering.
The core idea is to give higher weight to recommendations received fromtrusted
users. To be trusted, a user must be bothwell intentionedandcompetent. Traditional
collaborative filtering techniques focus only on competence (i.e., the ability to give
useful - in a subjective way - recommendations), without considering the fact that
competent users may indeed be malicious. Rather than relying on all recommenda-
tions from similar (i.e., competent) users, our approach specifically looks for well-
intentioned users (i.e., users who are willing to provide honest recommendations)
among those with whom we have stronger social relationships.

Social ties are a warranty against malicious behaviors: if the trust inference algo-
rithm is robust, it would be very costly for an attacker to build enough friendships
with ‘honest’ users to effectively subvert the system. Indeed, the robustness of CF
systems is usually measured in terms of the proportion of malicious nodes in the
network, under the assumptions that attackers are not able to create unlimited new
identities at will, and they are not aware of the judgements expressed by each peer
[18, 2, 16, 15]. In our approach, these assumptions can be dropped, and the impact
of an attack becomes limited by the “intent” ranking of the attacker, which is in turn
determined only by the connectivity of malicious nodes in the social network.

The remainder of the paper is structured as follows: Section2 describes the con-
cept motivating social filtering, focusing on the two distinct aspects of intent and
competence. In Section 3 we discuss SOFIA (SOcial FIlteringAlgorithm), that is, a
specific realisation of social filtering. In Section 4 we analyse attacks against which
filtering must defend itself, and in Section 5 we demonstratethe accuracy and ro-
bustness of SOFIA against two large real dataset, namely Citeseer and Last.fm.
Finally, Section 6 concludes the paper.
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2 Philosophy of the Approach

Social filtering relies on the identification oftrustedrecommenders. In the scope
of this work, we call trusted a recommender that is both well-intentioned and com-
petent. The three questions we are thus trying to answer are:(1) how to evaluate
intention; (2) how to evaluate competence; and (3) how to combine this information
to find trusted recommenders.

Intent - Trust over Users
We define intent as the thewillingnessof a user to provide honest judgements1,
differentiating “spammers” from people who are legitimately using the application.
Note that a judgement given with good intent is not necessarily useful, since users
may have different tastes and preferences; this section will illustrate how to find
competent users among well-intentioned ones.

Users’ intent can be represented as aweb of trust, that is, as a a directed graph
where nodes are users and an edge from userA to B indicates thatA considersB a
well-intentioned one; in other words,A trustsB. Webs of trust are thus instances of
social networks where links represent assessments on the behaviour of nodes rather
than simple acquaintance.

The web of trust can be built in many different ways. For example, by means
of explicit social network creation (e.g., “Add as a friend”in sites like MySpace or
FaceBook); using email/phone-book contacts; via automated creation as described
in ReferralWeb [9], and so on. We are not concerned with what specific technique
is used to create the web of trust; however, we expect it to be difficult, for malicious
nodes, to obtain endorsements from honest ones: this condition is key for the ro-
bustness of social filtering. For this reason, we discouragethe creation of the web of
trust via automated matching purely based on users’ similarity.

The web of trust can then be traversed in order to obtainreputation2 information
about users we do not directly know and trust. We propose to doso by means of the
transitive trust propagation pattern. A peerA obviously trusts the nodes that can be
reached from itself via an edge; sinceA believes these nodes behave honestly, their
recommendations for other nodes are believed byA to some extent, and some trust
is propagated to them. The pattern repeats iteratively, propagating trust to all nodes
reachable with a directed path starting fromA.

The principle of trust transitivity has been criticized since the judgement of who
deserves trust is subjective [12, 8] (i.e., we are not guaranteed to like all the friends
of our friends). However, we argue that benevolent intent (unlike competence) is a
concept where subjectivity does not apply strongly. Moreover, if the web of trust is

1 In the following, we will use the more general term ‘judgements’,instead of ‘recommendations’,
as our approach is equally applicable to recommendations (i.e., endorsements of products or con-
tent) as to ‘negative’ or purely informative judgements (e.g., “avoid that restaurant” or “this is
relaxing music”).
2 We use the word ‘reputation’ here in its most general sense, that is,‘the estimation in which a
person or object is held by the community or public’ (source: Oxford Dictionary)
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built using evaluations of past behavior, reputation provides incentives to coopera-
tion via reciprocative behavior [17, 4].

Competence - Trust over Judgements
Together with intent, competence is a key component in evaluating the trustworthi-
ness of recommenders. In this work, we definecompetentthose users who are able
to make correct judgments; since the definition of “correct”judgments is inherently
subjective, competence is a subjective matter as well.

A sensible way of evaluating competence is via the so calledco-citation pattern.
A bipartite graph is used to represent anetwork of judgments: users (e.g.,{A,B})
and judgments (e.g.,{X,Y}) form two disjoint sets of vertices; an edge(A,X) is
present if userA expressed the judgmentX. If usersA andB agree on judgmentX
(i.e., there exist edgesA→ X andB→ X), thenA may considerB a competent user.
Using the co-citation pattern, she may thenpropagate trust over competenceon the
other judgements thatB expressed.

However, users’ competence is not sufficient to warrant trust to their judgements.
For instance, let us consider a malicious user Mallory, wishing to trick Alice in
believing a dishonest judgementZ stating that “Mallory’s Greasy Restaurant offers
very good food”. In order to do so, Mallory could simply copy Alice’s judgements;
using the co-citation trust propagation pattern, Alice would deem Mallory a very
competent evaluator, and would consequently believe/trust judgementZ too.

We argue that competence should thus be combined with intentto identify trust-
worthy recommenders, that is, recommenders who are willing to provide us with
honest judgements and that we are likely to find useful.

The Combined Approach
As discussed above, using thetransitivity trust propagation pattern alone is not
enough, as subjectivity of tastes, which is an intrinsic characteristic of judgements,
is lost. On the other hand, using theco-citation trust propagation pattern alone is
subject to abuse by malicious users.

We propose a novel approach that combines the strengths of the two patterns,
while circumventing their individual weaknesses: we exploit the transitivity trust
propagation pattern on the web of trust to determine well intentioned users, and the
co-citation trust propagation pattern on the network of judgements to evaluate their
competence. By so doing, we are capable of inferring trust over judgements, in a
way that is both accurate and robust. The underpinning idea is that, in order to be
trusted, a judgement must have been expressed by a user who isbothwilling (intent)
andable (competence) to give useful judgements. We call the new approachsocial
filtering. Based on the interpretation of trust propagation over intent and competence
we gave in the previous two sections,A can infer trust for a judgementY expressed
by a userD (Fig. 1) if:

1. there exists a directed path fromA toD in the web of trust (e.g.,A→B→C→D);
2. A andD both expressed at least one common judgement (e.g.,X).
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Fig. 1: Combined trust-propagation approach.

This is the first approach that aims at increasing the utilityof recommendations,
by exploiting information coming from the social networkand from individual’s
preferences at the same time. We are aware of only two other works where the tran-
sitivity and co-citation trust propagation patterns have been used together, but with
rather different goals and following a different philosophy: in [6], trust is propagated
usingeitherco-citation or transitivity in a social network where linksrepresent sim-
ilarity in preferences; in [14], the transitive trust propagation pattern is used as an
alternative tothe co-citation pattern, in order to bootstrap trust when traditional
user similarity cannot be computed, again because of lack ofinformation. These
approaches work well in those scenarios where there is a strong correlation between
social ties and individual preferences. On the contrary, our approach is best suited
to those scenarios where the social network is not just a surrogate of users’ prefer-
ences. As we shall demonstrate in Section 5, when separate information is available
about the web of trust and judgements, an approach that reasons about intent and
competenceat the same timecan yield the biggest increase in the utility of recom-
mendations, even in the absence of malign behavior. Before doing so, we discuss
how we have realised social filtering in practice.

3 Realization of the Approach

In the previous section, we have introduced social filteringfrom a conceptual view-
point, highlighting the advantages of propagating trust over both intent and compe-
tence, in order to give userstrusted judgements. To be of practical use, an implemen-
tation of social filtering would need to attribute a numeric value to theamountof
trust a judgement deserves. This would ultimately allow users to rank judgements
and/or to filter out unreliable ones. In this section, we describe how the transitive
and co-citation patterns have been uniquely combined in SOFIA, our own imple-
mentation of social filtering. In describing our implementation, we will refer to the
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general case of weighted social networks, with weights expressing the strength of
social ties. The user-judgement edges can be weighted as well, representing the level
of confidence of a user towards a given judgement. The unweighted case is just a
specific instance of the more general one, with all instancesof trust relationships
and/or judgements having the same weight.

Evaluating Intent
There exist various algorithms to quantify the amount of trust that is propagated
transitively on a weighted social network. Desirable properties that most algorithms
guarantee are:longer paths disperse trust(i.e., if there is a trust pathA→ . . .→B→
C, then the amount of trust inferred fromA toC is not greater than the trust inferred
from A to B); adding paths increases trust(i.e., if there are two paths from A to B,
then the trust that A infers for B is at least as high as if only one path was present).

A popular approach that guarantees these properties is the simulation of a random
walk on the web of trust, as done by PageRank [19], the algorithm used by Google
for ranking search results. The algorithm considers a random walk over the graph
of WWW pages and their links, starting from a random node and stopping with a
probability 1−α at each step. Nodes are then ranked according to the probability
that this random walk stops at them3. Pages that receive many incoming links, and
pages that are being linked by another heavily-linked page,are then ranked higher.
Intuitively speaking, the same approach could be used to propagate trust over a
social network: the higher the number of paths (equivalent to links) leading to a
node (equivalent to a WWW page), the more reputable the node is assumed to be
(the higher it ranks).

The standard version of PageRank misses on subjectivity, asit ranks pages re-
gardless of the evaluating node. As a consequence, any node in the system would
propagate trust to a nodeX in the same way. To obtain a subjective version of the
algorithm, two simple changes are required: first, we force the starting point of the
random walk to be the evaluating node itself (thus avoiding walks that originate at
malicious nodes); second, rather than having the same probability of jumping to an-
other node (as done in the original version of PageRank), we chose such probability
to be proportional to the weight (i.e., the strength) of the edge itself. A walk starting
at A will thus result in trust propagation fromA’s subjective viewpoint only. This
modified version of the original algorithm is sometimes referred to asPersonalised
PageRank(PPR).

Note that the original version of PageRank is subject to Sybil attacks4 [5, 3]: in
scenarios where new virtual identities can be cheaply created, a malicious nodeS0

could create an unlimited number of siblingsS1,S2, . . ., add a web of strong (fake)
ties betweenS0 and its Sybil nodesSi to the social network, and exploit this setup
to gain a disproportionately large trust. To defend againstthis type of attack, trust
propagation algorithms should limit the amount of trust gained by any Sybil nodeSi

3 The most common PageRank definition corresponds to theequilibrium distributionof a random
walk, with a 1−α probability of jumping to a random node. The two definitions are equivalent.
4 This style of attack is also known as ‘shilling’ in recommender systems, ‘profile injection’ in
collaborative filtering, and ‘web spamming’ in webpage ranking.
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by a function of the trust thatS0 has ‘legitimately’ gained. Personalised PageRank
does exactly so: an attackerS0 can only divert, towards the Sybil region, those paths
that pass throughS0 itself; if the probability that a random walk reachesS0 is p, then
the cumulative value of all one-step paths fromS0 is α p; for two steps, it isα2p, and
so on. Thus, the maximal total rank for the Sybil region amounts to∑∞

i=0 α i p= p
1−α .

Theα parameter thus influences the resilience to Sybil attacks: the lower the value
of α, the better the robustness. Low values ofα also increase subjectivity, as they
reward short paths over long ones, while whenα approaches 1 the outcome of the
algorithm becomes more and more similar, regardless of the initiator node. Finally,
the lower the value ofα the faster the convergence speed of the algorithm (withα =
0.5, more than 99.9% of the overall ranking weight comes from paths of length up to
10). Note, however, that low values ofα may cause honest nodes who are ‘socially
far-away’ not to be considered, thus discarding potentially useful information. This
may affect the accuracy of our algorithm, with respect to traditional collaborative
filtering techniques where the full dataset is considered instead. We will analyse
optimal choices ofα with respect to accuracy vs. robustness in Section 5.

In our realisation of social filtering, we have chosen to deploy Personalised Page-
Rank to quantify the transitive trust propagation over the social network, as it com-
bines our requirements of subjectivity and robustness.

Evaluating Competence
The co-citation trust propagation pattern has been widely studied and applied to the
problem of ranking Web pages. One of the most famous algorithms realising this
pattern is HITS [10]. HITS conceptually divides pages in twosubsets: authorities
(i.e., pages whose content satisfy the query), and hubs (i.e., pages that link to rel-
evant documents, that is, to authorities). Using an iterative process, HITS traverses
the linkage structure of Web documents, and computes both a hub weight and an
authority weight for each visited page at every step, so that:

1. Forward Step (from hubs to authorities): the weight givento an authority is pro-
portional to the sum of the weights of those hubs linking to it;

2. Backward Step (from authorities to hubs): the weight given to a hub is propor-
tional to the sum of the weights of those authorities being linked by it.

If weights expressing confidence are present in the network of judgements, they can
be used as a multiplicative factor (i.e., a link with weight 2acts as two separate links,
each with weight 1). The process continues (renormalizing scores at every iteration)
until it converges, and the top ranking pages, according to their authority scores, are
then returned.

The principle behind HITS is that good hubs link good authorities, and good
authorities are linked by good hubs, in a mutually reinforcing way. We argue that the
same principle holds in our scenario, where we can expect competent users to give
valuable judgements, and valuable judgements to be given bycompetent users. If we
map users to hubs and judgements to authorities, we can run anHITS-like iterative
algorithm to rank judgements, which is our ultimate goal. This would not realise our
social filtering method though, as the following caveats must be addressed first.
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(1) Solving the TKC Problem.It has been demonstrated that the HITS algorithm
suffers from the “Tightly Knit Community” (TKC) syndrome [13]: if a community
of users all gave the same (or very similar) judgements (thusresulting in a highly
connected bipartite graph), the competence weight of the community would dis-
proportionately increase, with the judgements they express being excessively high-
ranked, even if they are not authoritative. A set of malicious users could thus artifi-
cially create a TKC in order to artificially boost their ranking. To solve this problem,
we adopt the solution proposed in SALSA [13]: we divide the weight that each hub
transfers at each forward step by its outdegree (the sum of weights on outgoing
edges), and we do the same for authorities and their indegreeat each backward step.
After a forward step, the total weight transferred from a single hub to its linked au-
thorities is thus equal to the weight on that hub; viceversa,after a backward step,
the total weight that is redistributed from a single authority to the set of hubs linking
to it equals the weight gained by the authority. Thus, the sumof weights remains
constant at every step, removing the need for normalization. A very desirable side-
effect of this alteration is that users who express “niche” judgements are rewarded
more than those expressing only mainstream (redundant) ones.

(2) Subjectivity of Ranking.HITS-like algorithms provide non-subjective results,
as they are independent of the userA starting the search. To cater for the subjectivity
required by our scenario, we initialize the algorithm so that the only hub (user) with
a non-zero weight is the reference nodeA itself (instead of assigning an equal weight
to any hub in the network). In so doing, the first forward step of the algorithm only
considers the judgements given by the reference node, thus tailoring the ranking
results to his/her tastes. To limit the propagation of trustto judgements that are too
dissimilar from the tastes ofA, after each backward step, the weights associated
to each user are multiplied by a parameterβ ∈ (0,1), and the trust given toA is
increased by 1− β . These two changes are similar, in spirit, to the modifications
already suggested for PageRank, where we forced the random walk to start from
the very same node; theβ parameter plays the same role thatα plays in PageRank,
ensuring the convergence of the algorithm, with lower values of β impling faster
convergence and higher subjectivity.

(3) Catering for Well-Intentioned Users.As discussed in Section 2, trust propaga-
tion over competence alone is susceptible to attacks. We propose to add robustness
to HITS-like algorithms, by incorporating users’ intent assessment as follows. To
begin with, Personalised PageRank is run on the social network, thus obtaining a
vector with nodes’ reputation, as seen by the reference nodeA. We then run the sub-
jective HITS-like algorithm, so that, at every backward step, trust is redistributed
from judgements to users in a way that isproportional to users’ intent, as measured
by PPR. In other words,reputation becomes a multiplicative factor for backward
trust propagation. As discussed in Section 3, a Sybil coalition can obtain onlya
limited amount of trust from the social network, so the amount of trust that can be
transferred to malicious nodes is limited too.

We call the algorithm that results from modifying the HITS-like approach in the
three ways described above SOFIA, that is, SOcial FIlteringAlgorithm. The result-
ing pseudocode is shown in Algorithm 1. The result of runningSOFIA is a vector
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Algorithm 1 SOFIA.
Parameters: a judgement bipartite networkG = (V,E), whereV is the union of the set of users
U and the set of judgementsJ; an evaluating nodeA∈U ; weights such thatwu j is the weight of
edge(u, j); an intent ranking vectorr computed using Personalised PageRank over the web of
trust, so thatru is the intent ranking of useru; a 0< β < 1 parameter.
Returns: a trust vector̂t such that̂t j is the trust ranking of judgementj.
n⇐ size ofU ;m⇐ size of J;t ⇐ 0n; tA ⇐ 1
while algorithm has not convergeddo

{Forward Step: from users to judgements}
t̂ ⇐ 0m

for all (u, j) ∈ E do

t̂ j ⇐ t̂ j +
wu j

∑k∈J wuk
tu

end for
{Backward Step: from judgements to users}
t ⇐ 0n; tA ⇐ 1−β
for all (u, j) ∈ E do

tu ⇐ tu +β
wu jru

∑v∈U wv jrv
t̂ j

end for
end while
return t̂

t̂ containing atrust numeric value for each judgement inJ, computed considering
both the intent and the competence of the users inU , as seen by the reference nodeA.
The normalization parameters (∑k∈J wuk, ∑v∈U wv jrv) can be calculated outside the
loops, so the computational cost of the full algorithm is proportional to the number
of edges inE times the number of iterations of the algorithm.

4 Attack Model

In order to validate our social filtering algorithm, we have conducted a variety of
experiments on two very large real datasets. While ideal to measure accuracy, real
datasets are unsuitable to test the robustness of the algorithm while varying threat
intensity. To demonstrate the robustness of SOFIA, we thus have to manually inject
attacks on top of real datasets, and run experiments under different configuration
settings. In this section, we analyse threat strategies, leaving their enactment and
corresponding experimental validation to Section 5.

In the scenario we are considering, the most plausible goal of an attacker would
be to alter the rating of a certain judgementX. It may do so either to trick a single
userA, or more extensively to deviate the judgements of all users,in favour of (or
against)X. Let us analyse how an attacker could achieve such goal. In the first case,
since the attacker wants to be rated byA as a very competent user, it could first copy
the judgements thatA expressed, and then add a new judgementX. In the second
case, there is no single set of judgements the attacker can copy, as each user would
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have expressed different ones: copying popular judgementswould yield to very little
reward, as a consequence of our strategy to reward users who gave niche judgements
more; on the contrary, copying ‘niche’ judgements would yield to very high appeal,
but to rather few users. We will thus model this attack as we modeled the targeted
attack, that is, by copying the judgements of a randomly chosen nodeA and adding
the judgement forX; however, rather than studying the impact of the attack onA,
we will study the ‘collateral damage’ that the attack has on other users.

To increase the impact of the attack itself (i.e., to increase the ranking of judge-
mentX), we also consider the case of an attacker who has the abilityto create an
unlimited number of Sybil identities, all endorsingX. We assume that each Sybil
can create any number of outgoing edges in the web of trust, from the Sybil node
to any other user. They can also create any number of incomingedges, originat-
ing within the Sybil coalition. However, what they cannot dois create incoming
edges from honest nodes at will, since obtaining trust from well-intentioned peers is
costly. It is thus reasonable to expect a low cut between the “honest” and the “Sybil”
region [20]. In our experiments, we will thus create Sybil regions that are highly in-
terconnected internally; we will then set the amount of incoming links from honest
nodes as a parameter, and analyse the robustness of SOFIA (i.e., how highly ranked
canX become) against it.

5 Experimental Validation

We have evaluated SOFIA along two dimensions: accuracy and robustness against
Sybil attacks. Both experiments were conducted using data from two real datasets:
the Citeseer online scientific digital library, and the Last.fm music and social net-
working website. The key characteristics of these datasetsare briefly summarised
below.

The Datasets
Citeseer (http://citeseer.ist.psu.edu/oai.html) is an online sci-
entific literature digital library, containing over 750,000 documents. From this
repository, we have extracted a social network based on the co-authorship relation:
if A andB have co-authoredn papers together, then an edge between the two will
be added to the social network, with weightn. The judgement network is built from
the citations instead: if a paperX authored byA cites paperY, then an (unweighted)
edge fromA to Y is added to the judgement network; the rationale is that, by citing
Y, the authors ofX have expressed the judgement “Y is relevant with respect to the
topic discussed inX”. To obtain a more manageable subset of the whole network,
we isolated a highly-clustered subset of 10,000 authors, and took in consideration
only the papers that had them as authors. The result is a set of182,675 different
papers; 48,998 of them received at least one citation by one of the others.

Last.fm (http://last.fm/) is a “social music” website that creates profiles
of musical tastes, by tracking which songs users listen moreoften to. Users explic-
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itly create a social network by adding other users to their friend-list. We gathered
our social network with a breadth-first crawl of 10,000 usersusing the Audioscrob-
bler Web Services available athttp://www.audioscrobbler.net/data/
webservices/. We then considered the 50 most listened artists of each user, and
ended up with a total of 51,654 different artists. The judgement network was finally
created by linking users to their most listened artists (thus representing the judge-
ment “userA likes to listen to songs byX”), and by weighting each judgement edge
with the number of times the user listened to songs by that artist.

Accuracy
To assess the accuracy of SOFIA in giving recommendations, we performed the
following experiment on both datasets: we “hid” one random edgeA→ X from the
judgement network, run SOFIA on the modified network, and used its output (i.e.,
a vector of weights) to rank all judgements fromA’s viewpoint; this is equivalent
to producing recommendations, tailored toA, based on the computed ranking of
judgements. SinceX is a judgement thatA expressed (before we hid it),A obviously
approves of it, so a good recommendation engine should return X at a very high
ranking. Thus, the highest the position ofX in the ranked list of judgements, the
better the accuracy of the ranking algorithm. In the Citeseer dataset, the experiment
is equivalent to guessing a missing citation from a paper; inLast.fm, it means finding
the missing artist in the top-50 chart of a user. In the following, all the results shown
(for a given algorithm and set of parameter) were computed from 1,000 individual
instances of the experiment.

The first set of experiments aimed at analysing the impact that the two differ-
ent trust propagation patterns (transitivity and co-citation) individually had on pre-
diction accuracy; at the same time, we wanted to quantify theeffect that different
choices of parameters had on it (namelyα, β and the number of iterations). We thus
separated the two “halves” of SOFIA into:

Personalised PageRank (PPR): each useru is first ranked using PPR; the ranking
ru is then simply divided between all the judgementsu has expressed (propor-
tionally to the edge weight). PPR thus enables us to measure the impact of trust
transitivity, while disregarding the network of judgements;

Non-SOcial FIltering Algorithm (N-SOFIA): all nodes in the web of trust are
given equal intent ranking, instead of relying on the PPR output. N-SOFIA thus
enables us to study the impact of the co-citation pattern while disregarding the
social network.

The first parameter we have studied is thenumber of iterationsneeded to ob-
tain satisfying results. Table 1 shows the percentiles of the ranking of the “hidden”
judgements, when running both PPR and N-SOFIA on the Citeseer dataset, withα
andβ parameters chosen to optimize the results. As the table shows, a rather small
number of iterations is enough to obtain very good results: for instance, after 10
iterations, 10% of the hidden judgements can be found in the top 2 returned results
(i.e., recommendations) of PPR, and at the very top for N-SOFIA; half of the hid-
den judgements (50th percentile) were returned within the top 29 recommendations
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Ranking percentiles
Algorithm Iterations5 10 25 50 75 90 95

PPR (α = 0.3)
3 1 2 8 32 161 4,293 –
5 1 2 8 30 115 1,709 11,609

10 1 2 7 29 141 3,34120,287

N-SOFIA (β = 0.05)
3 1 1 3 12 67 1,060 –
5 1 1 3 12 63 1,136 –

10 1 1 3 11 72 1,020 –

Table 1: Hidden judgement ranking of PPR and N-SOFIA (best results in bold) with different
numbers of iterations on the Citeseer dataset.

made by PPR, and in the top 11 by N-SOFIA, and so on5. In the following, the
number of iterations for both parts of the algorithm has beenset to 5.

We then studied the impact that parametersα andβ had on the accuracy of PPR
and N-SOFIA on the specific datasets at hand6. Tables 2a and 2b report the results
for different values ofα on PPR, and ofβ on N-SOFIA, respectively. The key
observation obtained from these numbers is that, on both datasets, N-SOFIA per-
forms better than PPR, suggesting that the information on tastes is more valuable
than the information that can be inferred from the social network. On both datasets,
the optimal value forβ is much lower than the optimal value forα, suggesting
that taste similarity propagates effectively on short paths only. Also, the optimal
values forα are remarkably lower in our experiments than the “traditional” rec-
ommendedα = 0.85 for PageRank, reflecting the fact these datasets reward higher
subjectivity. We have also compared the accuracy of N-SOFIAwith traditional Col-
laborative Filtering techniques (in particular, using thecosine-based similarity mea-

Ranking percentiles
Dataset α 5 10 25 50 75 90

Citeseer
0.2 1 2 8 33 132 3,076
0.3 1 2 8 30 115 1,709

0.85 2 4 11 48 242 3,473

Last.fm
0.3 5 14 75 361 2,107 15,064
0.5 5 12 66 344 2,18816,025

0.85 5 14 71 367 2,28915,648

(a)

Ranking percentiles
Dataset β 5 10 25 50 75 90

Citeseer
0.02 1 1 3 14 87 2,820
0.05 1 1 3 12 63 1,136
0.3 1 1 4 17 93 1,603

Citeseer (CF) – 1 1 3 15 88 –

Last.fm
0.01 2 6 32 157 822 3,954
0.1 5 13 58 269 1,30510,599
0.3 8 20 89 404 1,742 9,878

Last.fm (CF) – 3 8 36 204 1,061 7,735

(b)

Table 2: (a) Impact ofα on hidden judgement ranking with Personalised PageRank. (b) Impact of
β on hidden judgement ranking with N-SOFIA.

5 Note that the judgements returned with ranking higher than ofX are not mistakes: they are simply
other recommendations that these algorithms compute but, given that such judgements were never
made byA (unlikeX), we have no way of measuring how accurate those are.
6 Note that a single optimal choice of these parameters do not exist,as they intrinsically depend on
the characteristics of the dataset (in terms of “level of transitivity”).
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Ranking percentiles
Algorithm 5 10 25 50 75 90 95

SOFIA 1 1 1 4 31 855 –
N-SOFIA 1 1 3 12 63 1,136 –
PPR 1 2 8 30 115 1,70911,609

(a)

Ranking percentiles
Algorithm 5 10 25 50 75 90 95

SOFIA 2 6 32 174 992 7,429 –
SOFIA (2) 3 8 46 240 1,34711,919 –
N-SOFIA 2 6 32 157 822 6,954 –
PPR 5 12 66 344 2,18816,025 –

(b)

Table 3: (a) Hidden judgement ranking comparison on the Citeseerdataset. Theα andβ parameters
were tuned for best performance (α = 0.5, β = 0.3 for SOFIA,β = 0.05 for N-SOFIA,α = 0.3
for PPR). (b) Hidden judgement ranking comparison on the Last.fmdataset (α = 0.9 andβ = 0.05
for SOFIA,α = 0.5 andβ = 0.1 for SOFIA (2),β = 0.01 for N-SOFIA,α = 0.5 for PPR).

sure): given that N-SOFIA produces recommendations based only on the network
of judgements, while discarding social relations, we expect N-SOFIA and tradi-
tional CF to exhibit similar accuracy. As Table 2b illustrates (rows labeled CF), the
accuracy is indeed comparable on both datasets. Note that attacks have not been
considered yet: once introduced, results will change dramatically, with approaches
based on competence only (i.e., CF-like techniques) suffering the most.

As a final set of experiments, we have compared the accuracy ofPPR and N-
SOFIA with SOFIA, under the best choice of parameters for both datasets. Re-
sults are shown in Tables 3a and 3b, for Citeseer and Last.fm respectively. Using
the Citeseer dataset, SOFIA outperforms both algorithms, with 50% of the hidden
judgements being ranked in the top 4 positions, against 12 for N-SOFIA and 30
for PPR. The accuracy gain of SOFIA is perhaps more striking when considering
up to 75% of the hidden judgements: using SOFIA, a user would find the hidden
judgement in the the top-30 list of recommended papers, while using PPR the top-
115 would have to be investigated. Of particular relevance is the observation that,
even now that malicious attacks arenot considered, SOFIA outperforms N-SOFIA,
despite the fact that SOFIA throws away (potentially useful) information coming
from (honest) socially far-away nodes. This means that SOFIA effectively exploits
knowledge gathered from the social network to counter-balance this loss of data, and
the gain is higher than the cost for datasets that, like Citeseer, exhibit the intrinsic
property of having “socially close” nodes more likely to share tastes.

The performance gain of SOFIA on the Last.fm dataset is less striking. As Ta-
ble 3b demonstrates, SOFIA still outperforms PPR by a factorof 2. However,
the performance of SOFIA and N-SOFIA are almost undistinguishable: with this
dataset, the loss of data that SOFIA suffers from not considering far away nodes,
and the added knowledge it gathers from the social network, balance each other out.
However, even in these circumstances, we argue that runningthe whole SOFIA, in-
stead of N-SOFIA alone, pays off: as we shall demonstrate in the next section, once
attacks are in place, SOFIA outperforms N-SOFIA by far, thusyielding the best re-
sults overall in terms of accuracyandrobustness. Note that Table 3b also reports the
results of running SOFIA on an additional set of parameters (row labelled SOFIA
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(2)), in particular, with a lower value ofα; while accuracy becomes worse, we shall
demonstrate, in the next section, that robustness to attacks becomes better, as shorter
paths are considered, thus reducing the chance of traversing an attack region.

Robustness

As discussed in Section 4, we are interested in evaluating how much an attacker,
with the ability of creating an unlimited number of Sybils, can raise the ranking
of a given judgementX. We assume that, while it is relatively cheap to create a
fully connected Sybil sub-network, it is costly for any Sybil node to enter the social
network of an honest node (i.e., to be directly trusted by an honest user). We have
thus designed our experiments as follows: we have created a completely connected
Sybil sub-network of 100 nodes, and attached it to the honestpart of the web of trust
with a parametric numberk of attack edges; each attack edge is given a weight of
1, and the honest node to which it connects is chosen at random. All Sybil nodes
copy all the judgements given by a random “victim”V, and then create another
edge towards a malicious judgementX (in Last.fm, where judgements are weighted,
the weight is set as the maximum between the judgements of thevictim). We then
study how the ranking ofX changes, before and after the attack, both onV and on
other random nodes in the network,for different values of k. Once again, for each
algorithm and set of parameters, the results have been obtained with 1,000 instances
of the experiment. Note that the number of Sybil nodes is not relevant for PPR-
and SOFIA-like algorithms, where the impact of the attackeris limited by the total
ranking of the Sybil region. We have thus fixed the number of Sybils to 100, while
varyingk (which does influence the ranking of the Sybil region instead).

Table 4 shows how the ranking of malicious judgementX varies, with respect
to parameterk, when enacting the attack on the Last.fm dataset (the results of the
same experiment on the Citeseer dataset, not shown here for lack of space, are qual-
itatively equivalent, and all remarks expressed here are valid for both datasets). The
α andβ parameters were the same as those used for the experiments shown in Ta-
ble 3b. The first row of the table shows the ranking ofX when no attack is in place.

Let us consider N-SOFIA and cosine-based collaborative filtering (CF) first.
Since these algorithms do not take into account the social network, the number
of attack edgesk is irrelevant in these cases. As shown, the malicious judgement
X comes always at the very top of the recommendations made for the victim node
V, even though, before the attack, such judgement was in position 2.5K or above!
The ranking ofX becomes very high even for nodes who are not specifically un-
der attack, thus confirming the fact that both N-SOFIA and traditional collaborative
filtering techniques based on taste similarity only are highly vulnerable to Sybil at-
tacks. On the contrary, the impact of the attack on PPR is marginal. In this case,
being a victim is undistinguishable from being any node in the network, given that
individual opinions are not taken into consideration. As the table shows, even when
the Sybil region has conquered 100 attack edges, the rankingof the malicious judge-
mentX is at position 2000 or above in 50% of the cases.
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Percentiles
Algorithm k Role 5 10 25 50 75 90 95

Any no attack2,5835,16512,91425,82738,74146,48949,071

N-SOFIA
victim 1 1 1 1 1 1 1
other 34 85 348 1,185 3,132 5,875 7,482

CF
victim 1 1 1 1 1 1 1
other 25 54 214 1,52227,367 – –

PPR
1 2,2974,45910,73020,49333,322 – –

10 1,2852,353 4,759 8,75713,37119,64826,846
100 334 559 1,092 2,012 3,101 4,434 5,290

SOFIA

1
victim 679 1,386 3,40611,18231,765 – –
other 2,2644,409 9,59919,18633,064 – –

10
victim 41 132 469 1,311 2,815 7,03934,725
other 1,0822,126 4,612 8,77914,71822,25426,959

100
victim 1 2 13 74 197 377 564
other 215 391 1,040 2,649 5,571 8,39510,179

SOFIA (2) 100
victim 15 46 138 353 697 1,042 1,234
other 448 705 1,578 3,106 5,128 7,447 9,187

Table 4: Ranking of the “malicious judgement” after a Sybil attack on the Last.fm dataset.

The robustness of SOFIA is comparable to that of PPR when considering non-
victim nodes. The victim node clearly suffers instead, but much less than when
using N-SOFIA: for example, when the Sybil region has 10 attack edges to the
honest part of the network, 50% of the times the malicious judgementX is ranked at
around position 1300 or above by the victim node using SOFIA,instead of position
1 using N-SOFIA. The impact of the attack becomes non-negligible for victim nodes
running SOFIA once the number of attack edges reachesk = 100. Note, however,
that this is a rather costly attack: in fact, it requires tricking 1% of the 10,000-
node network into trusting dishonest nodes, and all this effort just to change the
ranking of judgementX by a single nodeV, with X only gaining marginally in
other nodes’ viewpoints. This result supports the claim we made at the end of the
previous section, that is, that running SOFIA pays off, as its accuracy is at least as
good as that of N-SOFIA, but its robustness to Sybil attacks is way higher. Last but
not least, it is worth observing the impact of different choices of parameters on the
robustness of SOFIA; the last set of results shown in Table 4 are obtained using the
alternative set of parameters for SOFIA that were specified in Table 3b: while the
accuracy of the recommendations using this second set of parameters was shown
to be worse, the use of a lowerα value makes the system more attack-resilient.
As expected, there is a tradeoff between accuracy and robustness, and the desired
balance between the two features can be obtained by adjusting the parameters to the
specific characteristics and requirements of the domain at hand.
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6 Conclusions

In this paper, we have proposedsocial filtering, a novel approach to realise accu-
rate and robust recommendation systems, based on a combination of taste similarity
and user intent. We have illustrated SOFIA, our realisationof social filtering, and
demonstrated its accuracy against two real datasets, as well as its robustness against
attacks of different magnitude. As shown, SOFIA achieves the best results in sce-
narios where judgements are subjective, and where users with similar tastes tend to
form social ties.
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