
MoSCA: Seamless Execution of
Mobile Composite Services

Lucia Del Prete
Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
L.DelPrete@cs.ucl.ac.uk

Licia Capra
Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
L.Capra@cs.ucl.ac.uk

ABSTRACT
We envisage tomorrow’s services to become increasingly per-
vasive, being deployed within buildings, transport systems,
markets, as well as people portable devices. Such services
will be, by their own nature, simple and fine grained; as a
consequence, service composition will become crucial to de-
liver rich functionalities that satisfy end users’ requests. The
higher the dynamic nature of the environment, the higher
the chances that services will move out-of-reach before the
composition completes, causing the service as a whole to fail.
We argue that, in order to enable the successful provision of
compound services in mobile environments, the reliability of
the composition must be measured and reasoned about. In
this paper, we present MoSCA, a middleware that facilitates
the rapid development and deployment of reliable composite
services. At design-time, a MoSCA Service is uniquely iden-
tified within an OWL-S ontology, and described as a com-
position of further MoSCA Services, which can themselves
be composite or basic. At run-time, whenever a (compos-
ite) service is invoked, MoSCA selects the providers, among
those currently available, that are capable of collectively de-
livering the (composite) service with the highest reliability.
Reliability is estimated by reasoning about providers’ histor-
ical colocation patterns, that are learned over time. Unfore-
seen changes to such patterns are being monitored as well,
potentially triggering re-bindings during service execution.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Design, Reliability

Keywords
Service Composition, Mobility, Middleware, Dynamic Adap-
tation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM 2008, December 1, 2008, Leuven, Belgium.
Copyright 2008 ACM 978-1-60558-367-9/08/12 ...$5.00.

1. INTRODUCTION
In the last few years, two major trends have been ob-

served: first, the enormous evolution (and market pene-
tration) of mobile technology. Mobile phones have seen
their computing capabilities increase according to Moore’s
law; they have been enriched with additional functionalities
(e.g., digital cameras, MP3 players, GPS receivers), and in-
tegrated with a variety of wireless network technologies of
increasing bandwidth (e.g., Bluetooth 2, Zigbee, WiFi and
WiMax), thus enabling the on-the-fly creation of networks
of devices in proximity. Second, the Internet has seen a pro-
liferation of blogs and personal content spaces, revealing a
transformation of users from traditional consumers to ac-
tive producers of content. It will not be long before these
two trends will converge, thus creating an integrated en-
vironment where, besides traditional services delivered by
powerful server machines accessible via wide area networks,
new services and content will be offered by users to users via
their portable devices. A user may, for example, access an
information service made available locally within a building,
she may use the navigation system of another user in reach,
in exchange for her higher bandwidth Internet connectivity,
and so on. These fine grained services, attached to people
and the environment, will need to be composed to deliver
more sophisticated functionalities to the end user.

In order to give users a positive mobile experience, such
composite services will have to be perceived as supplied by
a unique entity, that is reachable and available for the dura-
tion of the service. This opens up significant challenges for
the application developer: as services are indeed mobile to
each other, the higher the dynamic nature of the environ-
ment, the higher the chances that services will move out-of-
reach before the composition completes, causing the service
as a whole to fail. In order to promote the rapid devel-
opment and seamless deployment of composite services and
applications, we propose MoSCA, a middleware model and
framework that provides application engineers, as well as
end users, the abstraction of a MoSCA Service as a single, lo-
cally available service. Upon service request, MoSCA trans-
parently binds the service to the set of available providers
that are capable of collectively delivering the (composite)
service with the highest reliability. By reliability, we re-
fer to the probability that a composition will successfully
complete before any of its components moves out of reach.
To do so, MoSCA reasons about the composition seman-
tics and the dynamically-learned co-location patterns with
other providers. Unforeseen changes to such patterns are
being monitored, potentially triggering re-bindings.

In the reminder of the paper, we describe a scenario that
exemplifies a variety of mobile service compositions (Sec-
tion 2). We then present MoSCA service composition model
and middleware (Section 3). We illustrate the programmatic
complexity of the framework by means of case studies (Sec-
tion 4), before positioning ourselves with respect to ongoing
research in this domain (Section 5), and presenting our con-
cluding remarks (Section 6).

2. SCENARIO
Let us consider a user Alice, who owns a next genera-

tion mobile phone on which she has installed the Smart Me-
dia Player application. This application streams music and
video for free from other devices, mocking the functionalities
of radio and TV channels. Advertisements are injected from
time to time, either interrupting the music/video stream-
ing, or by means of interactive banners. The content to be
played, as well as the adverts to be shown/reproduced, are
selected based on what is currently available in the environ-
ment, taking into consideration Alice’s profile. For example,
adverts can be gathered from Internet services, when con-
nectivity is available, as well as local advert broadcasters.

Alice leaves her office and walks to the nearest tube sta-
tion. She is listening to some music played by her Smart
Media Player. As she gets on the tube, she looses global
connectivity, so the Smart Media Player application has to
elect new service providers for music content. In order to do
so, it first has to fetch Alice’s music profile, and to examine
what content and content sources are now available in the
new environment. On the basis of those, the Smart Media
Player elects the items to be played next, and streams them.

This simple scenario describes a variety of mobile services
and introduces a variety of compositions semantics. For ex-
ample, the media content selector and the advertising ser-
vice both require to collect Alice’s profile and context first;
as such they need to be composed sequentially (in sequence)
to an eventual context-aware user profiling service. Depend-
ing on the actual context and user preferences, advertising
may be shown or played, either in parallel to the content
selection and reproduction service, or subsequent to it. In
order to enable the selection of one or the other strategy,
a choice composition semantics will be needed. The Smart
Media Player updates the list of the next-to-come songs or
videos on a regular basis, so that the overall composition
loop is started again. The full composition semantics of the
Smart Media Player can thus be described as follow:

loop < iterator, guard condition > (
profilingService seq (

choice < guard condition > (
(contentSelector seq advertisingService),
(contentSelector parallel advertisingService))

)
)

As the above scenario shows, pervasive services (e.g., Smart
Media Player) are often compound services, provided by ag-
gregating more basic functionalities according to a variety
of semantics (e.q., sequential, parallel, choice, loop, etc.).
Some of these services will be local to the client’s device
(i.e., the device who is consuming the compound service),
while others will be available from a combination of sta-
tionary providers (e.g., those embedded in the local space)

and mobile providers (e.g., those provided by other people
personal devices). Given the dynamicity of the target sce-
nario, with services appearing and disappearing all the time
as perceived by the client’s device, it becomes crucial to:
(1) upon service request, bind to those providers that will
maximise the chances of a successfully completed compound
service; (2) upon environment changes, dynamically re-bind
to providers currently available. In the next section, we
present MoSCA, a service composition model and middle-
ware that support this type of run-time reasoning, selection
and adaptation, while hiding the exact topology of services
making up a composition from both application engineers
and end users.

3. MOSCA FRAMEWORK
MoSCA (Mobile Service Composition API) is a flexible

and expansible framework that eases the development of
applications requiring the dynamic and reliable composi-
tion of services in mobile environments. To illustrate how it
achieves this goal, we begin by describing MoSCA Concep-
tual Model and its core concepts: Services, Bindings and To-
kens (Section 3.1). We then illustrate the core components
of the MoSCA Framework (Section 3.2), before discussing
their current implementation (Section 3.3).

3.1 MoSCA Conceptual Model
MoSCA relies on the following three key concepts: a Ser-

vice Entity, that statically describes the composition struc-
ture of a service, as well as its classification according to
a pre-defined ontology; a Binding Entity, that captures the
run-time association between a service entity and the node(s)
who is(are) currently in charge of delivering such functionali-
ties in the most reliable way; and a Token Entity, a container
element that collects session information (e.g., input/output
data) of a running service request.

The Service Entity
A MoSCA Service consists of a classification and a compo-
sition structure. Classification information consists of two
unique identifiers: the identifier of the service taxonomy
(or ontology) in use, and the identifier of the service type
within such taxonomy. We are making the assumption that
a taxonomy can be identified by a unique universal ID (e.g.,
an URI) and that each service type is univocally identified
within such taxonomy by a local ID. Starting from basic
services, composite services can be created and described
using any of the MoSCA-supported composition semantics:
sequence, parallel, any order, choice, signal and loop.
The composition structure information is conveyed by the
very same nature of the Service Entity, which is represented
by means of the composite pattern depicted in Figure 1.

Figure 2 illustrates an example of a MoSCA Service En-
tity. As shown, service S has a valid service type (sID)

<<interface>>
Service

CompositeService
- type: String

SimpleService

1..*

Figure 1: Service Entity

S: CompositeService

taxonomyID=tID
serviceID=sID
Type=SEQUENCE

S1: BasicService

taxonomyID=tID
serviceID=sID_1

S2&3: CompositeService

taxonomyID=null
serviceID=null
Type=PARALLEL

S4: BasicService

taxonomyID=tID
serviceID=sID_4

S6: BasicService

taxonomyID=tID
serviceID=sID_6

S5: BasicService

taxonomyID=tID
serviceID=sID_5

S3: CompositeService

taxonomyID=tID
serviceID=sID_3
Type=SEQUENCE

S2: BasicService

taxonomyID=tID
serviceID=sID_2

Figure 2: Example of a MoSCA Composite Service

within the taxonomy used (tID), and it can thus be deliv-
ered as a single service; however, S can also be decomposed
as S = S1 seq (S2 parallel S3), where S3 can be fur-
ther decomposed as S3 = S4 seq S5 seq S6. Note that
(S2 parallel S3) does not correspond to any service type
instead, and thus it can only be delivered as a composition
of services.

The Binding Entity

<<interface>>
Service

<<singleton>>
Binding

Provider

External
Service

Figure 3: Binding Entity

A Service Entity is a static element. In order for a ser-
vice to be executed, at least one service provider, delivering
the functionalities of such service, must be available at ser-
vice request time. When a request for service type S is
received, a Binding to the most reliable provider of S (or
set of providers collectively delivering composite service S)
currently available in the surrounding is created (Figure 3).
Note that Service Entities and Providers do not have direct
access to each other; rather, access is provided by means of
the Binding Entity, thus facilitating dynamic reactions to
changes in the environment (e.g., updating the set of com-
posing service instances delivering a composite service S at
execution time impacts the Binding Entity only). Note also
that Provider entities are effectively wrappers for services
external to the MoSCA framework, and supplied by devices
in the surrounding.

Let us revisit the previous example (Figure 2) of a service
S that can be decomposed as S = S1 seq (S2 parallel S3),
with S3 that can either exist alone or be further decomposed
as S3 = S4 seq S5 seq S6. As exemplified in Figure 4,
depending on the providers available in the surrounding, the
executed composition may vary: in the example on the left,
S is delivered as a single service by provider P2, while in
the example on the right it is delivered by combining the
services provided by P4, P1, and P5.

The Token Entity
A Session Token (or simply Token) Entity represents a run-
ning service request. It serves two purposes: first, it is used
to capture and share, among the various component ser-

S

S1

S2

S3

S4

S5

S6

S=S1 (S2//S3)
where S3=S4 S5 S6

P1

P2

P3

P4

P5

Binding: (S,[P2])

S

S1

S2

S3

S4

S5

S6

P1

P3

P4

P5

Binding: (S,[P4,P1,P5])

Available bindings

Selected bindings

Figure 4: Example of MoSCA Bindings

vices, the status of the request (e.g., input and output pa-
rameters); second, it controls the service execution flow by
means of a classic token passing protocol. Let us consider,
for example, a request to sequentially execute services S1,
S2 and S3 (Figure 5 top); upon receiving this request, the
MoSCA framework creates a Token Entity and passes it to
the first service in the composition, in this case S1. As a
result of its execution, S1 updates the Token Entity with
temporary results and session information; the same Token
is then passed as input to the next service S2 to be executed,
and so on until the last service in the composition has been
completed and the result of the composition is extracted
from the Token and returned to the entity that initiated the
service request. At any time, a service can only be executed
if it has control of a Token; depending on the actual com-
position semantic, a Token Entity may thus have to be split
and later consolidated, for example, when executing parallel
branches (Figure 5 bottom).

S1 S2 S3T TT T

S1

S2

S3

T

T3

T1

T2

T3

T1

T2 T

Figure 5: Token Passing Examples

3.2 MoSCA Components
Figure 6 provides an overview of the MoSCA Framework.

As shown, MoSCA consists of four main modules: the Ser-
vice Manager, the Service Analyser, the Service Discoverer
and the Service Coordinator, that exchange objects of two
types, Service and Token. As previously discussed, the for-
mer is used as a service descriptor, while the latter carries
information related to an ongoing service request. Two fur-
ther modules complete the framework: the Mobility Predic-
tor and the Semantic Reasoner, whose role is to support
informed assessment about the reliability of a composition,
with consequent binding formation. We will now describe
each of these core components and their interactions in more
details.

Service Manager - The Service Manager component is the

<<component>>
Service Manager

requestService()

<<component>>
ServiceCoordinator

executeService()

<<component>>

ServiceDiscoverer

<<component>>

SemanticReasoner

discoverService()

<<component>>
ServiceAnalyser

analyseService()

<<component>>

MobilityPredictor
predictColocation()

Service Token

Figure 6: MoSCA Core Components

access point to the composition framework. It provides an
interface to request services, leaving the invoking applica-
tion unaware of whether the requested service is single or
compound, and whether it resides on the same device or it
is accessible from other devices in the proximity (in partic-
ular, at a single hop distance). Upon receiving a request
for service S, the Service Manager creates a Service Entity
object and passes it to the Service Analyser, whose goal is
to ‘understand’ the request.

Service Analyser - The Service Analyser component pro-
vides two key functionalities: the ability to decompose a ser-
vice according to its taxonomy, if the taxonomy is known,
and the ability to compare services. In particular, upon re-
ceiving a Service object from the Service Manager, the Ser-
vice Analyser decomposes S into component services S1, S2

. . . , Sn, and returns the same Service object back to the Ser-
vice manager, now enriched with the service (de)composition
semantics (e.g., S = S1 seq S2 seq . . . seq Sn). Different
decompositions are possible; the analyser favours those that
rely on the minimum number of component services (i.e., ser-
vices that appear higher up in the taxonomy), as this implic-
itly minimises the number of providers required to deliver a
service. As soon as the first decomposition has been anal-
ysed, the updated Service entity is returned to the Service
Manager, ready to be processed by the Service Discoverer.
The Service Analyser keeps looking for alternative (more
fine-grained) decompositions, in case there are no providers
in the environment capable of delivering the more coarse
grained ones. With reference to the example in Figure 4
(right), as there were no entities delivering S as a whole,
providers of the more fine-grained S1, S2, and S3 had to
be looked for; should a provider of S3 not be available, the
Service Analyser would further decompose S3 into S4, S5,
and S6, thus informing the Service Discoverer to look for
providers of this fine grained services. In MoSCA, we as-
sume that a pre-defined taxonomy (or ontology) exists to
map a requested service S to a decomposition S1, . . . , Sn

with associated semantics (e.g., [10]); this taxonomy can be
either universal (and built, for example, on OWL-S) or can
be specific to a domain. The only requirement that MoSCA
imposes on the taxonomy used is that it can be identified

by a universal ID and that services there described can be
recognized by a local identifier.

Service Discoverer - The Service Discoverer component
is responsible for the selection of the providers, within the
current environment, that will be relied upon to carry out a
service request. It receives a Service Entity object from the
Service Manager, after it has been further annotated with
decomposition information by the Service Analyser; its goal
is now to choose providers P1, . . . , Pm, among those avail-
able in the current environment, that will be able to de-
liver services S1, . . . , Sn and that will maximise the chances
of successful service completion. With reference to the ex-
ample in Figure 4, the Service Discoverer component will
thus first look for a provider of service S (i.e., top-level ser-
vice type, being found in the taxonomy); should this fail,
it would then try to find providers of S1, S2, and S3 (note
that S2&S3 does not exist in the taxonomy, and thus a sin-
gle provider of such service is not looked for). Should this
fail too, the most fine-grained decomposition would be at-
tempted, with the Discoverer looking for providers of S1, S2,
S4, S5, and S6. Note that MoSCA aims to deliver only those
services that are deemed reliable, that is, services which have
high probability to complete successfully, before any of the
providers involved moves out of range of the requester. It
is the responsibility of the Discoverer to quantify the reli-
ability of the currently analysed decomposition, pondering
alternative bindings should more than one provider of the
same service be available. Only the binding maximising the
currently analysed decomposition, and for which the proba-
bility of successful completion is above a given threshold, is
returned to the Service Manager, if any. In order to quan-
tify the reliability of a composition, the Service Discoverer
relies on two further components: the Mobility Predictor
and the Semantic Reasoner. The former estimates for how
long a given provider will remain colocated with the client’s
device (where the composition framework is running), based
on historical co-location patterns; the basic observation un-
derpinning this idea is that people show a high degree of
regularity in their activities, often traveling to/from work
on the same train, following routines during their working
days, visiting the same pub or restaurant, and so on. Al-
though the number of unknown devices we encounter will
always be high, a non-negligible set of devices, either sta-
tionary or mobile, will be re-encountered regularly [5]; it is
thus possible to learn human behavioural patterns from past
activities and use them as predictors of future behaviours.
The latter (i.e., Semantic Reasoner) then uses these predic-
tions, together with the specific composition semantics, to
determine if a composition can be attempted and, if so, what
providers are best to rely upon. In [13], we have proposed
algorithms for co-location prediction and semantic composi-
tion analysis, and have demonstrated their positive impact
on the rate of successfully completed composite service re-
quests on a large set of real human mobility traces. The Ser-
vice Discoverer, Mobility Predictor and Semantic Reasoner
components discussed in this paper function as architectural
placeholders of these algorithms; different algorithms can
be deployed (and re-deployed at run-time) to deliver these
functionalities, while leaving applications developed on top
of MoSCA framework unaltered.

Service Coordinator - The Service Coordinator component
is in charge of executing the service request. It receives,
from the Service Manager, both an annotated Service object,

containing information about the (de)composition seman-
tics and the selected providers (via Binding entities), and
a newly created Token object storing the input parameters
to the service request. The Service Coordinator will then
carry on the request, updating the data stored in the Token
object, splitting and consolidating it if necessary at every
stage of the composition as the request is being processed.
Note that a service decomposition, and its bindings, are dy-
namically re-assessed during execution; more precisely, each
service decomposition is annotated with ‘aspects’, that is,
entry gates in the execution flow where a re-assessment of
the current environment should take place (with potential
re-binding of services) before the service execution proceeds.
For example, an aspect within the Smart Media Player com-
pound service described in Section 2 is the entry to the loop:
before the execution of a new iteration, the Service Coordi-
nator notifies the Service Manager in order to re-assess the
reliability of the composition, with new bindings potentially
being formed. If one or more providers become no longer
available in the middle of a service execution (i.e., between
re-assessment entry points), the Service Coordinator noti-
fies the Service Manager that, depending on the annotated
decomposition, determines if the overall service can still be
carried on (e.g., with roll-back to the previous entry point
and re-binding) or if a failure must be reported.

3.3 MoSCA Implementation
We have implemented the previously illustrated MoSCA

Framework in Java Micro Edition (Connected Limited De-
vice Configuration 1.1, Mobile Information Device Profile
2.0). A package has been developed for each main compo-
nent. A Factory pattern has been used for the retrieval of
a Service Analyser, a Service Discoverer and a Service Co-
ordinator; in so doing, it is possible to configure MoSCA to
use various implementations of these interfaces, thus mak-
ing it easily and dynamically extensible (with changes to one
component not impacting any of the others). As previously
anticipated, the Service entity has been realised using the
composite pattern, thus intuitively representing the recur-
sive nature of the composition; moreover, Service objects
are designed intentionally not to have a direct reference to
their providers. Provider instances can be only retrieved by
using the association singleton class Binding; MoSCA can
thus keep monitoring and updating the best providers for
the various services in an asynchronous manner, while exe-
cuting other services. The environment is being monitored
to find available services by means of an Observer pattern.
Implementations of an Environment interface are used to
discover services accessible via different technologies (e.g.,
WiFi and Bluetooth); other monitors can be implemented
and added to MoSCA framework, and be dynamically de-
ployed by means of reflection. In total, the implementation
occupies 39 KB, making it suitable for most mobile devices.

4. CASE STUDY
To gather a sense of the programmatic complexity of our

framework, we consider the lines of code required to request
the execution of a composite service within the MoSCA
framework. An application willing to invoke a service using
the MoSCA framework, would simply create a MoSCAService

object, capturing the identifier of the taxonomy used, as well
as the actual classification of the service within that taxon-
omy; it would then create a Token object, containing the

parameters (as a list of attribute-value pairs) to be passed
to the service. Finally, it would call the MoSCA Service
Manager to start the service execution:

MoSCAService s = new MoSCAService(taxonomyID,

serviceID);

Token token = new Token(‘‘postcode’’, ‘‘WC1E 6BT’’);

ServiceManager sm = new ServiceManager();

sm.requestService(s, token);

All services are instances of a MoSCAService: it remains
transparent to the application (and its programmer) whether
the service is indeed simple or composite, and whether it is
being delivered by one or more providers, being them static
or mobile. In case the requested service cannot be identi-
fied as a single service within a taxonomy, but can still be
described as the composition of known service types, an ex-
plicit request can be made, which entails informing MoSCA
about how the composition is to be carried out:

MoSCAService s1 = new MoSCAService(taxonomyID,

serviceID);

MoSCAService s2 = new MoSCAService(taxonomyID,

serviceID);

MoSCAService s = new MoSCAService(

Service.SEQUENCE);

s.add(s1);

s.add(s2);

Token token = new Token(‘‘postcode’’, ‘‘WC1E 6BT’’);

ServiceManager sm = new ServiceManager();

sm.requestService(s, token);

As shown, the programmatic complexity involved in a
MoSCA service request is minimal; should higher levels of
control and adaptation be needed, MoSCA provides experi-
enced developer with a rich set of directives that enable full
(re)configuration of the framework (e.g., the Service Discov-
erer component and thus the algorithms it uses, the network
interfaces used to listen to services being advertised, etc).

5. RELATED WORK
Service composition [4] has attracted a lot of interest since

the advent of Web Services, and it has become a work-
able and broadly adopted technology thanks to real or de-
facto standards such as WSDL [17], SOAP [19] and UDDI
[15]. This attention has mainly concerned the Internet and
hence wired-environments, where the service providers are
static and well known. In this domain, research has followed
two main directions: one stream has focused on developing
languages that aimed at adding semantic information (e.g.,
WSDL-S [18], OWL-S [11], METEOR-S [12]) and/or proto-
col information (BPEL4WS [1], WSCDL [21], METEOR-S
[12], OWL-S [11], YAWL [16]) to service descriptions. A sec-
ond stream has then focused on methodologies to aggregate
these services, which can be broadly classified into: manual,
semi-automatic and automatic [2]. Manual service compo-
sition entails the requester to browse a registry of services,
find the desired service operations, and model their inter-
actions into a flow structure (mainly with BPEL); the final
service is then exposed as a unique service using WSDL.
This methodology is effectively employed today within the
Web Service Industry. Semiautomatic composition of ser-
vices usually involves a service composition system that in-
teracts with the requester in an iterative manner in order

to obtain information about the requested service, and to
construct aggregate services out of the registered ones. The
automatic composition, instead, demands the existence of
a discovery agent that receives a service request and gener-
ates a structure of services/operations of some pre-registered
services based on the information provided in the request.
These automatic aggregation approaches rely on services to
be richly described by means of the previously cited Seman-
tic Web Service languages.

Service composition in pervasive environments requires
this kind of automatic (de)composition. However, the very
nature of the environment opens the door to new challenges
that limit the applicability of current technologies. For ex-
ample, resource limitations on the target devices have called
for novel solutions to enable efficient ontology-based seman-
tic matching of services [10]; more flexible approaches en-
abling the on-demand creation of an agreed ontology are
being investigated too [20]. More closely related to our
work are approaches that take into consideration mobility
of devices, and thus services. In [3, 8] single service discov-
ery protocols have been proposed that aim to find the de-
vice capable of delivering the best quality of service, given
the dynamicity of the current environment; the discovery
protocol has also been extended to consider multi-hop net-
works [14]. We argue that, while important, QoS reasoning
must come after colocation reasoning, especially for services
that require more than just a few seconds to complete. For
the same reason, multi-hop service discovery and delivery is
promising only for services that execute very fast, and/or are
deployed in fairly stable scenarios. We first explored coloca-
tion reasoning in [9], where device mobility was considered
when choosing from what single device to download content;
we then extended our prior work by proposing algorithms
that enable the mobility-aware discovery of, and reasoning
about, composite services [13]. In this paper, we have com-
pleted the work with an adaptive and easy-to-use framework
that realises such algorithms and that builds upon existing
standards for service description to deliver a reliable ser-
vice composition experience to the end user. Research on
service composition in mobile environments is still in the
very early days, and other issues, which were just marginal
for infrastructure-based environments, must now be looked
into, including session management [6, 7], on-the-fly adapta-
tion, on-demand composition, dynamic execution monitor-
ing, failure recovery mechanisms, to name a few.

6. CONCLUSION
In this paper we have presented MoSCA, a service com-

position framework that enables the rapid development and
deployment of reliable composite services and applications.
MoSCA provides application engineers, as well as end users,
the abstraction of a MoSCA Service as a single, locally avail-
able service. Upon service request, MoSCA transparently
binds the MoSCA Service to the set of available providers
that are capable of collectively delivering the composite ser-
vice with the highest reliability. It does so by reasoning
about the composition semantics and the dynamically learned
co-location patterns with other providers. Unforeseen changes
to such patterns are being monitored during service execu-
tion, thus triggering re-bindings during if necessary. Al-
though we have shown that MoSCA is, by design, able to
react to changes in the surroundings, its efficiency still needs
to be proved; our next step thus entails a proper profiling of

MoSCA, both in terms of computational and runtime mem-
ory overhead.

7. REFERENCES
[1] Business Process Execution Language for Web Services

(BPEL4WS) Version 1.1.
http://download.boulder.ibm.com/ibmdl/pub/software/
dw/specs/ws-bpel/ws-bpel.pdf, May 2003.

[2] A. Brogi and R. Popescu. Contract-based Service
Aggregation. Technical Report TR-06-12, Dept. of
Computer Science, University of Pisa, July 2006.

[3] L. Capra, S. Zachariadis, and C. Mascolo. Q-CAD: QoS
and Context Aware Discovery Framework for Adaptive
Mobile Systems. In IEEE Intl. Conference on Pervasive
Services, Santorini, Greece, July 2005.

[4] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Service
Composition for Mobile Environments. Journal on Mobile
Networking and Applications, 2004.

[5] N. Eagle and A. Pentland. Reality Mining: Sensing
Complex Social Systems. Personal and Ubiquitous
Computing, 10(4), 2006.

[6] C. Julien. Adaptive Preference Specification for Application
Sessions. In Proc. of the 4th Intl. Conference on
Service-Oriented Computing, pages 78–89, Chicago. 2006.

[7] C. Julien and D. Stovall. Enabling Ubiquitous Coordination
Using Application Sessions. In Proc. of the 8th Intl.
Conference on Coordination Models and Languages, pages
130–144, Bologna, Italy, June 2006.

[8] J. Liu and V. Issarny. QoS-Aware Service Location in
Mobile Ad-Hoc Networks. In Proc. of the IEEE Int.
Conference on Mobile Data Management, 2004.

[9] L. McNamara, C. Mascolo, and L. Capra. Content Source
Selection in Bluetooth Networks. In Intl. Conference on
Mobile and Ubiquitous Systems: Computing, Networking
and Services, Philadelphia, USA, 2007.

[10] S. B. Mokhtar, A. Kaul, N. Georgantas, and V. Issarny.
Efficient Semantic Service Discovery in Pervasive
Computing Environments. In Proc. of the
ACM/IFIP/USENIX 7th Intl. Middleware Conference,
Melbourne, December 2006.

[11] OWL-S: Semantic Markup for Web Services Version 1.1.
http://www.daml.org/services/owl-s/1.1/overview/.

[12] A. Patil, S. Oundhakar, A. Sheth, and K. Verma.
METEOR-S Web service Annotation Framework. In Proc.
of the 13th Intl. World Wide Web Conference, 2004.

[13] L. D. Prete and L. Capra. Reliable Discovery and Selection
of Composite Services in Mobile Environments. In Proc. of
12th IEEE Intl. Enterprise Computing Conference,
Munich, Germany. Sept 2008.

[14] F. Sailhan and V. Issarny. Scalable Service Discovery in
MANET. In Proc. of the 3rd IEEE Intl. Conference on
Pervasive Computing and Communications, Hawaii, USA,
March 2005.

[15] The UDDI Technical White Paper. http://www.uddi.org/,
September 2000.

[16] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL:
Yet Another Workflow Language. Information Systems,
30(4):245–275, 2005.

[17] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, March 2001.

[18] Web Service Semantics - WSDL-S.
http://www.w3.org/Submission/WSDL-S/, 2005.

[19] SOAP: Simple Object Access Protocol.
http://www.w3.org/TR/SOAP/, April 2007.

[20] A. Williams, A. Padmanabhan, and M. Blake.
Experimentation with Local Consensus Ontologies with
Implications for Automated Service Composition. IEEE
Transactions on Knowledge and Data Engineering,
17(7):969–981, July 2005.

[21] Web Services Choreography Description Language Version
1.0. http://www.w3.org/TR/ws-cdl-10/, November 2005.

