
MoSCA: Service Composition in Mobile Environments

Lucia Del Prete∗

Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
L.DelPrete@cs.ucl.ac.uk

Licia Capra
Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
L.Capra@cs.ucl.ac.uk

ABSTRACT
We present MoSCA, a run-time framework for the discovery
and composition of services in mobile environments. MoSCA
combines information about users’ historical mobility pat-
terns, together with composition semantics, to maximise the
chances of successfully consumed compound services.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Design, Reliability

Keywords
Service Composition, Mobility, Middleware

1. SCENARIO
In the last few years, two major trends have been ob-

served: first, the enormous evolution (and market penetra-
tion) of mobile technology. Mobile phones have seen their
computing capabilities increase according to Moore’s law;
they have been enriched with additional functionalities (e.g.,
cameras, MP3 players, and GPS receivers), and integrated
with a variety of wireless network technologies of increasing
bandwidth (e.g., Bluetooth 2, Zigbee, WiFi and WiMax),
thus enabling the on-the-fly creation of networks of devices
in proximity. Second, the Internet has seen a proliferation of
blogs and personal content spaces, revealing a transforma-
tion of users from traditional consumers to active producers
of content. It will not be long before these two trends will
converge, thus creating an integrated environment where,
besides traditional services delivered by powerful server ma-
chines accessible via wide area networks, new services and

∗The author kindly acknowledges support from the
MiNEMA ESF Scientific Programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware’08 Companion, December 1-5, 2008, Leuven, Belgium.
Copyright 2008 ACM 978-1-60558-369-3/08/12 ...$5.00.

content will be offered to users by users on the go. These
fine grained services, attached to people and the environ-
ment, will need to be composed to deliver more sophisticated
functionalities to the end user.

Let us consider a user Alice, who owns a next genera-
tion mobile phone on which she has installed the Smart Me-
dia Player application. This application streams music and
video for free from other devices, mocking the functionalities
of radio and TV channels; advertisements are injected from
time to time. Both content and adverts are selected based on
what is currently available in the environment, taking into
consideration Alice’s profile. This simple scenario describes
a variety of mobile services and introduces a variety of com-
positions semantics. For example, the media content selec-
tor and the advertising service both require to collect Alice’s
profile and context first; as such they need to be composed
sequentially (in sequence) to an eventual context-aware user
profiling service. Depending on the actual context and user
preferences, advertising may be shown or played, either in
parallel to the content selection and reproduction service, or
subsequent to it. In order to enable the selection of one or
the other strategy, a choice composition semantics will be
needed. The Smart Media Player updates the list of the
next-to-come songs or videos at a regular basis, so that the
overall composition loop is (re)started.

As this scenario shows, pervasive services are often com-
pound, provided by aggregating more basic functionalities
according to a variety of semantics. Some of these services
will be local to the client’s device, while others will be avail-
able from a combination of stationary and mobile providers.
In order to enable mobile users to seamlessly and success-
fully consume compound services, they must be given the
impression of being interacting with a monolithic, local ser-
vice. We propose to do so by means of MoSCA, a run-time
service composition framework that takes care of finding and
composing those services needed by the composition.

2. MOSCA FRAMEWORK
MoSCA (Figure 1) consists of four main modules: the

Service Manager, the Service Analyser, the Service Discov-
erer and the Service Coordinator, that exchange objects of
two types: the Service, used as a service descriptor, and the
Token, storing information related to an ongoing request.

The Service Manager component is the access point to
the composition framework. It provides an interface to re-
quest services, abstracting all the complexity of dealing with
composite services in mobile environment. Upon receiving a
request for service s, the Service Manager creates a Service

<<component>>
Service Manager

requestService()

<<component>>
ServiceCoordinator

executeService()

<<component>>

ServiceDiscoverer

<<component>>

SemanticReasoner

discoverService()

<<component>>
ServiceAnalyser

analyseService()

<<component>>

MobilityPredictor
predictColocation()

Service Token

Figure 1: MoSCA Core Components

object and passes it to the Service Analyser, whose goal is to
‘understand’ the request: the Service Analyser decomposes s
into component services s1, s2 . . . , sn, and returns the same
Service object back to the Service manager, now enriched
with the service (de)composition semantics (e.g., s = s1 seq

s2 seq . . . seq sn). The Service Manager then passes the
annotated Service object to the Service Discoverer compo-
nent; this component selects the set of providers p1, . . . , pm,
among those available in the current environment, that will
be able to collectively deliver service s and that will max-
imise the chances of successful service completion. Once a
binding with these providers has been formed, the Service
Manager creates a Token object, storing the service request
input parameters, and passes it, together with the annotated
Service object, to the Service Coordinator component which
is in charge of executing the request.

In order to give users a truly pervasive experience, MoSCA
executes only those compositions that have a high chance of
completing successfully. To do so, MoSCA Service Discov-
erer relies on two key components: the Mobility Predictor
and the Semantic Reasoner. The former estimates for how
long a given provider will remain colocated with the client’s
device, based on historical co-location patterns; the latter
then uses these predictions, together with the specific com-
position semantics, to determine if a composition can be at-
tempted (even before considering other QoS parameters [2]).
The basic observation underpinning the Mobility Predictor
component is that people show a high degree of regularity
in their activities. Based on this observation, we have de-
fined a simple yet effective prediction mechanism that aims
at learning human behavioural patterns from past activities:
for every day of the week d, and for every hour h within a
day, a device i logs the duration of its encounters with any
other device j. We use the symbol δi,j(d, h) to refer to the
historical colocations between devices i and j in the specific
time slot (d, h). To reduce overhead, only records about fa-
miliar strangers, that is, hosts we have been encountering
with at least a certain frequency, are kept. Given two ser-
vice instances i and j, and the current time t which falls
in slot (d, h), the predicted duration of colocation is then
computed as follows:

Figure 2: Successful Composition Rates

σi,j(t) =


0
if avg(δi,j(d, h)) ≤ α· stddev(δi,j(d, h))

avg(δi,j(d, h))− α· stddev (δi,j(d, h))
otherwise

The basic idea behind the Semantic reasoner is that not
all services are indeed needed for the whole duration of the
composition. For example, if two services s1 and s2 are se-
quentially composed, s1 will only be needed initially, and
not for the whole duration s1seqs2. Based on the compo-
sition semantics, the Semantic Reasoner computes, for each
component service si, the amount of time ∆ti that si is
requested to be available; it then proceeds with the com-
position only if all providers pi required by the composite
service s have a remaining colocation time greater than their
minimum colocation requirement ∆ti.

Does it work? In Figure 2 we report the percentage of
the successfully executed compositions, among those initi-
ated, when using MoSCA as opposed to a random service
provider selection technique. The experiment focused on
sequential composition, while varying ∆ti and number of
component services n. The experiment was conducted us-
ing the MIT Reality Mining data set of human movement.
As shown, MoSCA successfully executes more than 97.5%
of the initiated compositions, with pick differences of 35%
with respect to random compositions. The percentage of
compositions mistakingly not started is often lower then 1%
and never higher than 8%.

Is it easy to use? The programming effort associated to
using MoSCA is very small. To invoke a composite service,
just three steps are required: (i) creation of a Composite-
Service s; (ii) creation of a Token object token to be passed
to the actual input request, and (iii) invocation of the Ser-
viceManger to execute service s as described by token.

CompositeService s = new CompositeService(taxonomyID,
serviceID);

Token token = new Token(‘‘postcode’’, ‘‘WC1E 6BT’’);
ServiceManager.requestService(s, token);

3. STATUS & FUTURE WORK
Our goal is to provide a framework that runs seamlessly

on mobile devices and that enables the interaction with com-
posite services as if they were delivered by a unique provider,
reachable and available for the duration of the service. To
do so, it is necessary, not only to react to changes in the
environment, but more importantly to predict them. So far

we have studied historical colocation information to make
reliable predictions [1]. Selecting providers based on their
predicted colocation will not protect users against malicious
ones. We are now studying the integration of distributed
trust models within MoSCA, to dynamically reason about
the trustworthiness of a composition.

4. REFERENCES
[1] L. D. Prete and L. Capra. Reliable Discovery and

Selection of Composite Services in Mobile
Environments. In Proc. of 12th IEEE EDOC, 2008.

[2] J. Liu and V. Issarny. QoS-Aware Service Location in
Mobile Ad-Hoc Networks. In Proc. of IEEE MDM
Conference, 2004.

