
Characterising, Explaining, and Exploiting the Approximate Nature of Static
Analysis through Animation

David Binkley Mark Harman Jens Krinke
Loyola College King’s College London FernUniversität in Hagen
Baltimore MD Strand, London 58084 Hagen

21210-2699, USA. WC2R 2LS, UK. Germany.

Abstract

This paper addresses the question: “How can animated
visualisation be used to express interesting properties of
static analysis?” The particular focus is upon static depen-
dence analysis, but the approach adopted in the paper is
applicable to other forms of static analysis. The challenge
is twofold. First, there is the inherent difficultly of using
animation, which is inherently dynamic, as a representa-
tion of static analysis, which is not. The paper shows one
way in which this apparent contradiction can be overcome.
Second, there is the harder challenge of ensuring that the
animations so-produced correspond to features of genuine
interest in the source code that are hard to visualize without
animation.

To address these two challenges the paper shows how
properties of static dependence analysis can be formulated
in a manner suitable for animated visualisation. These for-
mulations of dependence have been implemented and the re-
sults used to provide dependence visualisations of the struc-
ture of a set of C programs. All animations described in the
paper are also viewable on-line.

1 Introduction

This paper addresses the question

“How can animated visualisation be used to ex-
press interesting properties of static analysis?”

This question presents two related technical challenges and
one obvious presentational challenge: how to depict the re-
sults of an implementation of source code analysis that em-
ploys animation in a paper. To address the presentational
challenge the paper presents stills from the animations de-
scribed, but all animations are also available on a comple-
mentary web page located at

www.cs.loyola.edu/˜binkley/scam06.html

In addition, as an ‘experimental curiosity’, an example
of one of the animations is available on the upper right hand
corner of the paper as a flick-book animation. For optimal
performance, this flick-book animation should be viewed
on a single-sided version of the paper, though it renders
adequately on the double-sided version of the paper in the
proceedings. Flicking through the page corners from front
to back reveals the animation that is used in the example
discussed in Section 4.2. In the electronic form, repeated
clicking on ‘next page’ also should give an impression of
the animation.

The two related technical challenges that the paper ad-
dresses are to animate the static and to do so in a mean-
ingful, non-trivial, manner. That is, to exploit the potential
of animation, it is necessary to find aspects of static analy-
sis that change over time; seeking the dynamic within the
static. Furthermore, while it might be possible to resolve
this apparent paradox by animating some superficial aspect
of the static analysis, this would be of little practical use.
Rather, it is necessary to construct the analysis, and the an-
imation that brings it to life, in such a way that interesting
features of the animation correspond to interesting and im-
portant properties of the source code. Furthermore, to be
worthwhile, these important properties should be properties
that could not be easily visualized without animation.

The essence of the thesis that lies at the heart of this pa-
per is that the inherent approximate nature of static analysis
can be used as the basis for a meaningful animated charac-
terisation of the analysis. That is, static analysis typically
employs a doctrine of safe approximation; in order to con-
struct results that approximate answers to essentially unde-
cidable questions, static analysis algorithms return answers
that denote a safe approximation to the real (but generally
undecidable answer).

For example, in pointer analysis, the set of identifiers to
which a pointer variable may point cannot be precisely de-
termined using static analysis [22, 32]. Therefore, pointer
analyses [41, 43] return a safe approximation that contains

the true points-to set, but may contain ‘false positives’. De-
pendence analysis [19, 23, 24] employs a similar safe ap-
proximation strategy. It determines, not the true dependence
relation between elements of a program, but rather, a weaker
relation that is provably certain to contain the true relation.
A similar doctrine of ‘safe approximation’ is adopted to
other static analysis problems, for example constant prop-
agation [10], calling context analysis [11, 28], and the con-
struction of flow and call graphs [2, 21].

The increasing levels of approximation available to anal-
ysis approaches (usually at the cost of increased computa-
tional resource) form a suitable set of time series results,
for which animation can be surprisingly illuminating. As
the paper will show, such an ‘animation of approximation’
can yield more than mere insight into the effects of differing
levels of approximation; it also imbues the analysis with an
additional dimension of representation. This additional di-
mension can be used to reveal complex semantic structures
in the source code. These structures are dynamic by nature
and so it would be hard to visualize them without animation.

The necessarily approximate nature of static analysis,
has recently led to approximation receiving such a warm
embrace that some authors have even gone a step further:
considering unsafe approximations [18, 27]. Such unsafe
approximations may, despite their lack of safety, reveal im-
portant and useful properties of interest. Both work on safe
approximation in static analysis, and more recent work on
unsafe approximation, provide a wellspring of potential ap-
plications from which the animation of approximation ap-
proach may draw.

As a case study in the application of the animation of ap-
proximation approach, the paper considers the well-studied
problems of slice-based dependence analysis [13, 23, 42].
Specifically, the case study considers the problem of visu-
alizing the effects of different levels of call depth on static
dependence analysis. The results show the way in which
the level of dependence grows with increasing call depth.
This reveals interesting dependence structures in the pro-
gram such as the movement of dependence clusters as well
as their formation.

The primary contributions of the paper are as follows:

1. The paper shows that the necessarily safe–but–
approximate nature of static analysis can be visualized
using animations that show increasing levels of preci-
sion of analysis

2. The paper presents the essential characteristics of such
a visualisation, illustrating with a case study that for-
mulates a problem in static dependence analysis as a
sequence of approximations of monotonically increas-
ing precision.

3. The paper reports results from the implementation of
this formulation of dependence and its associated an-

imation, presenting the application of the approach to
13 C programs, ranging from 1,744 to 13,188 LOC.
The paper shows how interesting properties of the ani-
mations are related to interesting properties of the pro-
grams being animated.

The rest of this paper is organized as follows: Section 2
presents a general framework for animated visualisation of
static analysis, while Section 3 illustrates the framework
with the formulation of a specific animated visualisation of
Call-Depth Dependence Analysis, implemented using pro-
gram slicing. Section 4 presents results of an implementa-
tion of Call-Depth Dependence Analysis applied to a set of
C programs. Section 5 presents related work and Section 6
concludes with directions for future work.

2 Animated Visualisation of Static Analysis

This section sets out a framework for animation of static
analysis in more detail. It defines the terminology used to
describe an instance of the application of the animation ap-
proach and defines the properties that such an instance may
exhibit. These properties are characterised as those that are
desirable in order to ensure that animation is both possible
and meaningful and those that support certain forms of an-
imation. First, some terminology is introduced that capture
the foundations upon which the animation approach is built.

1. Parameterization
There will be a parameter set, denoted π, which defines
the behaviour of the static analysis with respect to the
approximation. These parameters form the description
that characterises the nature of the approximation.

2. Approximation level
The result of an analysis for a particular instantiation
of parameter values is not constrained: it may be, for
example, a single numeric value, a set of values, or
some form of data structure. For each possible instan-
tiation of parameter values of π the static analysis will
yield a potentially different result. The set of param-
eter value instantiations used in the animation will be
termed the ‘approximation levels’.

3. Animation as a sequence of stills
Animations are comprised of a sequence of ‘still im-
ages’ (stills) that are displayed over a series of time
steps to create the illusion of continuous motion. In the
approach to animation introduced in this paper, each
still will correspond to the results of the analysis for a
single approximation level. This makes it relatively
easy to form a relationship between analysis results
and their corresponding animation.

4. Approximation System
The term ‘approximation system’ will be used to de-
note the combination of parameter set π, static anal-
ysis formulation, approximation level set, and anima-
tion. The goal of the animation is to provide a moving
depiction of properties of the static analysis of a sub-
ject program with respect to the approximation levels
defined by choice of parameters in π.

There are a number of properties that should be enjoyed
by an approximation system, in order for the animation to
be meaningful. These ‘desirable properties’ ensure that it
will be easy to associate each approximation level with a
suitable still of the animation. They also aim to establish
a framework in which it is likely that the visual properties
of the animation correspond to well-defined and interest-
ing semantic structures, implicitly denoted by the sequence
of approximation levels. The desirable properties of an ap-
proximation system are

1. Multiplicity
Multiplicity is the most basic requirement of an ap-
proximation system. An approximation system is Mul-
tiplicit if it contains more than one approximation
level. Of course, for most animations, ‘more than one’
is unlikely to be construed to mean merely two differ-
ent approximation levels; animations tend to rely upon
a larger multiplicity. However, there may be situations
in which an oscillating animation, showing merely two
approximation levels may have value and so the defi-
nition of multiplicity is so-constructed as to allow this.

2. Visualizability
An approximation system is Vizualizable if the analy-
sis result of each approximation level is denotable by
some value, derived from the outcome of the analysis,
that can be visualized in some static graphic form. The
nature of the value is left unspecified by the Visualiz-
ability constraint: the value need not be numeric, nor
need it be scalar, but it has admit static visualisation as
a still. Without this property is will be impossible to
translate the outcome of a particular analysis to some
aspect of a still in an animation, so animation in the
form introduced by this paper would be impossible.

3. Relatedness
An approximation system is related if there exists a
well-defined relationship between the interpretations
placed upon the different approximation levels. This
property is important to allow some meaning to be
placed on the animation. The animation uses the pas-
sage of time to indicate a relationship between the dif-
ferent choices of approximation level. Therefore, it
should be possible to establish a connection between
the passage of time and the approximation level.

4. Ordinality
An approximation system is ordinal if the set of ap-
proximation levels can be ordered by a total ordering
relation. This means that the results obtained from
different approximation levels can be animated with
animation order corresponding to approximation level.
Ordinality subsumes Relatedness, since an ordering is,
by definition, a relation. Clearly it would be most at-
tractive to have an ordinal approximation system, since
this naturally maps onto a sequence of stills in the ani-
mation. However, there may be useful animations that
merely respect the (weaker) Relatedness property.

As well as these desirable properties, there are also other
properties that an approximation system may possess and
that naturally suggest particular forms of animation ap-
proach. As research in this area progresses, it is likely that
more such properties will be defined. The list below is an
initial attempt to establish a starting point for research into
the construction of a more complete list of properties.

1. Monotonicity
An approximation system is monotonic if the values
that result from the analysis at different approxima-
tion levels are either monotonically increasing or de-
creasing in the ordering imposed by the Property 4
defined above. Monotonicity is desirable for ease of
comprehension. Monotonic approximation results can
be depicted in an animation that progressively moves
across the screen (from left to right, for example). This
can often add to the expressiveness of the animation.
Monotonicity subsumes Ordinality and therefore Re-
latedness.

2. Discreteness
An approximation system is discrete if the set of possi-
ble values that can result from the analysis for each ap-
proximation level are finitely enumerable. This prop-
erty is useful because the stills in an animation are nat-
urally pixelized. While it will be possible to visualize
continuous approximation systems by digitization, it
is more likely that discrete approximation systems will
map seamlessly onto the stills of the animation.

3. Sharpness
An approximation system is sharp if, for all stills, S
and associated approximation levels L, there exists
a one-to-one (bijective) mapping between the pixel
values in S and the individual components of the
value produced by the analysis for L. Clearly, Sharp-
ness subsumes Discreteness since each still contains a
finitely enumerable set of pixels. In a Discrete approx-
imation system every dot in every still of the animation
means something concrete and well-defined in analy-
sis of the program.

3 Animation of Call-Depth Slicing

This section uses Call depth k-truncated slicing, a form
of approximate static interprocedural dependence analysis,
to illustrate the animation approach for static analysis advo-
cated in this paper. A k-truncated slice applies a variant of
k-limiting in the construction of an interprocedural slices.
Informally, a k-truncated slice, for some chosen value of
k, considers only up to k levels of call depth for called or
calling procedures. This leads to a series of approximation
levels based on choices of the parameter k. Note that this
technique is different than k-limited context slicing [28],
which is calling-context sensitive up to depth k and then
becomes context-insensitive for larger call depths (and thus
imprecise but safe). A k-truncated slice is always context-
sensitive but does not include anything beyond call-depth
k (thus, it is precise but can be considered unsafe until the
limiting value of k is reached).

In terms of the framework for animation introduced in
the previous section, k-truncating produces an approxima-
tion system where the parameter set π is simply the choice
of k. The approximation levels therefore correspond to
choices of limiting values k, which determine the depth of
procedure calls. Each still of the animation is visualized us-
ing an Monotone Slice-size Graph (MSG) [9]. A MSG is
a graph of slice size, plotted for monotonically increasing
size. That is, slices are sorted according to increasing (non-
truncated) slice size and the sizes are plotted on the vertical
axis against slice number in sorted order on the horizontal
axis.

The rest of this section formalizes k-truncated slicing,
the MSG used in the animation, and finally considers which
of the properties from Section 2 the animation has. It is well
known that precise interprocedural slicing requires more
than simple transitive closure of a program’s dependence
relations, because such closure fails to account for calling
context: when slicing into Procedure Q from a call in Pro-
cedure P , a precise slice only “returns” to P and not all
callers of Q [23, 42]. Precise interprocedural slices can
be computed using a two pass algorithm over the System
Dependence Graph (SDG) [23]. For the slice taken with re-
spect to SDG vertex v, the vertices (statements) identified as
“in the slice” by this algorithm can be formalized as those
having an interprocedurally realizable path to v [35].

To define k-truncated slices, a simplified version of these
paths is sufficient. This definition makes use of transi-
tive dependence edges in the SDG referred to as summary
edges [23], which represent transitive dependence paths in
the SDG from parameter initial values to parameter final
values. In greater detail, a summary edge connects the SDG
vertex representing an actual parameter’s initial value to the
vertex representing a (possibly different) actual parameter’s
result value if there exists a path in the called procedure
connecting the vertices of the corresponding formal param-
eters. This path may include summary edges. Summary
edges allow algorithms to identify realizable paths though a
procedure without “descending” into it.

Informally, a path is realizable if when traversing the
path from call-site c, the analysis only returns to call-site
c after processing the called procedure. Such paths can be
described using context-free language reachability as intro-
duced by Reps [35]. This approach views the SDG as a
finite automaton where each edge is labeled by one of three
symbols. The string induced by a realizable path must be
accepted by a regular language. Edges in the SDG are la-
beled according to their source and target vertices:

• “Call edges” from a call vertex to the entry vertex of
the called procedure are labeled “(”.

• “Parameter-in edges” from the vertex representing an
actual parameter’s initial vertex to the vertex represent-
ing the corresponding formal are also labeled with “(”.

• “Parameter-out edges” from the vertex representing
the final value of a formal parameter to the correspond-
ing actual at each call-site are labeled with “)”.

• All other edges (including summary edges) are labeled
with ε.

Every SDG path induces a word over {(,)} obtained by
concatenating the labels of the edges on the path. A path
is an intraprocedural path if it induces the empty word ε.
Such paths have their start and end vertex in the same pro-
cedure. Interprocedural realizable paths are built from two
parts formalized as follows:

Definition 1 (Realizable Path)
A path is an interprocedurally right-balanced path if it is a
word of the context-free language defined by R → R(| ε.
A path is an interprocedurally left-balanced path if it is a
word of the context-free language defined by L →)L | ε.
Combined, an interprocedurally realizable path starts as
a left-balanced path and ends as a right-balanced path:
I → LR

This definition is simpler that the original [35] because it
assumes the existence of summary edges in the SDG (sum-
mary edges themselves can be defined and computed using
the more complex definition of realizable paths).

Definition 2 (Slice in an SDG)
The (backward) slice S(v) of an SDG G = (V, E), taken
with respect to vertex v ∈ V , consists of all vertices on
which v (transitively) depends via an interprocedural real-
izable path.

The set of vertices having an interprocedural realizable
path to Vertex v can be efficiently computed using the two
pass algorithm of Horwitz et al., which first slices from v
ascending into calling procedures (i.e., traverse paths along
R), and then from all visited vertices descending (i.e., along
L) into called procedures [23, 36]. Summary edges are used
by the algorithm to “pass-through” calls in a context sensi-
tive manner.

Finally, a k-truncated interprocedural slice restricts the
interprocedurally realizable paths to no more than k calls
up or down.

Definition 3 (k-truncated Slice)
Let wp be the induced word for interprocedurally realizable
path p, up(wp) the number of “(” in wp and down(wp)
the number of “)” in wp. The k-truncated slice Sk(v) of
SDG G = (V, E) taken with respect to vertex v ∈ V con-
sists of all vertices on which v (transitively) depends via an
interprocedural realizable path p where up(wp) ≤ k and
down(wp) ≤ k.

The Horwitz et al., algorithm essentially traverses de-
pendence edges in an un-order fashion. A modification of

this algorithm, which provides an efficient method to com-
pute k-truncated slices, is presented in Figure 1. During
the first pass, the traversal of parameter-out edges (depen-
dences from a call-site to the called procedure) is delayed
to the second pass (as in the original algorithm). In order to
process the SDG level by level, the traversal of parameter-in
and call edges (dependences from call-sites in calling pro-
cedures to the current procedure) is delayed to the next it-
eration within the first pass. Because only k iterations are
done, the slice will not ascend along more than k levels of
call depth. The second pass starts with the traversal of the
edges that have been delayed in the first pass. The traversal
of parameter-out edges encountered is delayed to the next it-
eration within the second pass. Parameter-in and call edges
are not traversed in the second pass (as in the original algo-
rithm).

Finally, this section introduces the visualization exper-
imented with in the next section, which is based on the
Monotone Slice-size Graphs (MSGs) computed using k-
truncated slices. A k-truncated MSG is a graph of truncated
slice sizes which are sorted according to increasing non-
truncated slice size. In order to show that the k-truncated
approximation system is monotonic, the ordering relation
on k truncated MSGs must be defined. For each value of k,
the k-truncating approximation produces a set of slice sizes
(one for each slice point). In each still of the animation,
these are ordered according to the order defined by the final
still (the non approximate MSG). To break ties in the or-
dering, the penultimate still is used. Ties in the penultimate
still are resolved by the previous still and so on. The only
remaining ties are those that exist through all stills of the
animation. Therefore each MSG is composed of a sequence
of v values s1, . . . , sv , where v is the number of program
points for which slices are constructed. The ordering rela-
tion on two such sequences S1 and S2 is defined as

S1 ≤ S2 iff ∀i.1 ≤ i ≤ n.S1(i) ≤ S2(i).

That is, the arithmetic inequality ≤ is simply distributed
through the sequence. A sequence of slice sizes, S1 is be-
low another, S2 in the ordering if all the elements of S1 are
below the corresponding element of S2.

In the case of k-truncated slices, it is easy to show that
the size of a slice for a chosen program point cannot de-

Input: G = (V, E) the given SDG
v ∈ V the given slicing criterion
k the given limit

Output: S ⊆ V the slice for the criterion v

W up = {v}, W down = ∅, S = {v}
first pass, ascending slice
k1 = 0
while W up �= ∅ and k1 ≤ k do

k1 = k1 + 1
W = W up

W up = ∅
while W �= ∅ work-list is not empty do

W = W/{v} remove one element from the work-list
S = S ∪ {v}
foreach u → v ∈ E do

if u /∈ S then
if u → v is a parameter-out edge (u

po→ v) then
delay further traversal until second pass
W down = W down ∪ {u}

elsif u → v is a parameter-in

or call edge (u
pi,cl→ v) then

traversal will continue in the next iteration
W up = W up ∪ {u}

else
W = W ∪ {u}

second pass, descending slice
k2 = 0

while W down �= ∅ and k2 ≤ k do
k2 = k2 + 1

W = W down

W down = ∅
while W �= ∅ work-list is not empty do

W = W/{v} remove one element from the work-list
S = S ∪ {v}
foreach u → v ∈ E do

if u /∈ S then
if u → v is a parameter-out edge (u

po→ v) then
traversal will continue in the next iteration
W down = W down ∪ {u}

elsif u ⇀ v is not a parameter-in

or call edge (u
pi,cl→ v) then

W = W ∪ {u}
return S the set of all visited vertices

Figure 1. k-truncated Slicing

crease as the value of k increases and so the slice sequences
produced by increasing values of k is monotonic.

The k-truncating approximation, enjoys many (but not
all) of the properties outlined in the previous section.
Specifically, it is

1. Multiplicit, providing that k > 0, which it is for all
programs except (degenerate) programs with no calls.

2. Vizualizable, because the MSG is a visualization.

3. Monotonic as described above (and therefore ordinal
and related).

4. Discrete, because the value for a given approximation
level, determined by parameter k, is a set of slice sizes,
each of which is an integer. A sequence of integers is
a discrete quality.

However the k-truncating approximation system is not
sharp, in general, since there will be more slices in a typical
program than pixels on a screen. However, for small pro-
grams where there are fewer program points than pixels on
the viewing screen, the k-truncating approach is also sharp,
meaning that every pixel in every animation, corresponds to
a real value in the static analysis (in this case an approxi-
mate slice of the program). However, for larger programs,
several slices will become merged into a single pixel.

4 Results from Experiments with k-
Truncated Slicing

This section applies the example k-truncating animation
to a suite of example C programs and shows how these an-
imations can be used to reveal interesting properties of the
static analysis of the programs. For each program P , the
slice Sk(v) was computed for each k < 14 starting from all
vertices v in the SDG that correspond to source code (simi-
lar to other studies [12, 9, 28]). For all the programs studied,
when k ≥ 14, Sk(v) = Sk+1(v).

4.1 Programs Studied

The programs studied are a suite used in previous eval-
uations of dependence analysis [28, 29, 31]. The programs
stem from two different sources: ctags and diff are GNU
programs. The rest are from the benchmark database of the
PROLANGS Analysis Framework (PAF) [38]. The details
of the analyzed programs are shown in Table 1 where the
‘LOC’ column shows lines-of-code (measured via wc -l),
the ‘proc.’ column the number of procedures and the ‘ver-
tices’ and ‘edges’ columns show the number of vertices and
edges in the SDG. The last column shows the number of
slices computed for each k.

LOC proc. vertices edges slices
agrep 3,968 90 11,922 35,713 5,617
ansitape 1,744 76 6,733 18,083 1,713
assembler 3,178 685 13,393 97,908 3,575
bison 8,313 161 25,485 84,794 7,489
cdecl 3,879 53 5,992 17,322 2,644
compiler 2,402 49 15,195 45,631 3,005
ctags 2,933 101 10,042 24,854 2,604
diff 13,188 181 46,990 471,395 9,259
flex 7,640 121 38,508 235,687 5,789
football 2,261 73 8,850 30,474 4,149
gnugo 3,305 38 3,875 10,657 2,317
rolo 5,717 170 37,839 264,922 5,401
simulator 4,476 283 9,143 22,138 4,871
average 4,846 160 17,997 105,582 4,495

Table 1. Details of the test programs

4.2 Animation Results

Of course, it is hard to show animations in a paper (all an-
imations can be found on the web page). However, because
the MSG animation is monotonic, an impression for the an-
imation can be obtained using a grey scale approximation.
In essence, older stills appear in lighter grey in the approx-
imation. (As if they were shown in order, but were slow to
fade from the viewing window.) This approximation would
not work for a non-monotonic animation as the new images
would overlap the older in ways that would make the view
useless. For six of the programs shown in Table 1, the grey
scale animation approximations are shown in Figure 2.

To give an attempt at a ‘moving image impression’ of the
animation in this paper, the animation of the program diff
(Line 8 of Table 1) can be seen as a “flick-book” animation
on the upper right corners of this paper.

4.3 Some Interesting Animation Features

This section briefly illustrates the way in which the ani-
mation of static analysis can shed light on properties of the
static analysis that can be seen in animations much more
clearly than in static visualization form. As an example con-
sider the animation of the program diff, which is shown in
‘flick-book’ animation throughout the paper. This anima-
tion reveals the movement of a plateau on the right side of
the animation. The plateau exists in every still and it rises
upward as k increases.

The plateau runs from approximately slice number 7000
through to slice number 8200. Closer examination reveled
that this plateau is actually made of several almost identical
plateaus. Visual queues exist for this in the middle of the
animation (stills diff4 and diff5) in the vertical lines that
drop down from the plateau before ‘catching up’.

Each of these separate plateaus comes from a function
whose slices include the same statements. The largest is

from the function regex compile, which compiles regular
expression patterns. Just under two thirds of the slices are
taken with respect to statements from regex compile. Any
set of statements from a single procedure, such as the ones
from regex compile, that have the same slices when k is
zero, will, by construction, have the same size slice as k
increases. Thus, in the animation there is a flat plateau that
“rises” during the animation.

In this way, it can be seen that the movement of the
plateau corresponds to the presence of a large intraproce-
dural connected component. This is not just a dependence
cluster (which can be viewed by static visualization [9]) it
is a dependence cluster that is formed by one large knot
of code within a single procedure. This corresponds to the
way in which the plateau tends to ‘rise as one’ as it moves
through the animation. By contrast, other dependence clus-
ters form gradually as the animation proceeds.

The animation also reveals the formation of a long
plateau, running from slices 1000 to 4000 as animation pro-
ceeds. Because the animation is not sharp, it is not possi-
ble to visually see that this plateau is in fact a plateau from
1000 to 2000 and then a very gradual rise over the next 2000
slices (slice 4000 is less than 1% larger than slice 2000).
Although different, these slices share over 99% of the same
code, and thus this loss of sharpness has potential advan-
tages.

Focusing in on the first 1000 slices of the plateau, the an-
imation shows the merging of a collection of sub-plateaus.
Looking at the source code, these slices come from 38 func-
tions, four of which account for just under two-thirds of the
slices. The call sub-graph for these functions contains one
self recursive and one pair of mutually recursive functions.
Thus as k increases, sub-plateaus should merge together.
The animation shows this formation and thus suggests the
overall structure of the code. The four plateaus have fully
formed in diff5 and begin merging in the later stills (e.g., in
diff6 the latter two have merged).

The animation reveals how large dependence clusters de-
pend on intra- and interprocedural dependence clusters. It
clarifies that the connection between the various parts of a
program can only be observed based on the interprocedural
behavior along multiple levels of call depth.

Figure 2. Gray scale approximations for six
MSG animations.

5 Related Work

Software Visualization [39, 16] has a long history. How-
ever most visualizations are static (e.g., Ball and Eick [7]
describe different approaches to visualize static and dy-
namic software structures). This can also be referred to as
program visualization. The value of dynamic visualization
(i.e., animation) is mostly seen in algorithm visualization or
algorithm animation, who’s goal is to explain the mecha-
nisms that underpin the algorithms concerned. For example,
Brown’s work describes a toolbox to support programmers
in the construction of hand crafted animations [14]. An-
imations are also often used in (visual) debugging, where
the state of the debugged program is animated to visualize
the change from statement to statement. A recent example
is DDD [44]. To the authors’ knowledge, animations have
rarely been used to visualize the results of static program
analysis – in contrast to their more common use in, for ex-
ample, algorithm animation which would visualize the al-
gorithms’ execution. Such approaches often visualize and
animate graphs (e.g., the GEVOL system that visualizes the
graphical evolution of software, which also uses a flip-book
animation [15]).

Unlike the work reported in the present paper, the over-
whelming majority of previous work on visualisation has
concerned isolated still images, not animation. However,
there has been previous work on virtual reality environ-
ments [26, 25]. In such work, the virtual environment is
animatory. Unlike the work presented in the present pa-
per, however, this previous work is immersive (following
the principle of immersion in virtual reality). The animation
users, is immersed in a virtual world in which objects serve
as metaphors for source code constructions. Therefore, the
animation exists as a result of the need for movement of
the viewers’ point of reference; it does not represent change
properties of the source code.

There has also been previous work on properties of vi-
sualisations (for example [34]), with similar goals as that
set out in Section 2 of the present paper. However, this
previous work has tended to focus almost exclusively on
non-animatory visualization, and no previous work has con-
cerned properties of animations of static source code analy-
sis.

Binkley and Harman used slicing to visualize depen-
dence clusters [9]. They introduced the MSG, used in the
animations reported upon here; the MSG of Binkley and
Harman corresponds to the final still in each of the anima-
tions described in the present paper.

The present paper used dependence visualisation and
slicing as a focus for the case study in animation of static
dependence. Current approaches to slicing technology visu-
alize results directly in the source code. Some approaches
use navigational aids or restricted forms of slicing to im-
prove the visualization [3, 17, 40]. Visualizations of slices
can be distinguished in graphical and textual visualizations.
The SeeSlice slicing tool [6] visualize slices not through
source code but with an abstraction representing characters
as single pixels.

Other approaches to visualisation of dependence visual-
ize the underlying dependence graph [8, 4, 20, 37, 30], how-
ever, most authors report that such visualizations become
unmanageably large as the size of the systems visualized
increases. One advantage of the animation approach intro-
duced in the present paper is the way in which scalability
is achieved naturally and only at the expense of property of
sharpness.

The animation used in the case study in the present pa-
per was based on the concept of calling context. The effects
on calling context on slicing has been previously studied
(but without animation). Some studies examine the trade-
off between precision and speed for context-sensitives vs.
-insensitive slicing [5, 1, 33, 28, 11]. Krinke [31] has stud-
ied the effects of restricting the calling context to a specific
call stack.

6 Conclusion and Future Work

This paper has introduced an approach to the animation
of static source code analysis that exploits the unavoidable
approximate nature of static analysis. The approximate na-
ture of static analysis is used to resolve the apparent con-
tradiction at the heart of any attempt to animate (which
is inherently dynamic) static analysis (which is inherently
static).

The paper introduced a framework for defining ap-
proaches to animation of static analysis, based upon stills
that correspond to levels of approximation available to the
analysis. The paper also presented a case study in the ap-
plication of this framework to dependence analysis. Results
were reported from the implementation of this approach and
its application to 13 C programs. The results indicate that
the animation is not only interesting but also that it illumi-
nates several properties of the dependence structure of the
programs that would be hard to visualize without anima-
tion. Future work will consider the application the anima-
tion framework to other forms of static analysis, such as
pointer analysis and context sensitivity.

7 Acknowledgements
The authors wish to thank GrammaTech Inc. for provid-

ing CodeSurfer, Dave Binkley is supported by National Sci-
ence Foundation grant CCR0305330 (Amorphous Program
Slicing). Mark Harman is supported, in part, by EPSRC
Grants GR/S93684 (ASTRENET), and GR/T22872 (CON-
TRACTS). Binkley and Harman are also supported, in part,
by a research grant from DaimlerChrysler, Berlin.

References

[1] G. Agrawal and L. Guo. Evaluating explicitly context-
sensitive program slicing. In Workshop on Program Analysis
for Software Tools and Engineering, pages 6–12, 2001.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
techniques and tools. Addison Wesley, 1986.

[3] P. Anderson and T. Teitelbaum. Software inspection using
codesurfer. In Workshop on Inspection in Software Engineer-
ing (CAV 2001), 2001.

[4] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, and
E. Merlo. Program understanding and maintenance with the
CANTO environment. In International Conference on Soft-
ware Maintenance, pages 72–81, 1997.

[5] D. C. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. In Proceedings of the 18th Inter-
national Conference on Software Engineering, pages 16–27,
1996.

[6] T. Ball and S. G. Eick. Visualizing program slices. In IEEE
Symposium on Visual Languages, pages 288–295, 1994.

[7] T. Ball and S. G. Eick. Software visualization in the large.
IEEE Computer, 29(4):33–43, 1996.

[8] F. Balmas. Displaying dependence graphs: a hierarchical ap-
proach. In Proc. Eigth Working Conference on Reverse Engi-
neering, pages 261–270, 2001.

[9] D. Binkley and M. Harman. Locating dependence clus-
ters and dependence pollution. In 21st IEEE International
Conference on Software Maintenance, pages 177–186. IEEE
Computer Society Press, 2005.

[10] D. W. Binkley. Interprocedural constant propagation using
dependence graphs and a data-flow model. In P. Fritzson,
editor, Proceedings of the International Conference on Com-
piler Construction, (Edinburgh, Scotland), pages 374–388.
Lecture Notes in Computer Science, Volume 786, Springer
Verlag, April 1994.

[11] D. W. Binkley and M. Harman. A large-scale empirical study
of forward and backward static slice size and context sensi-
tivity. In IEEE International Conference on Software Main-
tenance, pages 44–53. IEEE Computer Society Press, Sept.
2003.

[12] D. W. Binkley and M. Harman. Analysis and visualization
of predicate dependence on formal parameters and global
variables. IEEE Transactions on Software Engineering,
30(11):715–735, 2004.

[13] D. W. Binkley and M. Harman. A survey of empirical results
on program slicing. Advances in Computers, 62:105–178,
2004.

[14] M. Brown. Algorithm Animation. MIT Press, 1988.
[15] C. S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and

K. Wampler. A system for graph-based visualization of the
evolution of software. In Proceedings of the 2003 ACM sym-
posium on Software visualization, pages 77–86, 212–213,
2003.

[16] S. Diehl, editor. Software Visualizations, volume 2269 of
LNCS. Springer, 2002.

[17] M. D. Ernst. Practical fine-grained static slicing of optimized
code. Technical Report MSR-TR-94-14, Microsoft Research,
Redmond, WA, July 1994.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Transactions on Software En-
gineering, 27(2):1–25, Feb. 2001.

[19] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319–
349, July 1987.

[20] K. Gallagher and L. O’Brien. Reducing visualization com-
plexity using decomposition slices. In Software Visualization
Workshop, pages 113–118, 1997.

[21] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier,
1977.

[22] M. Hind. Pointer analysis — haven’t we solved this problem
yet? In Program Analysis for Software Tools and Engineer-
ing (PASTE’01). ACM, June 2001.

[23] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions on Pro-
gramming Languages and Systems, 12(1):26–61, 1990.

[24] D. Jackson and E. J. Rollins. Chopping: A generalisation of
slicing. Technical Report CMU-CS-94-169, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA,
July 1994.

[25] C. Knight and M. Munro. Comprehension with[in] virtual
environment visualisations. In 7th IEEE International Work-
shop on Program Comprenhesion (IWPC’99), pages 4–11.
IEEE Computer Society Press, May 1999.

[26] C. Knight and M. Munro. Virtual but visible software. In
Information Visualisation, pages 198–205. IEEE Computer
Society Press, July 2000.

[27] B. Korel, M. Harman, S. Chung, P. Apirukvorapinit, and
R. Gupta. Data dependence based testability transformation
in automated test generation. In 16th International Sympo-
sium on Software Reliability Engineering (ISSRE 05), Nov.
2005. To appear.

[28] J. Krinke. Evaluating context-sensitive slicing and chopping.
In IEEE International Conference on Software Maintenance,
pages 22–31. IEEE Computer Society Press, Oct. 2002.

[29] J. Krinke. Advanced Slicing of Sequential and Concurrent
Programs. PhD thesis, Universität Passau, Apr. 2003.

[30] J. Krinke. Visualization of program dependence and slices.
In Proc. International Conference on Software Maintenance,
pages 168–177, 2004.

[31] J. Krinke. Effects of context on program slicing. Journal of
Systems and Software, 2006. to appear.

[32] W. Landi and B. G. Ryder. Pointer-induced aliasing: A prob-
lem classification. In In Conference Record of the Eighteenth
Annual ACM Symposium on Principles of Programming Lan-
guages, pages 93–103. ACM Press, Jan. 1991.

[33] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eg-
gers. Improving program slicing with dynamic points-to data.
In Proceedings of the 10th International Symposium on the
Foundations of Software Engineering, 2002.

[34] M. Pacione, M. Roper, and M. Wood. A comparative evalua-
tion of dynamic visualization tools. In Proceedings of WCRE
’03, pages 80–89. IEEE Computer Society, Nov. 2003.

[35] T. Reps. Program analysis via graph reachability. Informa-
tion and Software Technology, 40(11–12):701–726, 1998.

[36] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up
slicing. In Proceedings of the ACM SIGSOFT ’94 Symposium
on the Foundations of Software Engineering, pages 11–20,
1994.

[37] D. J. Richardson, T. O. O’Malley, C. T. Moore, and S. L.
Aha. Developing and integrating prodag into the arcadia en-
vironment. In Proceedings of the Fifth Symposium on Soft-
ware Development Environments, pages 109–119, 1992.

[38] B. G. Ryder, W. Landi, B. Philip, A. Stocks, S. Zhang, and
R. Altucher. A schema for interprocedural modification side-
effect analysis with pointer aliasing. ACM Trans. Prog. Lang.
Syst., 23(2):105–186, Mar. 2001.

[39] J. T. Stasko, M. H. Brown, and B. A. Price, editors. Software
Visualization. MIT Press, Cambridge, MA, USA, 1997.

[40] C. Steindl. Benefits of a data flow-aware programming en-
vironment. In Workshop on Program Analysis for Software
Tools and Engineering (PASTE’99), 1999.

[41] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow in-
sensitive C++ pointers and polymorphism analysis and its ap-
plication to slicing. In Proceedings of the 19th International
Conference on Software Engineering (ICSE ’97), pages 433–
444. IEEE Computer Society Press, May 1997.

[42] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

[43] J. Yur, B. G. Ryder, and W. A. Landi. An incremental flow-
and context-sensitive pointer aliasing analysis. In Proceed-
ings of the 21st International Conference on Software Engi-
neering, pages 442–452. IEEE Computer Society Press, May
1999.

[44] A. Zeller. Animating data structures in ddd. In First In-
ternational Program Visualization Workshop, pages 69–79.
University of Joensuu Press, 2001.

