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ABSTRACT
Current slicing techniques cannot handle systems written in multiple
programming languages. Observation-Based Slicing (ORBS) is a
language-independent slicing technique capable of slicing multi-
language systems, including systems which contain (third party)
binary components. A potential slice obtained through repeated
statement deletion is validated by observing the behaviour of the
program: if the slice and original program behave the same under
the slicing criterion, the deletion is accepted. The resulting slice
is similar to a dynamic slice. We evaluate five variants of ORBS
on ten programs of different sizes and languages showing that it is
less expensive than similar existing techniques. We also evaluate it
on bash and four other systems to demonstrate feasible large-scale
operation in which a parallelised ORBS needs up to 82% less time
when using four threads. The results show that an ORBS slicer is
simple to construct, effective at slicing, and able to handle systems
written in multiple languages without specialist analysis tools.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation, Measurement

Keywords
Program Slicing, Delta Debugging

1. INTRODUCTION
Since Weiser introduced program slicing [40] hundreds of papers

and research prototypes have appeared. Despite significant and
sustained work, two long-standing challenges remain open: how
to slice heterogeneous programs consisting of components written
in different programming languages and how to slice systems that
include binary components or libraries. Although one may be able
to slice the components of the system written in a particular single
language, the resulting slice has limited utility because one either
has to ignore effects of the components written in other languages
or use worst-case assumptions. It is typically too complicated to
construct slicers for several languages and combine their analyses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14, November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

Slicing has many proposed applications, including testing [7, 18],
debugging [23, 42], maintenance [15, 16], re-engineering [8], re-
use [3,9], comprehension [11,22,39] and refactoring [14]. However,
full development of these applications will not occur unless slicing
can be used to slice programs written in multiple languages. To the
authors’ knowledge, no tool exists that can slice a such system.

Consider the code shown in Figure 1, which consists of three
components: a Java and a C program connected by some logic im-
plemented in Python. Assume you want to know which statements
can influence the value of the variable dots just after Line 13 of
checker.java. A slice would capture the set of influencing state-
ments, but almost no program analysis approach can handle such
systems without requiring complex abstract language models [31]
or restrictions to particular fixed groups of languages [29].

The number of languages in a software system is often between
two and fifteen [19, pp. 504-505] and the costs of development and
maintenance rise with the number of languages. A multi-language
approach is likely to have much greater impact and utility than one
for a single-language alone, and since neither traditional static or
dynamic slicing is suitable, an alternative approach is needed.

We present a technique that can compute slices for heterogeneous
systems. In addition to handling multiple languages, it removes the
need to replicate much of the compiler’s work (e.g., parsing the code
being analyzed) when developing a slicing system by leveraging
the existing build tool-chain instead. Our approach thus provides a
way to construct a slicer out of the build tools already being used
by most programmers, rather than requiring the costly development
of a new language-specific toolset. Figure 2 shows the slice for the
above example as computed using our implementation.

Weiser defined a slice as a subset of a program that preserves
the behaviour of the program for a specific criterion. Although he
defined the slice subset in terms of statement deletion, most slicers
compute slices by analysing dependencies to establish which state-
ments must be retained. Our approach actually deletes statements,
executes the candidate slice, and observes the behaviour for a given
slicing criterion, i.e., it observes a variable’s state at a location as
given by the criterion. The resulting slices have the same observed
behaviour for the criterion as the original program. Because we com-
pute slices for a specific set of executions and inputs, our slices are
similar to dynamic slices. However, dynamic slicing typically uses
dependence analysis to extract some information from an execution
of a program to decide which statements should be retained to form
the slice (execute–observe–select). In contrast, our approach relies
on observing the actual behaviour after deleting statements (delete–
execute–observe) and is thus called observation-based slicing.

There are two program reduction techniques that operate in a
similar deletion-oriented way: Critical Slicing [12] and delta-de-
bugging [45] based approaches (e.g., STRIPE [10] or Delta [26]).
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checker.java:
1 class checker {
2 public static void main(String[] args) {
3 int dots = 0;
4 int chars = 0;
5 for (int i = 0; i < args[0].length(); ++i) {
6 if (args[0].charAt(i) == ’.’) {
7 ++dots;
8 } else if ((args[0].charAt(i) >= ’0’)
9 && (args[0].charAt(i) <= ’9’)) {

10 ++chars;
11 }
12 }
13 System.out.println(dots); // Slice here
14 System.out.println(chars);
15 }
16 }

reader.c:
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <locale.h>
4

5 int main(int argc, char **argv) {
6 setlocale(LC_ALL, "");
7 struct lconv *cur_locale = localeconv();
8 if (atoi(argv[1]))
9 {

10 printf("%s\n", cur_locale->decimal_point);
11 }
12 else
13 {
14 printf("%s\n", cur_locale->currency_symbol);
15 }
16 return 0;
17 }

glue.py:
1 # Glue reader and checker together.
2 import commands
3 import sys
4

5 use_locale = True
6 currency = "?"
7 decimal = ","
8

9 if use_locale:
10 currency = commands.getoutput(’./reader 0’)
11 decimal = commands.getoutput(’./reader 1’)
12

13 cmd = (’java checker ’ + currency
14 + sys.argv[1] + decimal + sys.argv[2])
15 print commands.getoutput(cmd)

Figure 1: Example Multi-Language Application

These techniques might also be considered as candidates for the
observation-based slicing we propose and will be discussed in detail.
The comparative study in Section 5 shows that Critical Slicing often
produces incorrect slices (while observation-based slices are always
correct by construction) and observation-based slicing using delta
debugging is too expensive for practical use.

The contributions of this paper are
• A language-independent algorithm, ORBS, for computing

observation-based slices in a serial and a parallel version,
• Empirical studies that demonstrate the application, operation,

and comparability of the approach,
• An in-depth case study that explores and illustrates character-

istics of our approach, and
• A parallelised implementation of ORBS that significantly

decreases the runtime.

checker.java:
1 class checker {
2 public static void main(String[] args) {
3 int dots = 0;
4 for (int i = 0; i < args[0].length(); ++i) {
5 if (args[0].charAt(i) == ’.’) {
6 ++dots;
7 }
8 }
9 }

reader.c:
1 #include <locale.h>
2 int main(int argc, char **argv) {
3 struct lconv *cur_locale = localeconv();
4 {
5 printf("%s\n", cur_locale->decimal_point);
6 }
7 }

glue.py:
1 import commands
2 import sys
3 use_locale = True
4 currency = "?"
5 if use_locale:
6 decimal = commands.getoutput(’./reader 1’)
7 cmd = (’java checker ’ + currency
8 + sys.argv[1] + decimal + sys.argv[2])
9 print commands.getoutput(cmd)

Figure 2: Sliced Example from Fig. 1

2. SLICING DEFINITIONS
Program slicing is classified as either static or dynamic: A static

slice considers all possible executions while a dynamic slice con-
siders specific executions. We will show how to derive observation-
based slicing from the traditional forms of dynamic slicing.

2.1 Traditional Slicing
Static slicing [41] computes a subset of a program such that

executing the subset will have the same behaviour for a specified
variable at a specified location (the slicing criterion) as for the
original program for all possible inputs.

Dynamic slicing [20] uses a specific input and only preserves the
behaviour for that input. Most work on dynamic slicing (e.g., the
work of Agrawal and Horgan [1]) offers only a description rather
than a definition of the term. Thus there exist many different formu-
lations of dynamic slicing, relating to the particular technique being
reported to compute the slices, rather than to a general definition.
We use a generalised definition of dynamic slicing that involves a
state trajectory and a projection function, PROJ [41]. Informally
each state in a trajectory gives the value of each of the program’s
variables, while the projection function extracts those values relevant
to a slicing criterion. The generalised definition of a dynamic slice
is based on Weiser’s definition of a static slice [41] (additions are
shown in italics). This definition is similar to Korel and Laski’s [20]
definition:

Dynamic Slice: A dynamic slice S of a program P on a slicing
criterion C and for inputs I is any executable program with the
following two properties:

1. S can be obtained from P by deleting zero or more statements
from P.

2. Whenever P halts on input I from I with state trajectory T ,
then S also halts on input I with state trajectory T ′, and
PROJC(T ) = PROJC(T ′), where PROJC is the projection
function associated with criterion C.



The projection function and the criterion define the type of dynamic
slicing. Usually, the criterion for a dynamic slice includes the inputs
I and is given as (vi, l,I) denoting variable v at location l for the ith
occurrence in the trajectory. However, this can also be specified as
(v, l,I) denoting variable v at location l for all occurrences in the
trajectory.

Naturally, one is interested in the smallest slice possible. A slice
is considered to be minimal if no further statements can be removed
from it. There may be more than one minimal slice for a given
program and slicing criterion [40].

2.2 Observation-Based Slicing
The definition (rather than the usual approach to the computation)

of a dynamic slice holds the key to solving the challenges of multi-
language slicing; slicing by actually deleting statements in a file
of interest and executing the program to observe if the projected
trajectory changes. Slicing operations need only take place in the
source file(s) of interest: the remainder of the system (i.e., binary
components or other source files) can remain untouched.

For the slice taken with respect to a given slicing criterion (i.e., a
variable at a specified location for a specific input), the observation-
based slicing tool

• must capture the state trajectory for the slicing criterion (all
other elements of the trajectory are removed),

• must be able to delete statements from the components of
interest, and

• may leave intact other components, including binary compo-
nents and other source files.

Using the observation-based slicing approach one can slice any
system where statements can be deleted from the components of
interest, the component containing the criterion can be instrumented
to capture the (projected) trajectory for the criterion, and the system
can be built and executed with the modified components. In one
sense, observation-based slicing can be seen as drawing on the
kind of ad-hoc behaviours of developers when debugging: through
formalisation we gain reliability and repeatability.

Observation-based slicing is based on preserving the relevant part
of the state trajectory from the execution of an original program P.

Observation-Based Slice: An observation-based slice S of a pro-
gram P on a slicing criterion C = (v, l,I) composed of variable
v, line l, and set of inputs I, is any executable program with the
following properties:

1. The execution of P for every input I in I halts and produces
a sequence of values V(P, I, v, l) for variable v at line l.

2. S can be obtained from P by deleting zero or more statements
from P.

3. The execution of S for every input I in I halts and produces
a sequence of values V(S , I, v, l) for variable v at line l.

4. ∀I∈IV(P, I, v, l) = V(S , I, v, l).

We call the sequences V trajectories for the criterion (v, l,I). An
implementation of observation-based slicing produces V(P, I, v, l)
by injecting, just before line l, a statement that captures the value
of v and writes it to a file. The comparison of the trajectories
restricts the observable variables somewhat: Their values must
be comparable between different runs (requiring serialisation for
objects, for example).

Algorithm 1: ORBS

ORBSlice(P, v, l,I, δ)
Input: Source program, P = {p1, . . . , pn}, slicing criterion,
(v, l,I), and maximum deletion window size, δ
Output: A slice, S , of P for (v, l,I)
(1) O← Setup(P, v, l)
(2) V ← Execute(Build(O),I)
(3) S ← Reverse(O)
(4) repeat
(5) deleted ← False
(6) i← 1
(7) while i ≤ length(S )
(8) builds← False
(9) for j = 1 to δ
(10) S ′ ← S − {si, . . . , smin(length(S ),i+ j−1)}

(11) B′ ← Build(Reverse(S ′))
(12) if B′ built successfully
(13) builds← True
(14) break
(15) if builds
(16) V ′ ← Execute(B′,I)
(17) if V = V ′

(18) S ← S ′

(19) deleted ← True
(20) else
(21) i← i + 1
(22) until ¬deleted
(23) return Reverse(S )

We are interested in minimal subsets, thus we delete as many
statements from P as possible such that the subset is still an ob-
servation-based slice, i.e. it is not possible to delete another state-
ment. However, we are not aiming at finding the globally smallest
possible subset (global minimum) as this search becomes computa-
tionally intractable.

We need our concept of a ‘statement’ to be language independent.
Therefore, we delete lines from a source file and assume that the
source files are formatted in such a way that there is no more than
one statement on a single line. When this assumption is violated,
the ORBS slicer will still produce slices, but may produce larger
slices since the granularity of deletable objects will be coarser (see
Section 8 for a more detailed discussion). Usually, a source code
beautifier or formatter can be used to split lines that contain multiple
statements.

3. ORBS
Our algorithm for observation-based slicing, ORBS, works by

iteratively deleting longer sequences of lines (as long as the result
is an observation-based slice) until no more lines can be deleted. A
single iteration of ORBS attempts to delete from the source code
and validates the deletion by compiling and executing the candidate,
and comparing the trajectory against the trajectory for the original
program. If a deletion produces compilation errors, the deletion
cannot produce a correct executable slice. Similarly, if a deletion
leads to a slice that produces a different trajectory from the original,
the slice is not correct. A deletion is accepted as a part of a valid
slicing action if it passes both checks.

3.1 Algorithm and Implementation
Algorithm 1 presents ORBS. It starts by setting up the program

to capture the resulting trajectory for slicing criterion (v, l) and
then executing it for all inputs I, storing the trajectory. The Setup
step simply inserts a line (without side effects) just before line l



1 if (x < 0) {
2 print x;
3 }
4 y = 42;
5 // Slice on y

Figure 3: Example Code for Deletion Window

that captures the value of variable v. The main loop tries to delete
lines, as long as the deletion still results in a slice, until no more
lines can be deleted. It does this using a moving deletion window
(MDW) implemented by the for loop on Line 10, which tries to
find the minimal sequence of lines that can be deleted such that
the deletion results in a compilable program S ′. If S ′ builds, it is
executed (at Line 17) and the trajectory is captured. If this trajectory
is the same as the original trajectory, the algorithm accepts S ′ as a
slice (i.e., accepts the deletion) and continues looking for deletion
opportunities in S ′. Otherwise, it rejects the deletion and continues
to the next line of the file being sliced.

For example, Figure 2 shows the slice generated by ORBS for
the program shown in Figure 1. ORBS has removed the code in
checker.java responsible for counting digits and printing the
results, in reader.c the code for the currency symbol has been
deleted, and in glue.py one of the invocations of reader has been
removed.

The deletion window size parameter δ places an upper bound
on the number of lines that can be deleted together in one deletion
operation. Higher values offer potentially more precise slices but at
the cost of increased slicing time. For example, consider the code
segment shown in Figure 3. ORBS cannot produce the minimal
slice (i.e., Line 4) by attempting to delete only a single line at a time.
While deleting Line 2 alone is a legitimate slicing action, Lines 1
and 3 can only be deleted in tandem because deleting only one of
them results in a syntax error. ORBS avoids this issue by increasing
the deletion window until the result compiles. Assume that the
maximum deletion window size is 2. In the initial pass, MDW only
supports the deletion of Line 2: other lines cannot be deleted either
because of syntax errors (from deleting Line 1 alone or Lines 1 and
2), or trajectory comparison failures (from deleting Line 4 when
the slice’s trajectory won’t match the original trajectory). After the
deletion of Line 2, in the next pass, the original Lines 1 and 3 are
adjacent and can be deleted together, at which point we achieve the
desired slice. Through experimentation we have found three to be a
good maximum deletion window size.

ORBS does not know anything about the programming language,
not even how comments are represented. A deletion of a blank line
or a line that is part of a comment will not change the behaviour of
the program. Our implementation, rather than undertake the expense
of re-testing in such cases, caches intermediate results in Build and
Execute. If a subsequent build produces a cache hit then there is no
need to run the test cases as the cached result can be used. Avoiding
unnecessary builds and/or executions is particularly beneficial when
a deletion leads to a non-terminating program (detected using a
timeout). Avoiding re-executions that timeout saves a significant
amount of time. This approach is used in the experiments reported in
Section 6 where the number of test executions needed is essentially
halved as a result.

3.2 ORBS Variants
The ORBS algorithm considers the program from its last line to its

first. Otherwise an additional iteration of the algorithm’s main loop
is often required because variable definitions are typically lexically
earlier in code than their uses. Consequently, the definition can
only be removed after all uses (causing the additional loop iteration).

Reversing the code means that the deletion of the definition will be
attempted last. Forward ORBS (F-ORBS) is defined by skipping
the Reverse Lines 3 and 23 of the ORBS algorithm, and building S ′

rather than Reverse(S ′) in step 12.
Two other variations are considered in the experiments. These

two are based on delta debugging [45]. A delta-debugging based
ORBS replaces the deletion operations of the ORBS algorithm with
ddmin [45] so that the program is split into large chunks on which
the deletion is then attempted. If no deletion is possible, the size of
the chunks is decreased until no more decrease is possible. The first
variant considered, DD-ORBS, uses plain delta debugging while
the second, MDW-DD-ORBS, uses the moving deletion window
approach. Plain delta debugging continuously decreases the size of
the deltas it deletes. When the delta has reached the size of a single
line, delta debugging can no longer delete a line that can only be
deleted together with one of more other lines. MDW-DD-ORBS
therefore uses a deletion window as soon as the delta debugging has
reached a delta size of one line. The characteristics of these four
variants are explored in Section 5.

4. RESEARCH QUESTIONS
We will study observation-based slicing and our implementation

ORBS using the following research questions.
RQ1: How does ORBS compare to the results of related ap-

proaches? The first research question addresses the features of
ORBS slices by comparing the computed slices to those computed
on the same programs by alternative approaches. The scope of the
investigation is restricted to multi-language capable slicing tech-
niques (thus ruling out most dynamic slicing approaches). Section 5
compares results from STRIPE [10], Critical Slicing [12], manually-
identified minimal slices, and the four ORBS variants described
above.

RQ2: How does observation-based slicing scale? Assuming the
answers to the first research question indicate that ORBS performs
as well or better than alternative approaches, this question will
investigate how it behaves on a larger case study, the program bash.
Results are described in Section 6.

RQ3: How can observation-based parallelised? ORBS is a
sequential iterative algorithm which needs large numbers of compi-
lations and executions. Section 7 will investigate a parallel version
and compare the sequential with the parallel version in terms of
runtime and slice sizes.

RQ4: What are the impacts of external factors on ORBS? ORBS
depends only on the standard tools available to the programmer in
his or her development environment. It does not require bespoke
dependence analysis tools, hence its language independence. Since
ORBS relies on these tools to undertake its slicing operations, the
effect of these must also be studied. This research question inves-
tigates the effect of the environment (e.g., compiler and operating
system), the effect of source code layout and the ordering of files.
The results are described in Section 8.

5. COMPARATIVE STUDY
This section addresses RQ1, looking at the operation of ORBS on

a range of programs. Most dynamic slicing approaches are simply in-
applicable for observation-based slicing, by virtue of their use of the
execute–observe–delete (as opposed to the delete–execute–observe)
paradigm. Those that are amenable to a delete–execute–observe
paradigm are Critical Slicing (since it emphasises observation) and
approaches based on delta debugging (since they emphasize the dele-
tion operation). We discuss some characteristics before undertaking
a larger comparison.



E S D C O DD
1 | | | | | | int main(int argc, char **argv) {
2 | | | | int a = 0;
3 | | int z = 0;
4 | | | | | int x = 0;
5 | | | | | int j = 0;
6 | | a = atoi(argv[1]);
7 | | | x = 0;
8 | | | | | | j = 5
9 | | | a = a - 10;

10 | | | | if (a > j) {
11 | x = x + 1;
12 } else {
13 | z = 0;
14 | | }
15 | | | | | | x = x + j;
16 | printf("%d\n", x); // slice on x
17 | return 0;
18 | | | }

Figure 4: Comparison of E: Executed, S: Static Slice, D:
Dynamic Slice, C: Critical Slice, O: ORBS, DD: DD-ORBS
(‘|’ shows that a statement is in the slice).

5.1 General Characteristics
Figure 4 shows a comparison of ORBS to the approaches consid-

ered by DeMillo et al. [12] when they introduced Critical Slicing,
using a minor modification of their example. The first column (‘E’),
shows the executed lines as measured by gcov. The results of ap-
plying five techniques are then shown in the subsequent columns:
Column ‘S’ shows the static slice, Column ‘D’ shows the dynamic
slice, Column ‘C’ shows the critical slice (based on our own im-
plementation of the algorithm of DeMillo et al. [12]), Column ‘O’
shows the observation-based slice computed by ORBS, and finally,
Column ‘DD’ for DD-ORBS. Note that only the critical and the
observation-based slices are actually executable.

5.1.1 Critical Slicing
Although DeMillo et al. [12] implemented Critical Slicing on

top of a debugger, they suggested (but did not implement) a sim-
pler approach that independently deletes each individual line from
the source code and then tests if the resulting code has the same
behaviour on a test set. The critical slice is the program without
those lines for which the deletion produced the same behaviour. We
implemented this approach using the same framework as ORBS so
that we can compare Critical Slicing with ORBS in detail.

Critical Slicing does not guarantee to produce legal slices: Al-
though two lines may individually be removed without changing
the behaviour at the criterion, their joint removal may produce a
program with changed behaviour (or even fail to compile). Figure 5
shows an example where either Line 3 or Line 4 can be removed
without changing the outcome at Line 7. Therefore, Critical Slicing
excludes these two lines as well as Line 8. However, an execution
of the critical slice will fail at Line 5 due to the division by zero.
Observation-based slices, on the other hand, are always correct by
construction. ORBS will only remove Line 4 and Line 8 as it cannot
remove Line 3 after it has already removed Line 4 (forward ORBS
would remove Line 3 instead of Line 4).

Because Critical Slicing needs a fixed number of compilations
(one per line) it may run faster than ORBS. To investigate this we
retain Critical Slicing in our next set of experiments, even though it
may produce invalid slices.

5.1.2 STRIPE
STRIPE [10] uses delta debugging to identify the smallest sub-

set of events in an execution trace relevant in producing a failure.
STRIPE first runs the program to obtain an execution trace and then

1 int main(int argc, char **argv) {
2 int a = 0, b = 0, x = -1, y = 0;
3 a = 1; // not in the critical slice
4 b = 1; // not in the critical slice
5 x = 5 / (a+b);
6 y = (x > 0)? 1 : 2;
7 printf("%d\n", y); // slice on y
8 return 0; // not in the critical slice
9 }

Figure 5: Example – A Critical Slice is not a valid Slice

E ST C O
1 | | $sum = 0;
2 | $mul = 1;
3 | | | | print "a? "; $a = <>;
4 | | | print "b? "; $b = <>;
5 | | | while ($a <= $b) {
6 | | | | $sum = $sum + $a;
7 | | | | $mul = $mul * $a;
8 | | | | $a = $a + 1;
9 | | | }

10 | | | | print "sum = ", $sum, "\n";
11 | | | | print "mul = ", $mul , "\n";

Figure 6: STRIPE Test Case sample.pl

uses a debugger to skip statements in the trace. STRIPE works
with Perl programs and only one example is given by Cleve and
Zeller, shown in Figure 6, which is executed with the input “0 5”
for the slicing criteria sum in Line 10 and mul in Line 11. Col-
umn ‘E’ shows the lines that are executed for this input (i.e., all
of them). Column ‘ST’ shows the lines that are not skipped by
STRIPE. STRIPE operates on full traces where individual statement
execution instances in a trace can be omitted. It seems that STRIPE
never includes control structures (e.g., Line 5 and 9) which leads
to the skipping of statements that affect the predicates (e.g., Line
4). ORBS and Critical Slicing only remove the first two lines (their
removal does not change the outcome for the test “0 5”).

STRIPE exhibits four disadvantages. First, it computes a trace
subset which is not directly mapped onto source code. Second, it
does not include control structures and consequently statements
affecting them, causing the result to be too small (and thus not a
valid slice at all). The third is that it is prohibitively expensive, not
only because the use of a debugging infrastructure brings signifi-
cant overheads, but because the complexity of the delta debugging
algorithm requires an order of magnitude more executions: For the
above example, STRIPE needed 176 executions [10] while ORBS
needed only 29 compilations and 17 executions (Critical Slicing only
needed 12 compilations and 10 executions). The last disadvantage
of STRIPE in this context is that it operates only on a single lan-
guage. Consequently, we do not discuss it further in this evaluation
but focus on our own delta-debugging based variants.

5.2 Empirical Comparison
We have now reported on our initial experiments that investigated

the general characteristics of techniques that use the delete–execute–
observe paradigm and that are candidates for observation-based
slicing. We found that both STRIPE and Critical Slicing may pro-
duce invalid slices. STRIPE is also prohibitively expensive and
so it is omitted from the empirical study reported on in this sec-
tion. We now move on to report the results of an empirical study
that compares ORBS with its forward and delta-debugging vari-
ants, and Critical Slicing. In all the experiments performed here
ORBS, F-ORBS, and MDW-DD-ORBS use a deletion window size
of three. Note that the variations may produce different minimal
observation-based slices, depending on deletion order.



Table 1: Comparison of ORBS Variants (C: Compilations, E: Executions, D: Deleted Lines).
System Criteria LOC ORBS F-ORBS DD-ORBS MDW-DD-ORBS Critical

C E D C E D C E D C E D C E D
Fig. 1 dots,checker.java:13 48 132 36 22 189 49 21 217 73 21 374 75 21 48 23 17‡
swig g,runme.py:10 201 308 60 187 465 94 187 909 117 166 1 129 128 187 201 65 113‡
swig g,example.c:15 201 416 86 167 569 99 167 1 741 272 145 2 371 309 167 201 65 104
swig count,example.c:37 201 459 99 182 547 114 177 1 785 142 158 2 174 171 182 201 65 106
hanoi/java nDiscs,22 171 807 153 123 769 140 127 2 045 500 102 3 675 407 127 171 74 66‡
hanoi/c# nDiscs,24 200 793 213 159 775 191 163 3 178 519 132 5 358 600 163 200 118 92†
calendar/js year,152 344 855 395 299 911 432 295 4 060 1 518 261 4 666 1 986 295 344 270 234
calendar/js year,156 344 824 377 303 894 417 299 3 992 1 370 263 4 584 1 860 299 344 270 236
calendar/js year,167 344 833 380 302 890 413 300 3 952 1 344 264 4 556 1 834 300 344 270 237
calendar/js days,156 344 824 377 303 890 413 300 3 937 1 311 264 4 526 1 795 300 344 270 237‡
calendar/js days,167 344 833 380 302 886 409 301 3 898 1 286 265 4 498 1 769 301 344 270 238‡
calendar/perl year,166 370 920 436 317 945 456 317 3 285 1 496 298 4 831 2 047 317 370 304 272†
calendar/perl year,171 370 880 418 323 908 435 323 3 180 1 378 301 4 541 1 905 323 370 304 275†
calendar/perl year,185 370 790 396 336 916 439 335 2 823 1 106 309 3 663 1 507 336 370 304 277†
calendar/perl days,171 370 878 418 324 912 438 322 3 207 1 404 300 4 625 1 962 322 370 304 274†
calendar/perl days,185 370 788 396 337 921 443 334 2 993 1 216 303 4 002 1 668 330 370 304 276†
calendar/php year,156 333 761 363 299 780 368 301 2 230 767 276 2 805 1 103 301 333 269 249
calendar/php year,159 333 729 347 303 755 354 305 2 066 664 278 2 374 870 305 333 269 251
calendar/php year,171 333 706 337 307 731 341 309 2 126 599 279 2 547 854 309 333 269 252
calendar/php days,159 333 716 347 305 759 357 304 2 171 711 277 2 636 1 011 304 333 269 250
calendar/php days,171 333 693 337 309 735 344 308 2 142 614 278 2 558 872 308 333 269 251
calendar/python year,151 310 484 338 284 742 460 284 1 638 973 277 1 958 1 052 284 310 280 199†
calendar/python year,155 310 425 318 288 714 451 288 1 631 955 279 1 932 1 043 288 310 280 200†
calendar/python year,166 310 419 314 291 702 445 291 1 701 988 282 1 975 1 068 291 310 280 200†
calendar/python days,155 310 425 318 288 666 432 290 1 631 955 279 1 932 1 043 288 310 280 201†
calendar/python days,166 310 419 314 291 702 445 291 1 701 988 282 1 975 1 068 291 310 280 200†
printtokens token_ind,273 563 2 516 385 401 2 285 364 377 21 200 2 091 350 38 851 2 553 405 563 163 292†
printtokens cu_state,311 563 2 180 350 386 2 701 488 386 23 939 3 324 333 41 959 3 386 372 563 163 259†
printtokens token_ind,311 563 2 180 350 386 2 701 488 386 24 180 3 267 333 41 958 3 385 372 563 163 283†
printtokens state,358 563 2 237 349 372 2 323 402 371 21 836 2 370 337 42 557 3 161 388 563 163 288†
printtokens state,383 563 2 677 354 379 2 316 413 366 24 355 2 775 342 45 366 3 364 396 563 163 277†
printtokens state,434 563 2 553 403 400 2 572 407 403 21 751 1 982 348 39 888 2 554 404 563 163 293†
printtokens token_ind,434 563 2 134 329 400 2 563 406 403 21 753 1 942 348 40 182 2 504 404 563 163 293†
printtokens state,457 563 2 853 475 353 2 393 463 358 24 061 3 322 318 45 846 3 994 358 563 163 269†
printtokens token_ind,550 563 1 915 377 342 2 944 496 344 25 394 3 673 305 45 813 3 911 343 563 163 267†
notepad all 1 481 7 844 555 1 162 9 681 599 1 193 109 376 2 204 956 204 930 5 846 1 205 1 481 272 670
concordance all 1 490 6 408 560 1 191 6 596 657 1 210 81 672 3 139 1 047 147 360 3 145 1 211 1 490 371 825†

Table 1 shows key values for applying the four variants (ORBS, F-
ORBS, DD-ORBS, and MDW-DD-ORBS) and our implementation
of Critical Slicing on ten test programs and 37 criteria. The first
column gives the test program, the second the variable and location
of the criterion, and the third gives the number of lines. For the
five algorithms, three values are reported: The ‘C’ column gives the
number of compilations done, the ‘E’ column gives the number of
executions done, and the ‘D’ column gives the number of deleted
lines. The best performing algorithm for each aspect in each case
is shaded in dark gray as a visual guide. In instances where a valid
critical slice achieves the best results, the second best values are
shaded in a lighter gray, as Critical Slicing often results in an invalid
slice (highlighted in italics). The last column shows why a critical
slice is invalid, i.e. either does not compile (annotated with ‘†’) or
produces a different trajectory (annotated with ‘‡’), i.e. produces
different values at the slice criterion. It should also be noted that
critical slicing never deletes more lines then ORBS.

The first program is the example from Figure 1, the next three
entries are an example taken from the SWIG [36] distribution. The
example consists of three files: a C source, a SWIG wrapper defini-
tion, and a Python script using the wrapped library. All three files
are sliced and the table shows the results for three different criteria.
The next two tests are two Towers of Hanoi implementations [34]
in Java and C#. Four versions of a library generating an HTML
calendar [38] (Javascript, Perl, PHP, Python) have been sliced for
six criteria. We have also applied the algorithms to printtokens
from SIR [13] where we used as the slicing criteria, every formal
parameter of type int at the beginning of its function and all 4 140

tests for the input set. The second to last test is the Notepad ex-
ample (Java) from Oracle’s JDK where the criteria were the ten
occurrences of a String parameter at the beginning of a method.
The final test is concordance (C++, from SIR) where we used the
three occurrences of the parameter locus at the start of a method
as criterion. When the system came with automatic tests, we have
used them as inputs. Otherwise, an arbitrary input has been chosen.

We draw the following primary conclusions from this study:
• The two delta-debugging based approaches DD-ORBS and

MDW-DD-ORBS are an order of magnitude more expen-
sive than ORBS and F-ORBS, making them less scalable for
observation-based slicing.

• ORBS usually needs fewer compilations and executions and
deletes more lines (i.e., is faster and more precise) than F-
ORBS, making it attractive for observation-based slicing.

• In some cases, MDW-DD-ORBS can delete more lines than
any other variant, making it worthy of further study, particu-
larly where slice precision is paramount.

• Critical Slicing needs the fewest compilations and executions,
but the critical slices are always considerably larger, up to
more than six times (for swig) and in 9 out of 11 cases more
than twice. Since only 11 out of 37 slices are valid (i.e. 26
incorrect slices), we conclude that Critical Slicing is a poor
contender for observation-based slicing.

In summary, we conclude that ORBS and F-ORBS perform bet-
ter than Critical Slicing or the various delta-debugging based ap-
proaches to observation-based slicing.



Table 2: Four files of bash which are to be sliced
File Lines SLOC Executable Executed
variables.c 4 793 3 509 1 590 607
parse.y 6 011 4 531 2 393 753
lib/glob/glob.c 1 100 789 416 0
subst.c 9 392 6 890 3 370 1 123

5.3 Summary
To answer RQ1, we compared ORBS to several techniques finding

that it produces typically smaller slices that retain executability over
the whole test set, and that it incurs less computational expense.
Although delta debugging has been used successfully in other areas,
it proved to be much more expensive than ORBS for observation-
based slicing. Since ORBS has proved to be the most effective and
efficient of the techniques compared here, we now investigate how
it scales when applied to a larger system.

6. CASE STUDY
To address RQ2 and as a real-world case study, we consider an

often-used non-trivial application: bash (version 4.2), a Unix shell
that is the default on Linux and Mac OS X. The bash source package
includes various tools and libraries required to build the executable.
The build is complex from a slicing perspective because, during the
build, source code is generated from a grammar and the build itself
is strongly tied to the target operating system. Together with its size,
this makes bash a challenge to statically or dynamically slice (we
are not aware of any slicer that is capable of slicing bash). These
properties make bash an excellent case study to explore, in more
detail, the characteristics of observation-based slicing using ORBS.

Another problem of dynamic or static slicers is that they either
have to analyse the whole system including all libraries or have to
know the effects of all invoked external functions. ORBS does not
need this and we will demonstrate this by applying ORBS only to a
small set of source files.

The bash package contains 1 153 files and a total of 118 167
source lines of code (SLOC) as computed by sloccount [43]. It is
written in eight different languages. For this case study we define
a scenario (exercising the arithmetic functions of bash) and four
execution cases. In the first two cases we explicitly choose two
source files to be included in the ORBS analysis. The files to be
sliced are variables.c, as variables are used in the tests, and
parse.y, as the grammar defines the input format. The slicing of
grammars has not previously been considered in the literature. The
third and the fourth cases each add an additional file to be sliced.
Case 3 adds lib/glob/glob.c, which performs file-name pattern
matching and Case 4 adds subst.c, which is the largest single
source code file within bash.

Table 2 shows different line-based measures for the four files:
The number of lines in the file, the number of source lines of code
(SLOC), and the number of executed and executable lines as com-
puted by gcov [32]. Note that nothing in lib/glob/glob.c is
executed in the scenario being considered because the execution of
arithmetic functions does not involve file-name pattern matching.

6.1 Slicing Criterion
The slicing criterion we chose for all four cases is the variable

val in line 1 393 of file expr.c with the input given by a test file
arith.tests. At line 1 393 the result of converting a string to
an integer is returned to the caller of the function strlong. It is
expected that this function is called frequently while processing
the test cases of arith.tests, because these test cases test the

Table 3: Results for four cases of applying ORBS
Full Partial Trajectory

2 Files 2 Files 3 Files 4 Files
Lines 10 804 10 804 11 904 21 296
Deletions 9 417 9 927 11 021 19 758
Compilations 42 793 34 947 36 812 66 402
Cached ¨ 2 264 1 524 1 528 1 603
Executions 5 370 4 362 4 872 9 009
Cached ¨ 4 657 3 960 4 197 7 799
Time (user) 359m 287m 326m 847m
Lines in slice
variables.c 578 449 449 449
parse.y 795 422 422 412
lib/glob.glob.c – – 6 6
subst.c – – – 665

Slice size 13% 8% 7% 7%
Slice size (SLOC) 17% 11% 10% 10%

arithmetic functions of bash. This expectation is confirmed by
measuring the statement coverage with gcov: the function strlong
is invoked 80 425 times causing 80 425 occurrences of the criterion
in the trajectory. Note that the file containing the criterion is not
sliced (it is not the target of the deletion) in this case study.

6.2 Executing ORBS
ORBS relies on three operations: Setup, Build, and Execute. For
bash, Setup not only instruments expr.c but also runs the configu-
ration script, ./configure, which configures the bash installation
process for the local environment. The compilation phase Build
strongly relies on incremental builds so that only the components
dependent on the sliced files are rebuilt. Execute runs the built bash
on the test suite arith.tests.

In the first two cases, ORBS is executed in two different modes.
The first, referred to as full trajectory is described in Section 3 and
has the criterion (val, expr.c:1393). The second, referred to as
partial trajectory, considers only a prefix of the trajectory and is
used to illustrate that we can restrict an ORBS slice to a subset of
the variable execution instances. In this part of the experiment the
first 100 (an arbitrary cut off) entries from the trajectory are con-
sidered. The criterion is then (val1...100, expr.c:1393). Restricting
the trajectory can be used to focus on a range of computations. We
have chosen the restricted trajectory to demonstrate a difference
to dynamic slicing: In dynamic slicing, one usually specifies one
single instance in the trajectory to be observed. ORBS can simulate
this by restricting the trajectory.

Case 3 considers file lib/glob/glob.c, part of a library in-
cluded with bash. The included libraries, although they are avail-
able in source code, are used as binary components in the build.
They are only compiled in the first build and all the following builds
use the binary library. Case 4 includes a fourth file to be sliced. The
file we chose to add is subst.c as it is the largest source code file
within bash. Cases 3 and 4 use the partial trajectory.

6.3 Results and Discussion
Table 3 compares the results obtained from the four cases. It

shows the number of lines that are considered and how many are
deleted. It also shows the number of compilations and executions
performed by ORBS, the number of compilations and executions
that were not necessary due to reuse of cached results, and the total
time taken. For the four different sliced files it shows the number of
SLOC remaining.



In the first case where two files are sliced based on the full tra-
jectory, 9 417 of 10 804 lines are deleted. Comparing SLOC, the
numbers are lower: From variables.c, 2 931 SLOC have been re-
moved, leaving 578 (16%). This is in line with the expectations: The
criterion and the files were chosen to exercise arithmetic functions
involving variables (less than half of the executable lines are actually
executed for the test). Moreover, the criterion is located in strlong
(converting strings to integers) which results in the removal of code
that deals with variables not holding integer values.

From parse.y 3 736 SLOC are removed, leaving 795 (18%).
From the 37 rules in the grammar, 8 have been completely removed
and from others large parts have been removed: From 849 non-
empty lines in the grammar part, only 88 are left (10%). Most of
the removed lines were in the declaration part and in the auxiliary
function part in parse.y: From 4 460 non-empty lines 3 749 lines
are removed, leaving 711 (16%). The resulting slice is very small,
much smaller than a static slice would be.

ORBS needed 42 793 compilations, 5 370 executions and took al-
most six hours on a standard PC. This slice construction time means
that ORBS cannot currently be used for on-demand slice construc-
tion. However, not all applications of slicing require on-demand
slices. Furthermore, we used only standard desktop equipment;
more powerful equipment would reduce slice construction time and
parallelisation might dramatically reduce it further. It should also
be remembered that no existing (dynamic or static) approach to
slicing could even handle a system like bash. Section 7 will present
a parallel version of ORBS which reduces the runtime to less than a
third.

The switch from the full to the partial trajectory has a small effect.
Now 9 927 out of 10 804 lines are deleted (510 more), reducing the
slice size down to 8%. In terms of SLOC, variables.c is 13%
of the original size and parse.y is 9% of the original size. The
higher number of deletions affects the number of compilations and
executions which dropped, causing a lower runtime (down to less
than five hours). This change can be explained by the observation
that only part of the input is considered with the partial trajectory
and this part tests a smaller subset of the arithmetic functions.

The addition of the small file lib/glob/glob.c in Case 3 does
not impact the slice of the other two files at all. The file itself is
deleted almost completely, only six lines are left (1%). These six
lines consist of three variable definitions and a function definition.
None of these six lines can be deleted because they are referenced
elsewhere (although the referenced function is never executed). This
observation is in line with the observation that nothing in this file is
actually executed and cannot have any influence.

The fourth case adds file subst.c, adding 9 392 lines (6 890
SLOC) to be considered for deletion. Doing so almost doubles
the number of lines to be sliced; thus the number of compilations
and executions is also almost doubled (in line with the expected
linear complexity of the algorithm). However, the actual runtime
has almost tripled because many more executions time-out. ORBS
deletes 93% of the lines in subst.c (90% of the SLOC), leaving
only 665 lines.

6.4 Summary
The case study in this section demonstrated that ORBS can be

used to compute slices of multi-language production systems and
that the resulting slices are significantly smaller than the original
files. ORBS also allows the engineer to focus on slicing a specific
set of files of interest. The four cases illustrate the linear nature of
the algorithm in terms of the number of lines to be sliced. Finally,
considering full and partial trajectories shows how only specific
criterion instances can be focused on.

Table 4: Results of applying parallel ORBS to bash
Full Partial Trajectory

2 Files 2 Files 3 Files 4 Files
Lines 10 804 10 804 11 904 21 296
Deletions
serial ORBS 9 417 9 927 11 021 19 758
2-ORBS 9 178 9 601 10 668 19 295
3-ORBS 9 523 9 999 11 093 19 879
4-ORBS 9 540 10 011 11 105 19 908
Compilations
serial ORBS 42 793 34 947 36 812 66 402
2-ORBS 39 718 33 315 35 541 59 277
3-ORBS 46 870 36 288 38 238 66 939
4-ORBS 44 568 33 411 36 282 63 394
Executions
serial ORBS 5 370 4 362 4 872 9 009
2-ORBS 5 302 4 237 4 841 7 893
3-ORBS 6 764 4 902 5 533 10 231
4-ORBS 7 173 4 532 5 195 9 486
Time (user/real)
serial ORBS 359/657 287/448 326/512 847/1350
2-ORBS 291/235 227/171 246/187 639/524
3-ORBS 331/219 222/126 245/140 547/322
4-ORBS 336/198 231/101 253/115 557/244

7. PARALLEL ORBS
ORBS is inherently serial so it cannot be split up in parallel

portions. However, the idea of a deletion window can be used to
create a parallel variant in which a number of deletion windows of
different sizes are tried in parallel. The largest deletion window that
succeeds, i.e. compiles and produces the same trajectory, is accepted
for deletion. The other attempts are discarded. The algorithm
proceeds to the next line where again a number of deletion windows
are tried in parallel.

We have implemented parallel ORBS and applied it to the four
experiments on bash plus four new programs. Table 4 shows the
results for serial ORBS and parallel ORBS with window sizes 2, 3,
and 4. As expected, parallel ORBS with a window size 2 cannot
delete as many lines as the serial ORBS that uses a window size
of 3. Parallel ORBS with a window size of 3 or 4 can delete more
lines than serial ORBS: serial ORBS only increases the window size
as long as the slice does not compile, parallel ORBS will use the
largest window size that compiles and executes correctly.

The number of compilations and executions performed by parallel
ORBS does not increase much and often parallel ORBS needs fewer
compilations than serial ORBS. Therefore, the user time does also
not increase – it actually decreases which leads to a dramatic drop in
real time: parallel ORBS with a window size of 4 needs 70%-82%
less time than serial ORBS.

For another comparison, we have sliced four more systems: ed is
a line-oriented text editor, byacc is Berkeley Yacc, bc is an arbitrary
precision numeric processing language, indent is a code beautifier.
In all four system we picked a formal parameter to an often-called
function as the slicing criterion, executed the included test suite, and
sliced all C source files (8–13). Table 5 shows the results which
are not as clear as for bash. Parallel ORBS with larger window
sizes does not consistently perform better or worse than smaller
window sizes or serial ORBS in terms of slice size, or number
of compilations or executions. However, parallel ORBS with a
maximal window size of four is consistently faster than smaller
window sizes and always much faster than serial ORBS.

From the experiments above we can see that parallel ORBS is
much faster than serial ORBS while producing similar results. Par-
allel ORBS with a deletion window size of four needed up to 82%
less time than serial ORBS.



Table 5: Results of applying parallel ORBS to four systems
ed byacc bc indent

Files 8 13 8 13
Lines 2 836 7 320 7 618 10 960
Deletions
serial ORBS 1 817 6 828 5 806 4 898
2-ORBS 1 555 6 262 5 834 4 556
3-ORBS 1 617 6 773 5 930 4 554
4-ORBS 1 782 6 835 5 680 4 575
Compilations
serial ORBS 17 450 19 853 41 775 78 982
2-ORBS 15 383 25 307 30 249 46 484
3-ORBS 22 409 18 614 53 878 61 099
4-ORBS 23 334 20 134 43 344 80 027
Executions
serial ORBS 3 403 5 057 7 565 3 940
2-ORBS 4 106 5 243 8 799 7 563
3-ORBS 4 877 5 341 13 881 8 304
4-ORBS 5 905 5 331 17 132 9 771
Time (user/real)
serial ORBS 121/360 125/262 697/1 165 501/1 111
2-ORBS 50/154 89/128 559/464 220/248
3-ORBS 126/234 70/69 909/556 268/229
4-ORBS 110/231 71/58 725/431 337/229

8. EXTERNAL FACTORS
This section considers RQ4, discussing three external factors

that impact ORBS. We have already seen in the previous sections
how a small change, such as the direction of deletion, can make a
difference for an ORBS slice.

8.1 File Order
We have seen in the discussion of the algorithm that it matters if

ORBS starts at the beginning and deletes in a forward direction or if
it starts at the end and operates in a backward direction. However,
as ORBS operates on a list of files which is specified by the user, the
order of the files in the list may impact the slice too. An additional
experiment with the last bash case study confirms this. Reversing
the order of the files led to ORBS requiring 64 382 compilations
and 8 881 executions to delete 19 789 lines, leaving 1 507 (7%). Not
only are these numbers slightly different, but the individual slices
are too: While the slices for lib/glob/glob.c and variables.c
have not changed, the slices for subst.c and parse.y are slightly
different.

8.2 Environment
The sliced version created by ORBS is perfectly adapted to the

specific configuration and environment but is fragile to deviations in
the environment which can cause unexpected results. For example,
even the change necessary to compute coverage information (differ-
ent arguments to the compiler) may make the sliced program fail on
the same input with a crash. If the configuration of the build process
for bash is changed to generate coverage information before ORBS
is applied, then the generated slice is different but no longer fails.

The same sensitivity to the build and test environment holds if
a different operating system is used, a different compiler, or just
different arguments for the compiler. As an example, we considered
the impact of optimisation: When optimisation was enabled the
results were significantly different. Other experiments with different
operating systems (OSX instead of Linux) or different compilers
(llvm instead of gcc) caused similar differences.

In addition to differences arising from different build environ-
ments and configurations, some are due to explicitly undefined
behaviour in programming languages. A notorious example is C

1 if (x < 0)
2 {
3 print x;
4 }
5 y = 42;
6 // Slice on y

Figure 7: Code from Fig. 3 with different formatting

1 main () {
2 int x;
3 int j = 5;
4 x = j;
5 }

Figure 8: Token-level ORBS Slice for Code in Fig. 4

with its wide range of undefined behaviours. This can actually gen-
erate illegal, but compilable and executable programs, an experience
shared with similar program modifying approaches [30] but which
can be avoided by integrating validity checkers into the compilation
phase.

8.3 Source Code Layout
Clearly, the layout of the code to be sliced influences ORBS.

Usually, source code is formatted according to some guideline, for
example, the Java Coding Conventions [35] or the GNU Coding
Standards [33]. There is a subtle difference between the two: In
C, an open brace, ‘{’, is placed on a separate line while in Java it
is placed at the end of the line containing the predicate. Figure 7
shows the code from Figure 3, reformatted to place the opening
brace on a separate line. As discussed earlier, ORBS deletes lines
1–3 of Figure 3 together. If there are more statements between
the { and }, ORBS will delete them in a first iteration. The next
iteration will delete the if statement, {, and } together. However, the
code in Figure 7 has a different format and is processed differently:
Line 1 can and will be removed independently of the following
lines because the remaining statement block can be always executed
without affecting the criterion.

A question naturally follows from considering source code layout:
Suppose ORBS were to operate not at the line level, but at token
level (i.e., deleting tokens from the program). Here a token might
be defined as a string separated by white-space characters. Alterna-
tively, the definition of the underlying language may be used. In an
experiment, we computed an ORBS slice at the token level using the
example in Figure 4 by placing each C language token on its own
line. After 494 compilations and 41 executions, the slice in Figure 8
was produced. It is clearly correct for the original criterion and input.
However, the token-based variant is much more expensive than the
line-based variant.

8.4 Summary
We found that the results ORBS produced are strongly depen-

dent on external factors. However, this is exactly what we want:
observation-based slicing is to be based on the observed reality of
the environment in which the code is to be built and executed. We
also found that this close coupling to the ‘execution reality’ allowed
ORBS to produce smaller slices adapted to the specific environment
in which the program is built and executed. Nevertheless, ORBS
guarantees that the generated slice has the same behaviour as the
original program for the slicing criterion. This is a particularly attrac-
tive finding, given the disappointingly large size of slices produced
by existing approaches to slicing.



9. RELATED WORK
ORBS computes observation-based slices. Although there are

few other techniques that do so, the approach is, in general, similar
to dynamic slicing. Dynamic slicing is a concept introduced by
Korel and Laski [20, 21]. They considered several algorithms to
compute dynamic slices based on their definition. In contrast, most
later work on dynamic slicing ‘defines’ dynamic slicing based on the
algorithms used to compute it (e.g., Agrawal et al. [1] and Demillo
et al. [12]). Although many research prototypes and approaches
exist [2, 5, 6, 28, 37, 46, 47], all approaches are for a single specific
programming language and use complex program analyses. To the
authors’ knowledge, no tool exists that can slice a system written in
multiple languages.

In dynamic slicing terms, the closest work to observation-based
slicing is Critical Slicing [12] where a statement is considered to
be critical if its deletion results in a changed observed behaviour
for the slicing criterion. A critical slice consists of all the critical
statements. One limitation of this approach is that it considers
statements to be critical although they may not be, and thus could be
deleted after another statement is deleted. We have seen that critical
slices are significantly larger than observation-based slices and are
often incorrect slices (while observation-based slices are correct by
construction).

The idea to delete parts of a program or test input is most promi-
nent in applications of delta debugging [10, 44, 45]. As plain delta
debugging can be very expensive, a few approaches have modified
delta debugging so that it exploits syntax and semantics of program-
ming languages. Hierarchical Delta Debugging [27] exploits tree
structures in inputs for a tree-based delta debugging approach, while
Delta [26] is using a separate tool to flatten tree structures found
in programs before applying delta debugging. Regehr et al. [30]
exploit the syntax and semantics of C for four delta-debugging
based algorithms to minimize C programs that trigger compiler
bugs. One could integrate such approaches to observation-based
slicing. However, this would sacrifice the language independence of
ORBS.

The part of Delta [26] that manipulates the program after flatten-
ing is very similar to DD-ORBS and therefore suffers from the same
problem that it cannot delete lines that can only be deleted together
with the following line(s).

Another closely related approach is STRIPE [10] which elimi-
nates statements from an execution trace with the help of a con-
ventional debugger. The approach uses delta debugging [44] to
delete statements from the trace. However, STRIPE ignores control
dependence and does not produce executable slices. Because of the
use of a debugger, STRIPE does not need any program analysis but
cannot be applied to multi-language systems.

Two other related dynamic slicing techniques are Union Slic-
ing [4] and Simultaneous Dynamic Program Slicing [17]. Like
ORBS, the Union Slicing algorithm of Beszédes et al. [4] aims to
approximate the realizable slice for a set of test inputs. It does so by
producing the union of the independently-computed dynamic slices
for each test case. The algorithm uses static analysis to compute
local dependency information, instruments the source code, and then
executes it. Then it computes dynamic slices globally. It is thus sim-
ilar to ORBS in requiring execution and instrumentation (although
ORBS instrumentation is lighter-weight) but unlike ORBS, the re-
sulting union slice is not guaranteed to be executable. Furthermore,
a union slice is not necessarily well-behaved for the set of test cases
being considered as a whole. Separate dynamic slices can interfere
with each other when simply unioned together [17]. Finally, Union
Slicing requires static dependence information, which means that it
is language dependent.

Simultaneous Dynamic Slicing (SDS) [17] addresses the problem
of interference by iteratively building up a slice from a set of starting
program points (which may be initially empty) and a dynamic slice
for each execution in the test case set. The set expands with each iter-
ation (and thus forms a partially-complete slice that may be missing
some dependence information) until it converges. This is effectively
a variation on the traditional union operator. In this case, rather
than creating a union of program points after dependence computa-
tion, SDS unions slices in the light of their combined dependence
information to ensure that existing dependencies are retained as the
union gets bigger, and that required but missing dependencies are
included until no increase in size is observed.

Like Union Slicing (and unlike ORBS), SDS requires the compu-
tation of dependence information (and is thus language dependent).
It also requires a dynamic slicer meeting certain assumptions. Like
ORBS, SDS relies on instrumentation and execution (for SDS, to
generate full traces). It also frames the slicing operation similarly
to ORBS: as a problem of retaining the relationship between inputs
and outputs and removing non-influencing code.

There have been a few previous approaches to multi-language
slicing. Riesco et al. [31] parameterise languages and slice on
their semantics. However, their approach is currently restricted to
WHILE languages where ORBS has no such restriction and requires
no semantic modelling. Finally, Pócza et al. present an approach to
dynamic slicing across languages on the .NET platform [29]. Their
approach uses the Common Language Runtime (CLR) debugging
framework to provide traceability between instructions and source
code. They compute a slice on the execution trace via the CLR
debugger. However, their approach still needs a specific analysis for
every single language that not only extracts variable definitions and
uses, but also creates a Control Dependence Graph. They have only
implemented their approach for a very limited subset of C#.

Not directly targeted at slicing, Mayer and Schroeder [24] advo-
cate to explicitly specify and exploit semantic links (dependences)
for cross-language code analysis and refactoring. They also built
and evaluated an infrastructure to link artefacts between six Java-
framework based languages [25]. They use a static analysis for the
Java source code and link the identifier between different languages
based on framework semantics with a hand-crafted linker.

ORBS is not restricted to any particular language group or under-
lying representation: the tools that build the system can be used to
undertake the slicing.

10. CONCLUSION
ORBS1 is the first language-independent program slicer that can

compute slices for systems written in multiple languages, including
systems which may contain binary components or libraries which
cannot be analysed otherwise. ORBS uses statement deletion as
its primary operation and observation as its validation criteria. The
approach leverages existing tool chains, making it better suited to
execution reality than previous slicing approaches based on models
of dependence and semantics.

Future work will use search-based approaches to look for smaller
observation-based slices. To reduce runtimes and produce smaller
slices, ORBS could be extended with language specific extensions
that exploit the syntax and semantics of a language without sacri-
ficing the ability to slice multiple languages. Also, other methods
for making the approach faster, with fewer compilations and exe-
cutions, will be investigated. Finally, empirical study of the time
versus slice-size tradeoffs of different deletion window sizes will be
considered.

1available at crest.cs.ucl.ac.uk/resources/orbs/.
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