JAN KAUTZ

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY COLLEGE LONDON

LECTURE 7: SCENEGRAPHS

RENDERING TRAVERSE

Lets look at an explicit example of a rendering traverse for the robot arm.

In this case, the Base is translated by 2,0 relative to world coordinates. So the matrix B is
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)$

The point A on the base, is the point $(1.5,0)$ in local coordinates. So its position in world coordinates is $(3.5,0)$.
The point B is on the upper arm of the robot. Its position in local coordinates is $(0.5,0)$ (note where the centre of the upper arm is). To get the position in WC we use the matrix USB

$$
\left(\begin{array}{lll}
0.5 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2.5 & 4 & 1
\end{array}\right)
$$

The point C is on the hand of the robot. Its position in local coordinates is $(0,1)$ (note where the centre of the hand is and also that in local coordinates the fingers point upwards, but the hand has been rotated by a matrix above it in the scene graph). To get the position in WC we use the matrix HFEUSB. Note that the matrix L is a translation then a rotation.
$\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right)\left(\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right)\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 6 & 7 & 1\end{array}\right)=(7$

EXERCISES

1. Describe a scene graph with transformations for the following scene. Assume that the only drawing primitive are a unit square and a unit circle:

Where have you placed local co-ordinates for each part the diagram? Why did you do this? What would you change if the Circle A had to pivot around the top-right of the biggest square?
2. Describe the following figures as a CAG: the first using only circles at the leaves, the second using only squares and triangles, the third using squares and circles and the fourth using only half-circles.

