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Protecting Data Against “Tampering”

 Question: How can we protect data against tampering by 
an adversary?

 Variants of this question studied in cryptography, 
information theory and coding theory.

 What kind of tampering are we considering? 

 What protection/guarantees do we want to achieve?

 Can we use secret keys or randomness ?

 Tools: Signatures, MACs, Hash Functions, Error-correcting 
codes, Error-detecting codes. 

 New variants: tamper-detection codes, non-malleable codes. 



Motivation: Physical Attacks

 Goal: store secret data on a device

 Adversary cannot read the data on 

the device directly, but can:

 interact with the device via interface

 tamper with the data on the device. 



Motivating Example  (Signature)

 If a single bit of the signing key is flipped, can use the 

resulting signature to factor the RSA modulus. [BDL97]
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Coding against Tampering

 Solution Idea: encode the data on the device to 
protect it against tampering.

 Each execution first decodes the underlying data.  

 Example: Use an error-correcting code to protect 
against attacks that modify a few bits.

 What kind of tampering can we protect against? 

 What kind of codes do we need?



1. Message: s.

2. Codeword c Ã Enc(s).

3. Tampered codeword c* = f(c).

f 2 F adversarial but independent of randomness of c.

4. Decoded message: s* = Dec(c*).

The “Tampering Experiment”

message: s c= Enc(s)

 Coding scheme (Enc, Dec) s.t.

 Enc : {0,1}k → {0,1}n

can be randomized

 Dec(Enc(s)) = s
(with probability 1)



c= Enc(s)

The “Tampering Experiment”
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1. Message: s.

2. Codeword c Ã Enc(s).

3. Tampered codeword c* = f(c).

f 2 F adversarial but independent of randomness of c.

4. Decoded message: s* = Dec(c*).

s* = Dec(c*)



The “Tampering Experiment”

 Differences from “standard” coding problems:

 No notion of distance between original and tampered 

codeword. Focus on the family of functions being applied.

 Tampering is “worst-case”, but choice of function f does not 

depend on randomness of encoding. 
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The “Tampering Experiment”

Goal: 

For “interesting” families F, design coding scheme 

(Enc, Dec) which provides “meaningful guarantees”

about the outcome of the tampering experiment.
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Correction

 Tamper-Correction: require that s* = s

 Error-Correcting Codes for Hamming Distance: The family  
F =  {f   s.t. 8 x dist(x, f(x)) < d }

 Too limited for us! Must preserve some relationship between 
original and tampered codeword.
 E.g., cannot protect against overwriting with random value. 
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Tamper Detection
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 Tamper-Detection: If tampering occurs, then we require

that s* = ? (error)  with overwhelming probability. 

 Definition: An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F  :  Pr[ Dec( f( Enc(s) ) )  ≠ ⊥ ] ≤ 𝜀



Tamper Detection

 Error-Correcting Codes provide tamper detection for the 

family F =  {f   s.t. 8 x 0 < dist(x, f(x)) < d }

Algebraic Manipulation Detection (AMD)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F  :  Pr[ Dec( f( Enc(s) ) )  ≠⊥ ] ≤ 𝜀



Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for  F = { fe(x) = x + e :  e ≠ 0 }

 Intuition: Can add any error e you want, but must choose it 
before you see the codeword.

 Encoding is necessarily randomized. Choice of fe 2 F must be 

independent of randomness.

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F  :  Pr[ Dec( f( Enc(s) ) )  ≠⊥ ] ≤ 𝜀



Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for  F = { fe(x) = x + e :  e ≠ 0 }

 Construction:  Enc(s) = (s, r, sr + r3)  operations in 𝔽2𝑘.

 Proof Idea: Enc(s) + e  is valid iff p(r) = 0  where p is a non-
zero poly of deg(p) ≤ 2.

 Construction Generalizes to get a rate 1 code:

Message size k, codeword size n =k + O(log k + log 1/𝜀)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F  :  Pr[ Dec( f( Enc(s) ) )  ≠⊥ ] ≤ 𝜀



Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for  F = { fe(x) = x + e :  e ≠ 0 }

 Many applications of AMD codes:

 Secret Sharing and Fuzzy Extractors [CDFPW08]

 Error-Correcting Codes for “Simple” Channels [GS10]

 Multiparty Computation [GIPST14]

 Related-Key Attack Security
 ...

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F  :  Pr[ Dec( f( Enc(s) ) )  ≠⊥ ] ≤ 𝜀



Tamper Detection: Beyond AMD?

Question:  Can we go beyond AMD codes?

 What function families F allow for tamper-detection codes?

 Can’t allow functions that are (close to) “identity”. 

 Can’t allow functions that are (close to) “constant”. 

 Can’t allow functions that are “too complex”:

 e.g.,  f(x) = Enc( Dec(x) + 1)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F  :  Pr[ Dec( f( Enc(s) ) )  ≠⊥ ] ≤ 𝜀



Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over  n-bit codewords, there is an 

(F, 𝜀)-TDC as long as |F|< 22
𝛼𝑛

for 𝛼 < 1 and each f ∈ F 
has few fixed points and high entropy.

 Few fixed-points:  Prx[  f(x) = x] is small. 

 High entropy: ∀ c:  Prx[ f(x) = c] is small.

Rate of code is ≈ 1 − 𝛼



Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over  n-bit codewords, there is an 

(F, 𝜀)-TDC as long as |F|< 22
𝛼𝑛

for 𝛼 < 1 and each f ∈ F 
has few fixed points and high entropy.

 Proof is via probabilistic method argument  - construction 

is inherently inefficient. 

 Can be made efficient for |F| = 2poly(𝑛).

 Examples:

 F = { Polynomials p(x) of “low” degree} 

 F = { Affine functions Ax + b over “large” field} 



Tamper Detection: Construction

 First, focus on weak TDC   (random-message security):  

∀ f ∈ F  :  Pr
𝑠

[ Dec( f( Enc(s) ) )  ≠ ⊥ ] ≤ 𝜀

 Family of codes indexed by function h : 0,1 𝑘 → 0,1 𝑣

Ench(s)  = (s, h(s))  and Dech(s,z) = { s if z = h(s) else ⊥}

 Output size 𝑣 is log(1/𝜀) + O(1) bits. 

 For any family F with  given restrictions, a random code     

(Ench, Dech) is a wTDC with overwhelming probability. 

 Can choose h from a t-wise indep function family where t = log|F|. 



Tamper Detection: Analysis

Construction: Ench(s)  = (s, h(s))  ,   Dech(s,z) = { s if z = h(s) else ⊥}

Represent tampering function f as a graph:

 When is (Ench , Dech) a bad code? Too many bad edges!

 Unfortunately, “badness” is not independent.

 Can edge-color this graph with few colors (low in-degree). 
Within each color, “badness” is independent. 

(s1,z1)

(s2,z2)

(s3,z3) (s4,z4)

(s5,z5)

Bad edge:

z = h(s) 

for both 

end points



Tamper Detection: Construction

 Can go from weak to strong tamper detection via leakage 
resilient (LR) codes.

 Definition [DDV10]: A code (LREnc, LRDec) is an (F, ℓ, 𝜀)-LR 

code if ∀ s, ∀ f ∈ F where f : 0,1 𝑛 → 0,1 ℓ we have:

f(LREnc(s)) ≈𝜀 f(Uniform)

 Construction LREnch(s) = (r, h(r) + s) 

 Size of randomness r is max{ ℓ , loglog|F|}  + O(log 1/𝜀).

 Can use t-wise indep function h where t = O(|log F|).



Tamper Detection: Construction

 Can go from weak to strong tamper detection via leakage 
resilient (LR) codes.

 Definition [DDV10]: A code (LREnc, LRDec) is an (F, ℓ, 𝜀)-LR 

code if ∀ s, ∀ f ∈ F where f : 0,1 𝑛 → 0,1 ℓ we have:

f(LREnc(s)) ≈𝜀 f(Uniform)

 Strong Tamper-Detection:  Enc(s) = wtdEnc( LREnc(s)) 

 Tamper f  ⇒ Leak f’(c) = {1 if wtdDec(c) ≠ ⊥, 0 else }



Tamper Detection: Limitations

 Tamper detection fails for functions with many fixed 

points, or low entropy. 

 This is inherent, but perhaps not so bad.

 Fixed-points:  nothing changes! 

 Low-entropy:  not much remains! 

 Can we relax tamper-detection and still get meaningful 

security? 



Non-Malleability [Dziembowski-Pietrzak-W10]

 Non-Malleability: either s*= s or s* is “unrelated” to s.

 Analogous to non-malleability in cryptography [DDN91].

 Harder to define formally (stay tuned). 

 Examples of “malleability”:

 The value s* is same as s, except with 1st bit flipped.

 If s begins with 0, then s* = s. Otherwise s* = ?.
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Defining Non-Malleability

g ← Simf

Output  s*= g(s)
≈𝜀

Definition: A code (Enc, Dec) is (F, 𝜀)-non-malleable if 

8 f 2 F 9 simulator Simf that outputs an identity or a 

constant function g such that 8 s:

c Ã Enc(s) , c* Ã f(c)

Output  s*=Dec (c*)



General Results for Non-Malleability

 For every code (Enc, Dec) there exists a bad function f, 
for which the scheme is malleable. 

 f(c) = Enc(Dec(c)  + 1). 

 Bad f depends heavily on (Enc, Dec).

Theorem [DPW10, CG13, FMVW14, JW15]:

For any function family F over n-bit codewords, there is an 

non-malleable code for F as long as |F|< 22
𝛼𝑛

for 𝛼 < 1.

 Rate of code is ≈ 1 − 𝛼

 If |F| = 2poly(𝑛) then code can be made efficient. 



General Results for Non-Malleability

 Same construction for non-malleable codes and tamper 

detection. Combine “weak tamper detection” and 

“leakage resilient” codes:     Enc(s) = wtdEnc( LREnc(s)).

 Intuition: few possible outcomes of tampering codeword c.  

 Tamper detection succeeds:  ⊥

 fixed point f(c) = c:             “same”

 low entropy value f(c) = c’  has many pre-images: Dec(c’)

 Can think of this as small leakage on LREnc(s). 



Much Recent Work

 Explicit efficient constructions:

 Bit-wise tampering [DPW10,CG13]: each bit of codeword is 

tampered independently but arbitrarily.

 Permuting bits of codeword [AGM+14]

 Split-state model [DKO13, ADL13, ADKO15,CGL15] : Codeword split 

into two parts that are tampered independently but arbitrarily.

 Applications:

 CCA security amplification [AGM+14,CMT+15,CDT+15]

 Non-malleable commitments from OWFs [GPR15]



Application to Tamper-Resilient Security

 Non-malleable codes can protect physical devices against 
tampering attacks.

 Store data s on a device in encoded form Enc(s)

 Each time device is invoked: decode, compute, re-encode

 Tampering of Enc(s) can be simulated by either leaving the  
data unchanged, or completely overwriting it with a new 
unrelated value.

 Device has to re-encode the codeword each time with fresh 
randomness. Is this necessary?



Continuous Tampering and Re-Encoding

 Non-malleable codes only consider one tampering attack 

per codeword. Can we allow continuous tampering of a 

single codeword? 

 Continuous non-malleable codes (4 flavors): 

[FMV+14, JW15]

 Device can “self-destruct” if tampering detected? 

 “Persistent” tampering? 



Continuous Non-Malleable Codes
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Conclusions

 Defined tamper-detection codes and (continuous) non-
malleable codes.

 One general construction. Based on probabilistic method, 
but can be made efficient for “small” function families. 

 Open Questions:

 Explicit constructions of tamper detection codes and non-
malleable codes. More families. Simpler. Better rate. 

 More applications. 

 To non-malleable cryptography

 To other areas?



Thank you!


