
TAMPER DETECTION

AND

NON-MALLEABLE CODES

Daniel Wichs (Northeastern U)

Protecting Data Against “Tampering”

 Question: How can we protect data against tampering by
an adversary?

 Variants of this question studied in cryptography,
information theory and coding theory.

 What kind of tampering are we considering?

 What protection/guarantees do we want to achieve?

 Can we use secret keys or randomness ?

 Tools: Signatures, MACs, Hash Functions, Error-correcting
codes, Error-detecting codes.

 New variants: tamper-detection codes, non-malleable codes.

Motivation: Physical Attacks

 Goal: store secret data on a device

 Adversary cannot read the data on

the device directly, but can:

 interact with the device via interface

 tamper with the data on the device.

Motivating Example (Signature)

 If a single bit of the signing key is flipped, can use the

resulting signature to factor the RSA modulus. [BDL97]

sk

m Signsk(m)

Coding against Tampering

 Solution Idea: encode the data on the device to
protect it against tampering.

 Each execution first decodes the underlying data.

 Example: Use an error-correcting code to protect
against attacks that modify a few bits.

 What kind of tampering can we protect against?

 What kind of codes do we need?

1. Message: s.

2. Codeword c Ã Enc(s).

3. Tampered codeword c* = f(c).

f 2 F adversarial but independent of randomness of c.

4. Decoded message: s* = Dec(c*).

The “Tampering Experiment”

message: s c= Enc(s)

 Coding scheme (Enc, Dec) s.t.

 Enc : {0,1}k → {0,1}n

can be randomized

 Dec(Enc(s)) = s
(with probability 1)

c= Enc(s)

The “Tampering Experiment”

c*

F={ },
f1 f2

1. Message: s.

2. Codeword c Ã Enc(s).

3. Tampered codeword c* = f(c).

f 2 F adversarial but independent of randomness of c.

4. Decoded message: s* = Dec(c*).

s* = Dec(c*)

The “Tampering Experiment”

 Differences from “standard” coding problems:

 No notion of distance between original and tampered

codeword. Focus on the family of functions being applied.

 Tampering is “worst-case”, but choice of function f does not

depend on randomness of encoding.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

The “Tampering Experiment”

Goal:

For “interesting” families F, design coding scheme

(Enc, Dec) which provides “meaningful guarantees”

about the outcome of the tampering experiment.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

Correction

 Tamper-Correction: require that s* = s

 Error-Correcting Codes for Hamming Distance: The family
F = {f s.t. 8 x dist(x, f(x)) < d }

 Too limited for us! Must preserve some relationship between
original and tampered codeword.
 E.g., cannot protect against overwriting with random value.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

Tamper Detection

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

 Tamper-Detection: If tampering occurs, then we require

that s* = ? (error) with overwhelming probability.

 Definition: An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠ ⊥] ≤ 𝜀

Tamper Detection

 Error-Correcting Codes provide tamper detection for the

family F = {f s.t. 8 x 0 < dist(x, f(x)) < d }

Algebraic Manipulation Detection (AMD)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for F = { fe(x) = x + e : e ≠ 0 }

 Intuition: Can add any error e you want, but must choose it
before you see the codeword.

 Encoding is necessarily randomized. Choice of fe 2 F must be

independent of randomness.

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for F = { fe(x) = x + e : e ≠ 0 }

 Construction: Enc(s) = (s, r, sr + r3) operations in 𝔽2𝑘.

 Proof Idea: Enc(s) + e is valid iff p(r) = 0 where p is a non-
zero poly of deg(p) ≤ 2.

 Construction Generalizes to get a rate 1 code:

Message size k, codeword size n =k + O(log k + log 1/𝜀)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for F = { fe(x) = x + e : e ≠ 0 }

 Many applications of AMD codes:

 Secret Sharing and Fuzzy Extractors [CDFPW08]

 Error-Correcting Codes for “Simple” Channels [GS10]

 Multiparty Computation [GIPST14]

 Related-Key Attack Security
 ...

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: Beyond AMD?

Question: Can we go beyond AMD codes?

 What function families F allow for tamper-detection codes?

 Can’t allow functions that are (close to) “identity”.

 Can’t allow functions that are (close to) “constant”.

 Can’t allow functions that are “too complex”:

 e.g., f(x) = Enc(Dec(x) + 1)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an

(F, 𝜀)-TDC as long as |F|< 22
𝛼𝑛

for 𝛼 < 1 and each f ∈ F
has few fixed points and high entropy.

 Few fixed-points: Prx[f(x) = x] is small.

 High entropy: ∀ c: Prx[f(x) = c] is small.

Rate of code is ≈ 1 − 𝛼

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an

(F, 𝜀)-TDC as long as |F|< 22
𝛼𝑛

for 𝛼 < 1 and each f ∈ F
has few fixed points and high entropy.

 Proof is via probabilistic method argument - construction

is inherently inefficient.

 Can be made efficient for |F| = 2poly(𝑛).

 Examples:

 F = { Polynomials p(x) of “low” degree}

 F = { Affine functions Ax + b over “large” field}

Tamper Detection: Construction

 First, focus on weak TDC (random-message security):

∀ f ∈ F : Pr
𝑠

[Dec(f(Enc(s))) ≠ ⊥] ≤ 𝜀

 Family of codes indexed by function h : 0,1 𝑘 → 0,1 𝑣

Ench(s) = (s, h(s)) and Dech(s,z) = { s if z = h(s) else ⊥}

 Output size 𝑣 is log(1/𝜀) + O(1) bits.

 For any family F with given restrictions, a random code

(Ench, Dech) is a wTDC with overwhelming probability.

 Can choose h from a t-wise indep function family where t = log|F|.

Tamper Detection: Analysis

Construction: Ench(s) = (s, h(s)) , Dech(s,z) = { s if z = h(s) else ⊥}

Represent tampering function f as a graph:

 When is (Ench , Dech) a bad code? Too many bad edges!

 Unfortunately, “badness” is not independent.

 Can edge-color this graph with few colors (low in-degree).
Within each color, “badness” is independent.

(s1,z1)

(s2,z2)

(s3,z3) (s4,z4)

(s5,z5)

Bad edge:

z = h(s)

for both

end points

Tamper Detection: Construction

 Can go from weak to strong tamper detection via leakage
resilient (LR) codes.

 Definition [DDV10]: A code (LREnc, LRDec) is an (F, ℓ, 𝜀)-LR

code if ∀ s, ∀ f ∈ F where f : 0,1 𝑛 → 0,1 ℓ we have:

f(LREnc(s)) ≈𝜀 f(Uniform)

 Construction LREnch(s) = (r, h(r) + s)

 Size of randomness r is max{ ℓ , loglog|F|} + O(log 1/𝜀).

 Can use t-wise indep function h where t = O(|log F|).

Tamper Detection: Construction

 Can go from weak to strong tamper detection via leakage
resilient (LR) codes.

 Definition [DDV10]: A code (LREnc, LRDec) is an (F, ℓ, 𝜀)-LR

code if ∀ s, ∀ f ∈ F where f : 0,1 𝑛 → 0,1 ℓ we have:

f(LREnc(s)) ≈𝜀 f(Uniform)

 Strong Tamper-Detection: Enc(s) = wtdEnc(LREnc(s))

 Tamper f ⇒ Leak f’(c) = {1 if wtdDec(c) ≠ ⊥, 0 else }

Tamper Detection: Limitations

 Tamper detection fails for functions with many fixed

points, or low entropy.

 This is inherent, but perhaps not so bad.

 Fixed-points: nothing changes!

 Low-entropy: not much remains!

 Can we relax tamper-detection and still get meaningful

security?

Non-Malleability [Dziembowski-Pietrzak-W10]

 Non-Malleability: either s*= s or s* is “unrelated” to s.

 Analogous to non-malleability in cryptography [DDN91].

 Harder to define formally (stay tuned).

 Examples of “malleability”:

 The value s* is same as s, except with 1st bit flipped.

 If s begins with 0, then s* = s. Otherwise s* = ?.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

Defining Non-Malleability

g ← Simf

Output s*= g(s)
≈𝜀

Definition: A code (Enc, Dec) is (F, 𝜀)-non-malleable if

8 f 2 F 9 simulator Simf that outputs an identity or a

constant function g such that 8 s:

c Ã Enc(s) , c* Ã f(c)

Output s*=Dec (c*)

General Results for Non-Malleability

 For every code (Enc, Dec) there exists a bad function f,
for which the scheme is malleable.

 f(c) = Enc(Dec(c) + 1).

 Bad f depends heavily on (Enc, Dec).

Theorem [DPW10, CG13, FMVW14, JW15]:

For any function family F over n-bit codewords, there is an

non-malleable code for F as long as |F|< 22
𝛼𝑛

for 𝛼 < 1.

 Rate of code is ≈ 1 − 𝛼

 If |F| = 2poly(𝑛) then code can be made efficient.

General Results for Non-Malleability

 Same construction for non-malleable codes and tamper

detection. Combine “weak tamper detection” and

“leakage resilient” codes: Enc(s) = wtdEnc(LREnc(s)).

 Intuition: few possible outcomes of tampering codeword c.

 Tamper detection succeeds: ⊥

 fixed point f(c) = c: “same”

 low entropy value f(c) = c’ has many pre-images: Dec(c’)

 Can think of this as small leakage on LREnc(s).

Much Recent Work

 Explicit efficient constructions:

 Bit-wise tampering [DPW10,CG13]: each bit of codeword is

tampered independently but arbitrarily.

 Permuting bits of codeword [AGM+14]

 Split-state model [DKO13, ADL13, ADKO15,CGL15] : Codeword split

into two parts that are tampered independently but arbitrarily.

 Applications:

 CCA security amplification [AGM+14,CMT+15,CDT+15]

 Non-malleable commitments from OWFs [GPR15]

Application to Tamper-Resilient Security

 Non-malleable codes can protect physical devices against
tampering attacks.

 Store data s on a device in encoded form Enc(s)

 Each time device is invoked: decode, compute, re-encode

 Tampering of Enc(s) can be simulated by either leaving the
data unchanged, or completely overwriting it with a new
unrelated value.

 Device has to re-encode the codeword each time with fresh
randomness. Is this necessary?

Continuous Tampering and Re-Encoding

 Non-malleable codes only consider one tampering attack

per codeword. Can we allow continuous tampering of a

single codeword?

 Continuous non-malleable codes (4 flavors):

[FMV+14, JW15]

 Device can “self-destruct” if tampering detected?

 “Persistent” tampering?

Continuous Non-Malleable Codes

Self-Destruct, Persistent

(weakest)

No Self-Destruct, Non-Persistent

(strongest)

Self-Destruct,

Non-Persistent

No Self-Destruct,

Persistent

Few fixed points, High entropy

No restrictions on F

Few fixed pointsHigh entropy

Conclusions

 Defined tamper-detection codes and (continuous) non-
malleable codes.

 One general construction. Based on probabilistic method,
but can be made efficient for “small” function families.

 Open Questions:

 Explicit constructions of tamper detection codes and non-
malleable codes. More families. Simpler. Better rate.

 More applications.

 To non-malleable cryptography

 To other areas?

Thank you!

