TAMPER DETECTION
AND
NON-MALLEABLE CODES

Daniel Wichs (Northeastern U)

Protecting Data Against “Tampering”

Question: How can we protect data against tampering by
an adversary?

Variants of this question studied in cryptography,
information theory and coding theory.

What kind of tampering are we considering?
What protection/guarantees do we want to achieve?

Can we use secret keys or randomness 2

Tools: Signatures, MACs, Hash Functions, Error-correcting
codes, Error-detecting codes.

New variants: tamper-detection codes, non-malleable codes.

Motivation: Physical Attacks

Goal: store secret data on a device

Adversary cannot read the data on
the device directly, but can:

interact with the device via interface

tamper with the data on the device.

Motivating Example (Signature)
—

0 If a single bit of the signing key is flipped, can use the
resulting signature to factor the RSA modulus. [BDL97]

Signsk(m)

Coding against Tampering

Solution Idea: encode the data on the device to
protect it against tampering.

Each execution first decodes the underlying data.

Example: Use an error-correcting code to protect
against attacks that modify a few bits.

What kind of tampering can we protect against?
What kind of codes do we need?

The “Tampering Experiment”

1 Coding scheme (Enc, Dec) s.t.
Enc: {0,1} — {0,1}"
can be randomized

Dec(Enc(s)) = s
(with probability 1)

1. Message:s.
. Codeword ¢ <— Enc(s).

The “Tampering Experiment”
—

1. Message:s.
. Codeword ¢ <— Enc(s).

5. Tampered codeword c* = f(c).
f € F adversarial but independent of randomness of c.

4. Decoded message: s* = Dec(c*).

The “Tampering Experiment”

source message codeword tampered codeword decoded message
s C c* s*
Enc f Dec
randomized tampering function decoding
encoding f € family F

Differences from “standard” coding problems:

No notion of distance between original and tampered
codeword. Focus on the family of functions being applied.

Tampering is “worst-case”, but choice of function f does not
depend on randomness of encoding.

The “Tampering Experiment”

source message codeword tampered codeword decoded message
s C c* s*
Enc f Dec
randomized tampering function decoding
encoding f € family F
Goal:

For “interesting” families F, design coding scheme
(Enc, Dec) which provides “meaningful guarantees”
about the outcome of the tampering experiment.

Correction

source message codeword tampered codeword decoded message
s C c* s*
Enc f Dec
randomized tampering function decoding
encoding f € family F

Tamper-Correction: require that s* = s

Error-Correcting Codes for Hamming Distance: The family
F={f st V x dist(x, f(x)) <d}

Too limited for us! Must preserve some relationship between
original and tampered codeword.

E.g., cannot protect against overwriting with random value.

Tamper Detection

source message codeword tampered codeword decoded message
s C c* s*
Enc f Dec
randomized tampering function decoding
encoding f € family F

Tamper-Detection: If tampering occurs, then we require
that s* = L (error) with overwhelming probability.

Definition: An (F, €)-Tamper Detection Code guarantees:
Vs, fEF : Pr[Dec(f(Enc(s))) #L] ¢

Tamper Detection
—

An (F, €)-Tamper Detection Code guarantees:
Vs, f€EF : Pr[Dec(f(Enc(s))) #L]=< ¢

1 Error-Correcting Codes provide tamper detection for the

family F = {f st V x 0 <dist(x, f(x)) <d}

Tamper Detection: AMD Codes

An (F, €)-Tamper Detection Code guarantees:
Vs, f€EF : Pr[Dec(f(Enc(s))) #L]=< ¢

Algebraic Manipulation Detection (AMD) Codes [CDFPWO0S8] :
Tamper detectionfor F={f (x)=xte: e # 0}

Intuition: Can add any error e you want, but must choose it
before you see the codeword.

Encoding is necessarily randomized. Choice of f_ € F must be
independent of randomness.

Tamper Detection: AMD Codes
—

An (F, €)-Tamper Detection Code guarantees:
Vs, f€EF : Pr[Dec(f(Enc(s))) #L]=< ¢

o1 Algebraic Manipulation Detection (AMD) Codes [CDFPWO08] :
Tamper detection for F={f_(x)=x+e: e # 0}

o1 Construction: Enc(s) = (s, r, sr + r®) operations in IF k.

71 Proof Idea: Enc(s) + e is valid iff p(r) = O where p is a non-
zero poly of deg(p) < 2.

1 Construction Generalizes to get a rate 1 code:

Message size k, codeword size n =k + O(log k + log 1/¢)

Tamper Detection: AMD Codes

An (F, €)-Tamper Detection Code guarantees:
Vs, f€EF : Pr[Dec(f(Enc(s))) #L]=< ¢

Algebraic Manipulation Detection (AMD) Codes [CDFPWO08] :
Tamper detection for F={f (x)=xte: e # 0}

Many applications of AMD codes:
Secret Sharing and Fuzzy Extractors [CDFPWO08]
Error-Correcting Codes for “Simple” Channels [GS10]
Multiparty Computation [GIPST1 4]
Related-Key Attack Security

Tamper Detection: Beyond AMD?

An (F, €)-Tamper Detection Code guarantees:
Vs, f€EF : Pr[Dec(f(Enc(s))) #L]=< ¢

Question: Can we go beyond AMD codes?

What function families F allow for tamper-detection codes?

Can’t allow functions that are (close to) “identity”.

Can’t allow functions that are (close to) “constant”.

Can’t allow functions that are “too complex”:
e.g., f(x) = Enc(Dec(x) + 1)

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an

(F, €)-TDC as long as |F| < 22" for @ < 1 and each f € F
has few fixed points and high entropy.

Few fixed-points: Pr [f(x) = x] is small.
High entropy: V c: Pr [f(x) = c] is small.
Rate of codeis= 1 — «

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an

(F, €)-TDC as long as |F|< 22" for ¢ < 1 and each f € F
has few fixed points and high entropy.

Proof is via probabilistic method argument - construction
is inherently inefficient.

Can be made efficient for |F| = ZpOly(").
Examples:

F = { Polynomials p(x) of “low” degree}

F = { Affine functions Ax + b over “large” field}

Tamper Detection: Construction
-

o1 First, focus on weak TDC (random-message security):

VfEF : I;r[Dec(f(Enc(s))) +1]<c¢

1 Family of codes indexed by function h : {0,1}¢ — {0,1}"
Enc,(s) = (s, h(s)) and Dec,(s,z) = { s if z = h(s) else L}
Output size v is log(1/€) + O(1) bits.

1 For any family F with given restrictions, a random code
(Enc,, Dec,) is a wTDC with overwhelming probability.

Can choose h from a t-wise indep function family where t = log | F|.

Tamper Detection: Analysis

Construction: Enc,(s) = (s, h(s)) , Dec,(s,z) = {sif z=h(s) else L}
Represent tampering function f as a graph:

(s1,27) (s3,23) (54,2 4) Bad edge:
Z = h(s)
/ for both
end points
(s2,22)
(s5:25)

When is (Enc,, Dec,) a bad code? Too many bad edges!
Unfortunately, “badness” is not independent.

Can edge-color this graph with few colors (low in-degree).
Within each color, “badness” is independent.

Tamper Detection: Construction
-

1 Can go from weak to strong tamper detection via leakage
resilient (LR) codes.

-1 Definition [DDV10]: A code (LREnc, LRDec) is an (F, £, €)-LR
codeif Vs,V f EF where f:{0,1}"* = {0,1}* we have:

f(LREnc(s)) =, f(Uniform)

01 Construction LREnc,(s) = (r, h(r) + s)
Size of randomness r is max{ ¥ , loglog |F|} + O(log 1/&).

Can use t-wise indep function h where t = O(|log F|).

Tamper Detection: Construction
-

1 Can go from weak to strong tamper detection via leakage
resilient (LR) codes.

-1 Definition [DDV10]: A code (LREnc, LRDec) is an (F, £, €)-LR
codeif Vs,V f EF where f:{0,1}"* = {0,1}* we have:

f(LREnc(s)) =, f(Uniform)

1 Strong Tamper-Detection: Enc(s) = wtdEnc(LREnc(s))
0 Tamper f = Leak f'(c) = {1 if wtdDec(c) # L, O else }

Tamper Detection: Limitations

Tamper detection fails for functions with many fixed
points, or low entropy.

This is inherent, but perhaps not so bad.
Fixed-points: nothing changes!

Low-entropy: not much remains!

Can we relax tamper-detection and still get meaningful
security?

Non-Mallea b”“’)’ [Dziembowski-Pietrzak-W 10]

source message codeword tampered codeword decoded message
s C c* s*
Enc f Dec
randomized tampering function decoding
encoding f € family F

Non-Malleability: either s*= s or s* is “unrelated” to s.

Analogous to non-malleability in cryptography [DDN?1].

Harder to define formally (stay tuned).

Examples of “malleability”:

The value s™ is same as s, except with 15 bit flipped.
If s begins with O, then s* = s, Otherwise s* = .

Defining Non-Malleability

Definition: A code (Enc, Dec) is (F, €)-non-malleable if
V f € F dsimulator Sim, that outputs an identity or a

constant function g such that V s:

c < Enc(s) , c* < f(c)

d

Output s*=Dec (c*) €

General Results for Non-Malleability

For every code (Enc, Dec) there exists a bad function f,
for which the scheme is malleable.

f(c) = Enc(Dec(c) + 1).
Bad f depends heavily on (Enc, Dec).

Theorem [DPW 10, CG13, FMVW 14, JW15]:

For any function family F over n-bit codewords, there is an

non-malleable code for F as long as |F| < 22" for a < 1.

Rate of codeis~ 1 —

If |F| = Zpoly(n) then code can be made efficient.

General Results for Non-Malleability

Same construction for non-malleable codes and tamper
detection. Combine “weak tamper detection” and
“leakage resilient” codes: Enc(s) = wtdEnc(LREnc(s)).

Intuition: few possible outcomes of tampering codeword c.
Tamper detection succeeds: L
fixed point f(c) = c: “same”

low entropy value f(c) = ¢’ has many pre-images: Dec(c’)

Can think of this as small leakage on LREnc(s).

Much Recent Work

Explicit efficient constructions:

Bit-wise tampering [DPW10,CG13]: each bit of codeword is
tampered independently but arbitrarily.

Permuting bits of codeword [AGM+14]

Split-state model [DKO13, ADL13, ADKO15,CGL15] : Codeword split
into two parts that are tampered independently but arbitrarily.

Applications:
CCA security amplification [AGM+14,CMT+15,CDT+15]
Non-malleable commitments from OWFs [GPR15]

Application to Tamper-Resilient Security

Non-malleable codes can protect physical devices against
tampering attacks.

Store data s on a device in encoded form Enc(s)

Each time device is invoked: decode, compute, re-encode

Tampering of Enc(s) can be simulated by either leaving the
data unchanged, or completely overwriting it with a new
unrelated value.

Device has to re-encode the codeword each time with fresh
randomness. Is this necessary?

Continuous Tampering and Re-Encoding

Non-malleable codes only consider one tampering attack
per codeword. Can we allow continuous tampering of a
single codeword?

Continuous non-malleable codes (4 flavors):
[FMV+14, JW15]

Device can “self-destruct” if tampering detected?

“Persistent” tampering?

Continuous Non-Malleable Codes

_
Few fixed points, High entropy
No Self-Destruct, Non-Persistent
(strongest)
Self-Destruct, No Self-Destruct,
Non-Persistent Persistent
High entropy Few fixed points

Self-Destruct, Persistent
(weakest)

No restrictions on F

Conclusions

Defined tamper-detection codes and (continuous) non-
malleable codes.

One general construction. Based on probabilistic method,
but can be made efficient for “small” function families.

Open Questions:

Explicit constructions of tamper detection codes and non-
malleable codes. More families. Simpler. Better rate.

More applications.
To non-malleable cryptography

To other areas?

