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Abstract Modern architectures rely on memory fences to prevent undesired weak-

enings of memory consistency. As the fences’ semantics may be subtle, the au-

tomation of their placement is highly desirable. But precise methods for restoring

consistency do not scale to deployed systems code. We choose to trade some pre-

cision for genuine scalability: our technique is suitable for large code bases. We

implement it in our new musketeer tool, and detail experiments on more than

350 executables of packages found in Debian Linux 7.1, e.g. memcached (about

10000 LoC).

1 Introduction

Concurrent programs are hard to design and implement, especially when running on

multiprocessor architectures. Multiprocessors implement weak memory models, which

feature e.g. instruction reordering, store buffering (both appearing on x86), or store

atomicity relaxation (a particularity of Power and ARM). Hence, multiprocessors allow

more behaviours than Lamport’s Sequential Consistency (SC) [20], a theoretical model

where the execution of a program corresponds to an interleaving of the different threads.

This has a dramatic effect on programmers, most of whom learned to program with SC.

Fortunately, architectures provide special fence (or barrier) instructions to prevent

certain behaviours. Yet both the questions of where and how to insert fences are con-

tentious, as fences are architecture-specific and expensive.

Attempts at automatically placing fences include Visual Studio 2013, which offers

an option to guarantee acquire/release semantics (we study the performance impact of

this policy in Sec. 2). The C++11 standard provides an elaborate API for inter-thread

communication, giving the programmer some control over which fences are used, and

where. But the use of such APIs might be a hard task, even for expert programmers. For

example, Norris and Demsky reported a bug found in a published C11 implementation

of a work-stealing queue [27].

We address here the question of how to synthesise fences, i.e. automatically place

them in a program to enforce robustness/stability [9,5] (which implies SC). This should

lighten the programmer’s burden. The fence synthesis tool needs to be based on a pre-

cise model of weak memory. In verification, models commonly adopt an operational

style, where an execution is an interleaving of transitions accessing the memory (as

in SC). To address weaker architectures, the models are augmented with buffers and
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queues that implement the features of the hardware. Similarly, a good fraction of the

fence synthesis methods, e.g. [23,18,19,24,3,10] (see also Fig. 2), rely on operational

models to describe executions of programs.

Challenges Thus, methods using operational models inherit the limitations of methods

based on interleavings, e.g. the “severely limited scalability”, as [24] puts it. Indeed,

none of them scale to programs with more than a few hundred lines of code, due to the

very large number of executions a program can have. Another impediment to scalability

is that these methods establish if there is a need for fences by exploring the executions

of a program one by one.

Finally, considering models à la Power makes the problem significantly more diffi-

cult. Intel x86 offers only one fence (mfence), but Power offers a variety of synchroni-

sation: fences (e.g. sync and lwsync), or dependencies (address, data or control). This

diversity makes the optimisation more subtle: one cannot simply minimise the number

of fences, but rather has to consider the costs of the different synchronisation mecha-

nisms; it might be cheaper to use one full fence than four dependencies.

Our approach We tackle these challenges with a static approach. Our choice of model

almost mandates this approach: we rely on the axiomatic semantics of [6]. We feel that

an axiomatic semantics is an invitation to build abstract objects that embrace all the

executions of a program.

Previous works, e.g. [30,5,9,10], show that weak memory behaviours boil down to

the presence of certain cycles, called critical cycles, in the executions of the program.

A critical cycle essentially represents a minimal violation of SC, and thus indicates

where to place fences to restore SC. We detect these cycles statically, by exploring an

over-approximation of the executions of the program.

Contributions Our method is sound for a wide range of architectures, including x86-

TSO, Power and ARM; and scales for large code bases, such as memcached (about

10000 LoC). We implemented it in our new musketeer tool. Our method is the most

precise of the static analysis methods (see Sec. 2). To do this comparison, we imple-

mented all these methods in our tool; for example, the pensieve policy [32] was de-

signed for Java only, and we now provide it for x86-TSO, Power and ARM. Thus, our

tool musketeer gives a comparison point for the field.

Outline We discuss the performance impact of fences in Sec. 2, and survey related work

in Sec. 3. We recall our weak memory semantics in Sec. 4. We detail how we detect

critical cycles in Sec. 5, and how we place fences in Sec. 6. In Sec. 7, we compare

existing tools and our new tool musketeer. We provide the sources, benchmarks and

experimental reports online at http://www.cprover.org/wmm/musketeer.

2 Motivation

Before optimising the placement of fences, we investigated whether naive approaches

to fence insertion indeed have a negative performance impact. To that end, we measured

http://www.cprover.org/wmm/musketeer
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Fig. 1. Overheads for the different fencing strategies

the overhead of different fencing methods on a stack and a queue from the liblfds lock-

free data structure package (http://liblfds.org). For each data structure, we built a harness

(consisting of 4 threads) that concurrently invokes its operations. We built several ver-

sions of the above two programs:

– (M) with fences inserted by our tool musketeer;

– (P) with fences following the delay set analysis of the pensieve compiler [32],

i.e. a static over-approximation of Shasha and Snir’s eponymous (dynamic) analy-

sis [30] (see also the discussion of Lee and Padua’s work [22] in Sec. 3);

– (V) with fences following the Visual Studio policy, i.e. guaranteeing acquire/release

semantics (in the C11 sense [2]), but not SC, for reads and writes of volatile

variables (see http://msdn.microsoft.com/en-us/library/vstudio/jj635841.aspx, accessed

04-11-2013). On x86, no fences are necessary as the model is sufficiently strong al-

ready; hence, we only provide data for ARM;

– (E) with fences after each access to a shared variable;

– (H) with an mfence (x86) or a dmb (ARM) after every assembly instruction that

writes (x86) or reads or writes (ARM) static global or heap data.

We emphasise that these experiments required us to implement (P), (E) and (V)

ourselves, so that they would handle the architectures that we considered. This means

in particular that our tool provides the pensieve policy (P) for TSO, Power and ARM,

whereas the original pensieve targeted Java only.

We ran all versions 100 times, on an x86-64 Intel Core i5-3570 with 4 cores (3.40 GHz)

and 4 GB of RAM, and on an ARMv7 (32-bit) Samsung Exynos 4412 with 4 cores

(1.6 GHz) and 2 GB of RAM.

For each program version, Fig. 1 shows the mean overhead w.r.t. the unfenced pro-

gram. We give the overhead in user time (as given by Linux time), i.e. the time spent

by the program in user mode on the CPU. We refer the reader to our study of the sta-

tistical significance of these experiments (using confidence intervals) in the full version

of this paper [8]. Amongst the approaches that guarantee SC (i.e. all but V), the best

results were achieved with our tool musketeer.

http://liblfds.org
http://msdn.microsoft.com/en-us/library/vstudio/jj635841.aspx


3 Related work

authors tool model style objective

Abdulla et al. [3] memorax operational reachability

Alglave et al. [6] offence axiomatic SC

Bouajjani et al. [10] trencher operational SC

Fang et al. [15] pensieve axiomatic SC

Kuperstein et al. [18] fender operational reachability

Kuperstein et al. [19] blender operational reachability

Linden et al. [23] remmex operational reachability

Liu et al. [24] dfence operational specification

Sura et al. [32] pensieve axiomatic SC

Fig. 2. Fence synthesis tools

The work of Shasha and Snir [30]

is a foundation for the field of

fence synthesis. Most of the work

cited below inherits their notions

of delay and critical cycle. A delay

is a pair of instructions in a thread

that can be reordered by the under-

lying architecture. A critical cycle

essentially represents a minimal vi-

olation of SC. Fig. 2 classifies the

methods mentioned in this section

w.r.t. their style of model (operational or axiomatic). We report our experimental com-

parison of these tools in Sec. 7. Below, we detail fence synthesis methods per style. We

write TSO for Total Store Order, implemented in Sparc TSO [31] and Intel x86 [28].

We write PSO for Partial Store Order and RMO for Relaxed Memory Order, two other

Sparc architectures. We write Power for IBM Power [1].

Operational models Linden and Wolper [23] explore all executions (using what they

call automata acceleration) to simulate the reorderings occuring under TSO and PSO.

Abdulla et al. [3] couple predicate abstraction for TSO with a counterexample-guided

strategy. They check if an error state is reachable; if so, they calculate what they call the

maximal permissive sets of fences that forbid this error state. Their method guarantees

that the fences they find are necessary, i.e., removing a fence from the set would make

the error state reachable again.

Kuperstein et al. [18] explore all executions for TSO, PSO and a subset of RMO, and

along the way build constraints encoding reorderings leading to error states. The fences

can be derived from the set of constraints at the error states. The same authors [19]

improve this exploration under TSO and PSO using an abstract interpretation they call

partial coherence abstraction, relaxing the order in the write buffers after a certain

bound, thus reducing the state space to explore. Liu et al. [24] offer a dynamic synthe-

sis approach for TSO and PSO, enumerating the possible sets of fences to prevent an

execution picked dynamically from reaching an error state.

Bouajjani et al. [10] build on an operational model of TSO. They look for minimum

violations (viz. critical cycles) by enumerating attackers (viz. delays). Like us, they

use linear programming. However, they first enumerate all the solutions, then encode

them as an ILP, and finally ask the solver to pick the least expensive one. Our method

directly encodes the whole decision problem as an ILP. The solver thus both constructs

the solution (avoiding the exponential-size ILP problem) and ensures its optimality.

All the approaches above focus on TSO and its siblings PSO and RMO, whereas we

also handle the significantly weaker Power, including quite subtle barriers (e.g. lwsync)

compared to the simpler mfence of x86.



Axiomatic models Krishnamurthy et al. [17] apply Shasha and Snir’s method to single

program multiple data systems. Their abstraction is similar to ours, except that they do

not handle pointers.

Lee and Padua [22] propose an algorithm based on Shasha and Snir’s work. They

use dominators in graphs to determine which fences are redundant. This approach was

later implemented by Fang et al. [15] in pensieve, a compiler for Java. Sura et al. later

implemented a more precise approach in pensieve [32] (see (P) in Sec. 2). They pair

the cycle detection with an analysis to detect synchronisation that could prevent cycles.

Alglave and Maranget [6] revisit Shasha and Snir for contemporary memory models

and insert fences following a refinement of [22]. Their offence tool handles snippets of

assembly code only, where the memory locations need to be explicitly given.

Others We cite the work of Vafeiadis and Zappa Nardelli [35], who present an optimi-

sation of the certified CompCert-TSO compiler to remove redundant fences on TSO.

Marino et al. [25] experiment with an SC-preserving compiler, showing overheads of

no more than 34%. Nevertheless, they emphasise that “the overheads, however small,

might be unacceptable for certain applications”.

4 Axiomatic memory model

mp

T0 T1

(a)x← 1 (c)r1← y

(b)y← 1 (d)r2← x

Final state? r1=1 ∧ r2=0

(a) Wx1

(b) Wy1

(c) Ry1

(d) Rx0

po
rf

po
fr

Fig. 3. Message Passing (mp)

Weak memory can occur as follows: a thread

sends a write to a store buffer, then a cache, and fi-

nally to memory. While the write transits through

buffers and caches, a read can occur before the

value is available to all threads in memory.

To describe such situations, we use the frame-

work of [6], embracing in particular SC, Sun TSO

(i.e. the x86 model [28]), and a fragment of Power.

The core of this framework consists of relations

over memory events.

We illustrate this framework using a litmus

test (Fig. 3). The top shows a multi-threaded pro-

gram. The shared variables x and y are assumed

to be initialised to zero. A store instruction (e.g. x ← 1 on T0) gives rise to a write

event ((a)Wx1), and a load instruction (e.g. r1 ← y on T1) to a read event ((c)Ry1).

The bottom of Fig. 3 shows one particular execution of the program (also called event

graph), corresponding to the final state r1=1 and r2=0.

In the framework of [6], an execution that is not possible on SC has a cyclic event

graph (as the one shown in Fig. 3). A weaker architecture may relax some of the rela-

tions contributing to a cycle. If the removal of the relaxed edges from the event graph

makes it acyclic, the architecture allows the execution. For example, Power relaxes the

program order po (amongst other things), thereby making the graph in Fig. 3 acyclic.

Hence, the given execution is allowed on Power.

Formalisation An event is a memory read or a write to memory, composed of a unique

identifier, a direction (R for read or W for write), a memory address, and a value. We



represent each instruction by the events it issues. In Fig. 3, we associate the store in-

struction x← 1 in thread T0 with the event (a)Wx1.

A set of events E and their program order po form an event structure E , (E, po).
The program order po is a per-thread total order over E. We write dp (with dp ⊆ po)

for the relation that models dependencies between instructions. For instance, there is a

data dependency between a load and a store when the value written by the store was

computed from the value obtained by the load.

We represent the communication between threads via an execution witness X ,

(co, rf), which consists of two relations over the events. First, the coherence co is a

per-address total order on write events which models the memory coherence widely

assumed by modern architectures. It links a write w to any write w′ to the same address

that hits the memory after w. Second, the read-from relation rf links a write w to a read r

such that r reads the value written byw. Finally, we derive the from-read relation fr from

co and rf. A read r is in fr with a write w if the write w′ from which r reads hits the

memory before w. Formally, we have: (r, w) ∈ fr , ∃w′.(w′, r) ∈ rf ∧ (w′, w) ∈ co.

In Fig. 3, the specified outcome corresponds to the execution below if each location

initially holds 0. If r1=1 in the end, the read (c) on T1 took its value from the write (b)
on T0, hence (b, c) ∈ rf. If r2=0 in the end, the read (d) took its value from the initial

state, thus before the write (a) on T0, hence (d, a) ∈ fr. In the following, we write rfe
(resp. coe, fre) for the external read-from (resp. coherence, from-read), i.e. when the

source and target belong to different threads.

SC x86 Power

poWR yes mfence sync

poWW yes yes sync, lwsync

poRW yes yes sync, lwsync, dp

poRR yes yes sync, lwsync, dp, branch;isync

Fig. 4. ppo and fences per architecture

Relaxed or safe When a thread can

read from its own store buffer [4]

(the typical TSO/x86 scenario), we

relax the internal read-from, that is,

rf where source and target belong to

the same thread. When two threads

T0 and T1 can communicate pri-

vately via a cache (a case of write atomicity relaxation [4]), we relax the external read-

from rfe, and call the corresponding write non-atomic. This is the main particularity of

Power and ARM, and cannot happen on TSO/x86. Some program-order pairs may be

relaxed (e.g. write-read pairs on x86, and all but dp ones on Power), i.e. only a subset of

po is guaranteed to occur in order. This subset constitutes the preserved program order,

ppo. When a relation must not be relaxed on a given architecture, we call it safe.

Fig. 4 summarises ppo per architecture. The columns are architectures, e.g. x86, and

the lines are relations, e.g. poWR. We write e.g. poWR for the program order between

a write and a read. We write “yes” when the relation is in the ppo of the architecture:

e.g. poWR is in the ppo of SC. When we write something else, typically the name of

a fence, e.g. mfence, the relation is not in the ppo of the architecture (e.g. poWR is

not in the ppo of x86), and the fence can restore the ordering: e.g. mfence maintains

write-read pairs in program order.

Following [6], the relation fence (with fence ⊆ po) induced by a fence is non-

cumulative when it only orders certain pairs of events surrounding the fence. The re-

lation fence is cumulative when it additionally makes writes atomic, e.g. by flushing

caches. In our model, this amounts to making sequences of external read-from and



fences (rfe; fence or fence; rfe) safe, even though rfe alone would not be safe. In Fig. 3,

placing a cumulative fence between the two writes on T0 will not only prevent their re-

ordering, but also enforce an ordering between the write (a) on T0 and the read (c) on

T1, which reads from T0.

Architectures An architecture A determines the set safeA of relations safe on A. Fol-

lowing [6], we always consider the coherence co, the from-read relation fr and the

fences to be safe. SC relaxes nothing, i.e. rf and po are safe. TSO authorises the re-

ordering of write-read pairs and store buffering but nothing else.

Critical cycles Following [30,5], for an architecture A, a delay is a po or rf edge that

is not safe (i.e. is relaxed) on A. An execution (E,X) is valid on A yet not on SC iff

it contains critical cycles [5]. Formally, a critical cycle w.r.t. A is a cycle in po ∪ com,

where com , co ∪ rf ∪ fr is the communication relation, which has the following

characteristics (the last two ensure the minimality of the critical cycles): (1) the cycle

contains at least one delay for A; (2) per thread, (i) there are at most two accesses a and

b, and (ii) they access distinct memory locations; and (3) for a memory location ℓ, there

are at most three accesses to ℓ along the cycle, which belong to distinct threads.

Fig. 3 shows a critical cycle w.r.t. Power. The po edge on T0, the po edge on T1, and

the rf edge between T0 and T1, are all unsafe on Power. On the other hand, the cycle in

Fig. 3 does not contain a delay w.r.t. TSO, and is thus not a critical cycle on TSO.

To forbid executions containing critical cycles, one can insert fences into the pro-

gram to prevent delays. To prevent a po delay, a fence can be inserted between the two

accesses forming the delay, following Fig. 4. To prevent an rf delay, a cumulative fence

must be used (see Sec. 6 for details). For the example in Fig. 3, for Power, we need to

place a cumulative fence between the two writes on T0, preventing both the po and the

adjacent rf edge from being relaxed, and use a dependency or fence to prevent the po

edge on T1 from being relaxed.

5 Static detection of critical cycles

We want to synthesise fences to prevent weak behaviours and thus restore SC. We

explained in Sec. 4 that we should place fences along the critical cycles of the program

executions. To find the critical cycles, we look for cycles in an over-approximation of all

the executions of the program. We hence avoid enumeration of all traces, which would

hinder scalability, and get all the critical cycles of all program executions at once. Thus

we can find all fences preventing the critical cycles corresponding to two executions in

one step, instead of examining the two executions separately.

To analyse a C program, e.g. on the left-hand side of Fig. 5, we convert it to a

goto-program (right-hand side of Fig. 5), the internal representation of the CProver

framework; we refer to http://www.cprover.org/goto-cc for details. The pointer analysis

we use is a standard concurrent points-to analysis that we have shown to be sound for

our weak memory models in earlier work [7]. A full explanation of how we handle

pointers is available in [8]. The C program in Fig. 5 features two threads which can

interfere. The first thread writes the argument “input” to x, then randomly writes 1 to

y or reads z, and then writes 1 to x. The second thread successively reads y, z and x.

http://www.cprover.org/goto-cc


void thread 1(int input )
{

int r1;
x = input ;
if (rand()%2)

y = 1;
else

r1 = z;
x = 1;

}

void thread 2()
{

int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;

}

thread 1
int r1;
x = input ;
Bool tmp;

tmp = rand();
[! tmp%2] goto 1;
y = 1;
goto 2;

1: r1 = z;
2: x = 1;

end function

thread 2
int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;
end function

Fig. 5. A C program (left) and its goto-program (right)

In the corresponding goto-program, the if-else structure has been transformed into a

guard with the condition of the if followed by a goto construct. From the goto-program,

we then compute an abstract event graph (aeg), shown in Fig. 6(a). The events a, b1, b2
and c (resp. d, e and f ) correspond to thread1 (resp. thread2) in Fig. 5. We only consider

accesses to shared variables, and ignore the local variables. We finally explore the aeg

to find the potential critical cycles.

An aeg represents all the executions of a program (in the sense of Sec. 4). Fig. 6(b)

and (c) give two executions associated with the aeg shown in Fig. 6(a). For readability,

the transitive po edges have been omitted (e.g. between the two events d′ and f ′). The

concrete events that occur in an execution are shown in bold. In an aeg, the events do

not have concrete values, whereas in an execution they do. Also, an aeg merely indi-

cates that two accesses to the same variable could form a data race (see the competing

pairs (cmp) relation in Fig. 6(a), which is a symmetric relation), whereas an execution

has oriented relations (e.g. indicating the write that a read takes its value from, see e.g.

the rf arrow in Fig. 6(b) and (c)). The execution in Fig. 6(b) has a critical cycle (with

respect to e.g. Power) between the events a′, b′2, d′, and f ′. The execution in Fig. 6(c)

does not have a critical cycle.

Full details of the construction of the aegs from goto-programs, including a seman-

tics of goto-programs in terms of abstract events, are available in the full version of this

paper [8]. Function calls are inlined for better precision. Currently, the implementation

does not handle recursion.

(a)Wx

(b1)Wy

(c)Wx

(d)Ry

(e)Rz

(f )Rx

(b2)Rz

pospos

pospos

pos

pos
cmp

cmp

cmp

(a′)Wx1

(b′1)Wy1

(c′)Wx1

(d′)Ry1

(e′)Rz0

(f ′)Rx0

(b′2)Rz

po

po

po

pofr

rf

fr

co

(a′′)Wx2

(b′′1 )Wy

(c′′)Wx1

(d′′)Ry0

(e′′)Rz0

(f ′′)Rx1

(b′′2 )Rz0

po

po

po

po

rf

co

(a) aeg of Fig. 5 (b) ex. with critical cycle (c) ex. without critical cycle

Fig. 6. The aeg of Fig. 5 and two executions corresponding to it



Loops and arrays We explain how to deal with loops statically. If we build our aeg

directly following the cfg, with a pos back-edge connecting the end of the body to its

entry, we already handle most of the cases. Recall from Sec. 4 that in a critical cycle

(2.i) there are two events per thread, and (2.ii) two events on the same thread target two

different locations. Let us analyse the cases.

The first case is an iteration i of this loop on which a critical cycle connects two

events (ai) and (bi). The critical cycle will be trivially captured by its static counterpart

that abstracts in particular these events with abstract events (a) and (b).
Now, for a given execution, if a critical cycle connects the event (ai) of an iteration

i to the event (bj) of a later iteration j (i.e., i ≤ j), then these events are abstracted

respectively by (a) and (b) in the aeg. As we do not evaluate the expressions, we

abstracted the loop guard and any local variable that would vary across the iterations.

Thus, all the iterations can be statically captured by one abstract representation of the

body of the loop. Then, thanks to the pos back-edge and the transitivity of our cycle

search, any critical cycle involving (ai) and (bj) is abstracted by a static critical cycle

relating (a) and (b), even though (b) might be before (a) in the body of the loop.

The only case that is not handled by this approach is when (ai) and (bj) are ab-

stracted by the same abstract event, say (c). As the variables addressed by the events

on the same thread of a cycle need to be different, this case can only occur when (ai)
and (bj) are accessing an array or a pointer whose index or offset depends on the itera-

tion. We do not evaluate these offsets or indices, which implies that two accesses to two

distinct array positions might be abstracted by the same abstract event (c).
In order to detect such critical cycles, we copy the body of the loop and do not add a

pos back-edge. Hence, a static critical cycle will connect (c) in the first instance of the

body and (c) in the second instance of the body to abstract the critical cycle involving

(ai) and (bj). The back-edge is no longer necessary, as the abstract events reachable

through this back-edge are replicated in the second body. Thus, all the previous cases

are also covered.

We have implemented the duplication of the loop bodies only for loops that contain

accesses to arrays. In case of nested loops, we ensure that we duplicate each of the

sub-bodies only once in order to avoid an exponential explosion. This approach is again

sufficient owing to the maximum of two events per thread in a critical cycle and the

transitivity of po.

Pointers We explain how to deal with the varying imprecision of pointer analyses in

a sound way. If we have a precise pointer analysis, we insert as many abstract events

as required for the objects pointed to. Similarly to array accesses, a pointer might refer

to two separate memory locations dynamically, e.g., if pointer arithmetic is used. If

such an access is detected inside a loop, the body is replicated as described above. If

the analysis cannot determine the location of an access, we insert an abstract event

accessing any shared variable. This event can communicate with any variable accessed

in other threads.

Cycle detection Once we have the aeg, we enumerate (using Tarjan’s algorithm [34])

its potential critical cycles by searching for cycles that contain at least one edge that is

a delay, as defined in Sec. 4.
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min dp(e,g) + dp(f,h) + dp(f,g) + 3 · (f(e,f) + f(f,g) + f(g,h)) + 2 · (lwf(e,f) + lwf(f,g) + lwf(g,h))
s.t. cycle 1, delay (e, g): dp(e,g) + f(e,f) + f(f,g) + lwf(e,f) + lwf(f,g) ≥ 1

cycle 2, delay (f, g): dp(f,g) + f(f,g) + lwf(f,g) ≥ 1
cycle 3, delay (f, h): dp(f,h) + f(f,g) + f(g,h) + lwf(f,g) + lwf(g,h) ≥ 1
cycle 4, delay (g, h): f(g,h) ≥ 1

Fig. 7. Example of resolution with between

6 Synthesis

In Fig. 7, we have an aeg with five threads: {a, b}, {c, d}, {e, f, g, h}, {i, j} and {k, l}.
Each node is an abstract event computed as in the previous section. The dashed edges

represent the pos between abstract events in the same thread. The full lines represent

the edges involved in a cycle. Thus the aeg of Fig. 7 has four potential critical cycles.

We derive the set of constraints in a process we define later in this section. We now have

a set of cycles to forbid by placing fences. Moreover, we want to optimise the placement

of the fences.

Challenges If there is only one type of fence (as in TSO, which only features mfence),

optimising only consists of placing a minimal amount of fences to forbid as many cycles

as possible. For example, placing a full fence sync between f and g in Fig. 7 might

forbid cycles 1, 2 and 3 under Power, whereas placing it somewhere else might forbid

at best two amongst them.

Since we handle several types of fences for a given architecture (e.g. dependencies,

lwsync and sync on Power), we can also assign some cost to each of them. For exam-

ple, following the folklore, a dependency is less costly than an lwsync, which is itself

less costly than a sync. Given these costs, one might want to minimise their sum along

different executions: to forbid cycles 1, 2 and 3 in Fig. 7, a single lwsync between f

and g can be cheaper at runtime than three dependencies respectively between e and g,

f and g, and f and h. However, if we had only cycles 1 and 2, the dependencies would

be cheaper. We see that we have to optimise both the placement and the type of fences

at the same time.

We model our problem as an integer linear program (ILP) (see Fig. 8), which we

explain in this section. Solving our ILP gives us a set of fences to insert to forbid

the cycles. This set of fences is optimal in that it minimises the cost function. More



Input: aeg (Es,pos,cmp) and potential critical cycles C = {C1, ..., Cn}
Problem: minimise

∑
(l,t)∈potential-places(C) tl × cost(t)

Constraints: for all d ∈ delays(C)
(* for TSO, PSO, RMO, Power *)

if d ∈ poWR then
∑

e∈between(d) fe ≥ 1

if d ∈ poWW then
∑

e∈between(d) fe + lwfe ≥ 1

if d ∈ poRW then dpd +
∑

e∈between(d) fe + lwfe ≥ 1

if d ∈ poRR then dpd +
∑

e∈between(d) fe + lwfe +
∑

e∈ctrl(d) cfe ≥ 1

(* for Power *)

if d ∈ cmp then
∑

e∈cumul(d) fe +
∑

e∈cumul(d)∩¬poWR∩¬poRW lwfe ≥ 1

Output: the set actual-places(C) of pairs (l, t) s.t. tl is set to 1 in the ILP solution

Fig. 8. ILP for inferring fence placements

precisely, the constraints are the cycles to forbid, each variable represents a fence to

insert, and the cost function sums the cost of all fences.

6.1 Cost function of the ILP

We handle several types of fences: full (f), lightweight (lwf), control fences (cf), and

dependencies (dp). On Power, the full fence is sync, the lightweight one lwsync. We

write T for the set {dp, f, cf, lwf}. We assume that each type of fence has an a priori

cost (e.g. a dependency is cheaper than a full fence), regardless of its location in the

code. We write cost(t) for t ∈ T for this cost.

We take as input the aeg of our program and the potential critical cycles to fence.

We define two sets of pairs (l, t) where l is a pos edge of the aeg and t a type of fence.

We introduce an ILP variable tl (in {0, 1}) for each pair (l, t).
The set potential-places is the set of such pairs that can be inserted into the pro-

gram to forbid the cycles. The set actual-places is the set of such pairs that have been

set to 1 by our ILP. We output this set, as it represents the locations in the code in need

of a fence and the type of fence to insert for each of them. We also output the total

cost of all these insertions, i.e.
∑

(l,t)∈potential-places(C) tl × cost(t). The solver should

minimise this sum whilst satisfying the constraints.

6.2 Constraints in the ILP

We want to forbid all the cycles in the set that we are given after filtering, as explained

in the preamble of this section. This requires placing an appropriate fence on each delay

for each cycle in this set. Different delay pairs might need different fences, depending

e.g. on the directions (write or read) of their extremities. Essentially, we follow the table

in Fig. 4. For example, a write-read pair needs a full fence (e.g. mfence on x86, or sync
on Power). A read-read pair can use anything amongst dependencies and fences. Our

constraints ensure that we use the right type of fence for each delay pair.

Inequalities as constraints We first assume that all the program order delays are in

pos and we ignore Power and ARM special features (dependencies, control fences and



communication delays). This case deals with relatively strong models, ranging from

TSO to RMO. We relax these assumptions below.

In this setting, potential-places(C) is the set of all the pos delays of the cycles in

C. We ensure that every delay pair for every execution is fenced, by placing a fence on

the static pos edge for this pair, and this for each cycle given as input. Thus, we need at

least one constraint per static delay pair d in each cycle.

If d is of the form poWR, as (g, h) in Fig. 7 (cycle 4), only a full fence can fix

it (cf. Fig. 4), thus we impose fd ≥ 1. If d is of the form poRR, as (f, h) in Fig. 7

(cycle 3), we can choose any type of fence, i.e. dpd + cfd + lwfd + fd ≥ 1.

Our constraints cannot be equalities because it is not certain that the resulting system

would be satisfiable. To see this, suppose our constraints were equalities, and consider

Fig. 7 limited to cycles 2, 3 and 4. Using only full fences, lightweight fences, and

dependencies (i.e. ignoring control fences for now), we would generate the constraints

(i) lwf(f,g) + f(f,g) = 1 for the delay (f, g) in cycle 2, (ii) dp(f,h) + lwf(f,h) + f(f,h) +
lwf(g,h) + f(g,h) = 1 for the delay (f, h) in cycle 3, and (iii) f(g,h) = 1 for the delay

(g, h) in cycle 4.

Preventing the delay (g, h) in cycle 4 requires a full fence, thus f(g,h) = 1. By

the constraint (ii), and since f(g,h) = 1, we derive f(f,g) = 0 and lwf(f,g) = 0. But

these two equalities are not possible given the constraint (i). By using inequalities, we

allow several fences to live on the same edge. In fact, the constraints only ensure the

soundness; the optimality is fully determined by the cost function to minimise.

Delays are in fact in po+
s , not always in pos: in Fig. 7, the delay (e, g) in cycle 1 does

not belong to pos but to po+
s . Thus given a po+

s delay (x, y), we consider all the pos

pairs which appear between x and y, i.e.: between(x, y) , {(e1, e2) ∈ pos | (x, e1) ∈
po∗

s∧(e2, y) ∈ po∗
s}. For example in Fig. 7, we have between(e, g) = {(e, f), (f, g)}.

Thus, ignoring the use of dependencies and control fences for now, for the delay (e, g)
in Fig. 7, we will not impose f(e,g) + lwf(e,g) ≥ 1 but rather f(e,f) + lwf(e,f) + f(f,g) +
lwf(f,g) ≥ 1. Indeed, a full fence or a lightweight fence in (e, f) or (f, g) will prevent

the delay in (e, g).

Dependencies need more care, as they cannot necessarily be placed anywhere between

e and g (in the formal sense of between(e, g)): dp(e,f) or dp(f,g) would not fix the

delay (e, g), but simply maintain the pairs (e, f) or (f, g), leaving the pair (e, g) free to

be reordered. Thus if we choose to synchronise (e, g) using dependencies, we actually

need a dependency from e to g: dp(e,g). Dependencies only apply to pairs that start

with a read; thus for each such pair (see the poRW and poRR cases in Fig. 8), we add

a variable for the dependency: (e, g) will be fixed with the constraint dp(e,g) + f(e,f) +
lwf(e,f) + f(f,g) + lwf(f,g) ≥ 1.

Control fences placed after a conditional branch (e.g. bne on Power) prevent specu-

lative reads after this branch (see Fig. 4). Thus, when building the aeg, we built a set

poC for each branch, which gathers all the pairs of abstract events such that the first

one is the last event before a branch, and the second is the first event after that branch.

We can place a control fence before the second component of each such pair, if the



second component is a read. Thus, we add cfe as a possible variable to the constraint

for read-read pairs (see poRR case in Fig. 8, where ctrl(d) = between(d) ∩ poC).

Cumulativity For architectures like Power, where stores are non-atomic, we need to

look for program order pairs that are connected to an external read-from (e.g. (c, d) in

Fig. 3 has an rf connected to it via event c). In such cases, we need to use a cumulative

fence, e.g. lwsync or sync, and not, for example, a dependency.

The locations to consider in such cases are: before (in pos) the write w of the rfe,

or after (in pos) the read r of the rfe, i.e. cumul(w, r) = {(e1, e2) | (e1, e2) ∈ pos ∧
((e2, w) ∈ po∗

s ∨ (r, e1) ∈ po∗
s)}. In Fig. 7 (cycle 2), (g, i) over-approximates an rfe

edge, and the edges where we can insert fences are in cumul(g, i) = {(f, g), (i, j)}.
We need a cumulative fence as soon as there is a potential rfe, even if the adjacent

pos pairs do not form a delay. For example in Fig. 3, suppose there is a dependency

between the reads on T1, and a fence maintaining write-write pairs on T0. In that case we

need to place a cumulative fence to fix the rfe, even if the two pos pairs are themselves

fixed. Thus, we quantify over all pos pairs when we need to place cumulative fences. As

only f and lwf are cumulative, we have potential-places(C) , {(l, t) | (t ∈ {dp} ∧ l ∈

delays(C)) ∨(t ∈ T\{dp} ∧ l ∈
⋃

d∈delays(C) between(d)) ∨(t ∈ {f, lwf} ∧ l ∈ pos(C))}.

(a)Wx

(b)Ry

(c)Wy

(e)(d) (f)

(g)Rx

f

pos

pos

cmp

cmp

Fig. 9. Cycles sharing the edge (a, b)

Comparison with trencher We illustrate the

difference between trencher [10] and our ap-

proach using Fig. 9. There are three cycles

that share the edge (a, b). They differ in the

path taken between nodes c and g. Suppose

that the user has inserted a full fence between

a and b. To forbid the three cycles, we need

to fence the thread on the right.

The trencher algorithm first calculates

which pairs can be reordered: in our example,

these are (c, g) via d, (c, g) via e and (c, g) via f . It then determines at which locations

a fence could be placed. In our example, there are 6 options: (c, d), (d, g), (c, e), (e, g),
(c, f), and (f, g). The encoding thus uses 6 variables for the fence locations. The algo-

rithm then gathers all the irreducible sets of locations to be fenced to forbid the delay

between c and g, where “irreducible” means that removing any of the fences would

prevent this set from fully fixing the delay. As all the paths that connect c and g have to

be covered, trencher needs to collect all the combinations of one fence per path. There

are 2 locations per path, leading to 23 sets. Consequently, as stated in [10], trencher
needs to construct an exponential number of sets.

Each set is encoded in the ILP with one variable. For this example, trencher thus

uses 6 + 8 variables. It also generates one constraint per delay (here, 1) to force the

solver to pick a set, and 8 constraints to enforce that all the location variables are set to

1 if the set containing these locations is picked.

By contrast, musketeer only needs 6 variables: the possible locations for fences.

We detect three cycles, and generate only three constraints to fix the delay. Thus, on a

parametric version of the example, trencher’s ILP grows exponentially whereas mus-
keteer’s is linear-sized.



CLASSIC FAST

Dek Pet Lam Szy Par Cil CL Fif Lif Anc Har

LoC 50 37 72 54 96 97 111 150 152 188 179

dfence – – – – – – – – – – 7.8 3 6.2 3 ∼ 0 ∼ 0 ∼ 0 ∼ 0

memorax 0.4 2 1.4 2 79.1 4 – – – – – – – – – – – – – – – –

musketeer 0.0 5 0.0 3 0.0 8 0.0 8 0.0 3 0.0 3 0.0 1 0.1 1 0.0 1 0.1 1 0.6 4

offence 0.0 2 0.0 2 0.0 8 0.0 8 – – – – – – – – – – – – – –

pensieve 0.0 16 0.0 6 0.0 24 0.0 22 0.0 7 0.0 14 0.0 8 0.1 33 0.0 29 0.0 44 0.1 72

remmex 0.5 2 0.5 2 2.0 4 1.8 5 – – – – – – – – – – – – – –

trencher 1.6 2 1.3 2 1.7 4 – – 0.5 1 8.6 3 – – – – – – – – – –

Fig. 10. All tools on the CLASSIC and FAST series for TSO

7 Implementation and Experiments

We implemented our new method, in addition to all the methods described in Sec. 2,

in our tool musketeer, using glpk (http://www.gnu.org/software/glpk) as the ILP solver.

We compare these methods to the existing tools listed in Sec. 3.

Our tool analyses C programs. dfence also handles C code, but requires some high-

level specification for each program, which was not available to us. memorax works

on a process-based language that is specific to the tool. offence works on a subset

of assembler for x86, ARM and Power. pensieve originally handled Java, but we did

not have access to it and have therefore re-implemented the method. remmex handles

Promela-like programs. trencher analyses transition systems. Most of the tools come

with some of the benchmarks in their own languages; not all benchmarks were however

available for each tool. We have re-implemented some of the benchmarks for offence.

We now detail our experiments. CLASSIC and FAST gather examples from the lit-

erature and related work. The DEBIAN benchmarks are packages of Debian Linux 7.1.

CLASSIC and FAST were run on a x86-64 Intel Core2 Quad Q9550 machine with 4

cores (2.83 GHz) and 4 GB of RAM. DEBIAN was run on a x86-64 Intel Core i5-3570

machine with 4 cores (3.40 GHz) and 4 GB of RAM.

CLASSIC consists of Dekker’s mutex (Dek) [14]; Peterson’s mutex (Pet) [29]; Lamport’s

fast mutex (Lam) [21]; Szymanski’s mutex (Szy) [33]; and Parker’s bug (Par) [13].

We ran all tools in this series for TSO (the model common to all). For each example,

Fig. 10 gives the number of fences inserted, and the time (in sec) needed. When an

example is not available in the input language of a tool, we write “–”. The first four

tools place fences to enforce stability/robustness [5,9]; the last three to satisfy a given

safety property. We used memorax with the option -o1, to compute one maximal

permissive set and not all. For remmex on Szymanski, we give the number of fences

found by default (which may be non-optimal). Its “maximal permissive” option lowers

the number to 2, at the cost of a slow enumeration. As expected, musketeer is less

precise than most tools, but outperforms all of them.

FAST gathers Cil, Cilk 5 Work Stealing Queue (WSQ) [16]; CL, Chase-Lev WSQ [11];

Fif, Michael et al.’s FIFO WSQ [26]; Lif, Michael et al.’s LIFO WSQ [26]; Anc,

Michael et al.’s Anchor WSQ [26]; Har, Harris’ set [12]. For each example and tool,

http://www.gnu.org/software/glpk


TSO Power

LoC nodes fences time fences time

memcached 9944 694 3 13.9s 70 89.9s

lingot 2894 183 0 5.3s 5 5.3s

weborf 2097 73 0 0.7s 0 0.7s

timemachine 1336 129 2 0.8s 16 0.8s

see 2626 171 0 1.4s 0 1.5s

blktrace 1567 615 0 6.5s – timeout

ptunnel 1249 1867 2 95.0s – timeout

proxsmtpd 2024 10 0 0.1s 0 0.1s

ghostess 2684 1106 0 25.9s 0 25.9s

dnshistory 1516 1466 1 29.4s 9 64.9s

Fig. 11. musketeer on selected benchmarks in DEBIAN series for TSO and Power

Fig. 10 gives the number of fences inserted (under TSO) and the time needed to do so.

For dfence, we used the setting of [24]: the tool has up to 20 attempts to find fences.

We were unable to apply dfence on some of the FAST examples: we thus reproduce the

number of fences given in [24], and write∼ for the time. We applied musketeer to this

series, for all architectures. The fencing times for TSO and Power are almost identical,

except for the largest example, namely Har (0.1 s vs 0.6 s).

DEBIAN gathers 374 executables. These are a subset of the goto-programs that have been

built from packages of Debian Linux 7.1 by Michael Tautschnig. A small excerpt of our

results is given in Fig. 11. The full data set, including a comparison with the methods

from Sec. 2, is provided at http://www.cprover.org/wmm/musketeer. For each program,

we give the lines of code and number of nodes in the aeg. We used musketeer on

these programs to demonstrate its scalability and its ability to handle deployed code.

Most programs already contain fences or operations that imply them, such as compare-

and-swaps or locks. Our tool musketeer takes these fences into account and infers

a set of additional fences sufficient to guarantee SC. The largest program we handle

is memcached (∼ 10000 LoC). Our tool needs 13.9 s to place fences for TSO, and

89.9 s for Power. A more meaningful measure for the hardness of an instance is the

number of nodes in the aeg. For example, ptunnel has 1867 nodes and 1249 LoC. The

fencing takes 95.0 s for TSO, but times out for Power due to the number of cycles.

8 Conclusion

We introduced a novel method for deriving a set of fences, which we implemented in

a new tool called musketeer. We compared it to existing tools and observed that it

outperforms them. We demonstrated on our DEBIAN series that musketeer can handle

deployed code, with a large potential for scalability.
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