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Abstract. Concurrent programs running on weak memory models exhihit r
laxed behaviours, making them hard to understand and togd@lauuse stan-
dard verification techniques on such programs, we can férem to behave as
if running on a Sequentially Consistent (SC) model. Thusexemine how to
constrain the behaviour of such programs via synchrowoisat ensure what we
call their stability, i.e. that they behave as if they weranimg on a stronger
model than the actual one, e.g. SC. First, we define sufficiemditions ensur-
ing stability to a program, and show that Power’s locks aratlmeodify-write
primitives meet them. Second, we minimise the amount ofiredwsynchronisa-
tion by characterising which parts of a given execution &hte synchronised.
Third, we characterise the programs stable from a weakteathre to SC. Fi-
nally, we present ouoffence tool which places either lock-based or lock-free
synchronisation in a x86 or Power program to ensure itslgtabi

Concurrent programs running on modern multiprocessoribgsubtle behaviours,
making them hard to understand and to debug: modern artimiésde. g. X86 or Power)
provideweak memory modelallowing optimisations such dsstruction reordering
store bufferingor write atomicity relaxatior{2]. Thus an execution of a program may
not be an interleaving of its instructions, as it would be oBeguentially Consistent
(SC) architecture [18]. Hence standard analyses for coactiprograms might be un-
sound, as noted by M. Rinard in [25]. Memory model aware \e&ifon tools exist,
e.g. [24,11,15, 30], but they often focus on one model at a timeaonot handle the
write atomicity relaxation exhibited.g. by Power: generality remains a challenge.

Fortunately, we can force a program running on a weak athite to behave as if
it were running on a stronger one. §. SC) by usingsynchronisation primitiveghis
underlies thalata race free guarante@®RF guarantee) of S. Adve and M. Hill [3].

Hence, as observedg. by S. Burckhart and M. Musuvathi in [12}we can sensi-
bly verify the relaxed executions . . .] by solving the faling two verification problems
separately: 1. Use standard verification methodology foraoerent programs to show
that the [SC] executions [...] are correct. 2. Use specidiznethodology fomemory
model safetyerification”. Here,memory model safetpeans checking that the execu-
tions of a program, although running on a weak architecaneactually SC. To apply
standard verification techniques to concurrent programsing on weak memory mod-
els, we thus first need to ensure that our programs have a S@ibah S. Burckhart and
M. Musuvathi focus in [12] on th&otal Store Orde(TSO) [28] memory model. We
generalise their idea to a wider class of models (defined]irafid recalled in Sec. 1):
we examine how to force a program running on a weak architectu to behave as if
running on a stronger oné,, a property that we cafitability fromA; to A,.

To ensure stability to a program, we examine the problemanfipyylock-basedr
lock-freesynchronisation primitives in a program. We cafhchronisation mappingn



insertion of synchronisation primitives (eitheaurriers (or fence$, read-modify-writes
or lockg in a program. We study whether a given synchronisation nmgpensures
stability to a program running on a weak memory modej, that we placed enough
primitives in the code to ensure that it only has SC execstibn Shasha and M. Snir
proposed in [27] thelelay set analysito insert barriers in a program, but their work
does not provide any semantics for weak memory models. Hguestions remain
w.r.t. the adequacy of their method in the context of such models.

On the contrary, locks allow the programmer to ignore thaiteedf the memory
model, but are costly from a compilation point of view. Asewby S. Adve and H.-J.
Boehm in [4],“on hardware that relaxes write atomicitye[g. Power], it is often un-
clear that more efficient mappings (than the use of locks)passible; even the fully
fenced implementation may not be sequentially consistdietice not only do we need
to examine thesoundnessf our synchronisation mappings €. that they ensure sta-
bility to a program), but also their cost. Thus, we presewéssd new contributions:

1. We define in Sec. 2 sufficient conditions on synchronigsatcensure stability to a
program. As an illustration, we provide in Sec. 3 semantdhé locks and read-
modify-writes fmw) of the Power architecture [1].¢. to thel war x andst wcX.
instructions) and show in Coq that they meet these condition

2. We propose along the way several synchronisation mappimgich we prove in
Coq to enforce a SC behaviour to an x86 or Power program.

3. We optimise these mappings by generalising in Sec. 4 thaph of [27] to weak
memory models and both lock-based and lock-free synchatiois and charac-
terise in Coq the executions stable from a weak archite ttuse.

4. We describe in Sec. 5 our n@ffence tool, which places either lock-based or lock-
free synchronisation in a x86 or Power assembly program sorrenits stability,
following the aforementioned characterisation. We dédtaiW we usedffence to
test and measure the cost of our synchronisation mappings.

We formalised our results in Coq; we omit the proofs for bieVA long version with
proofs, the Coqg development, the documentation and soafcéence and the exper-
imental details can be foundlatt p: // of fence.inria.fr.

1 Context

We give here the background on which we build our resultss bction summarises
our previous generic model [5], which embraces SC [18], SB®,PSO and RMO [28],
Alpha [7] and a fragment of Power [1]. Fig. 1 shows a table afrelations. Theriw
test [10] (independent reads of independent writes), inZEig our running example.

Executions An evente is a read or a write, composed of a direction R (read) or
W (write), a locationloc(e), the instruction from which it comess(e), a valueval(e),

a processoproc(e), and a unique identifier. We represent each instruction @gtlents

it issues. In Fig. 2, we associate the storpx < 1 on P, with the evenie)Wz1. We
write E for the set of events, an@ (resp.R) for the subset of write (resp. read) events.

We writew (resp.r) for a write (resp. read), and or e when the direction is irrelevant.

We associate a program with awent structure? = (E, E), composed of its

eventskE and theprogram order™, a per-processor total order oV@r In Fig. 2, the
read(a) fromz on Py is in program order with the regd) fromy on Py, i.e. (a)Rz1



Name Notation Comment

program order m1 5 ma per-processor total order

preserved program ordein LA pairs maintained in program ord8% ¢ &
read-from map w % 7 |links a write to a read reading its value
write serialisation w1 5w, | total order on writes to the same location
from-read map r % w |rreads from a write preceding in 5
barriers m1 2 ma ordering induced by barriers

Fig. 1. Table of relations
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Fig. 2. Theiriw test and a non-SC execution

pe (b)RyO0. The & relation (included i3, the source being a read) models the depen-
dencies between instructionssg. when we compute the address of a load or store from
the value of a preceding load.

ws rf

Given an event structurg, we represent an execution = (-, —) of the corre-
sponding program by two relations ovr Thewrite serialisation'= is a per-location
total order on writes modeling threemory coherencassumed by modern architectures
[13], linking a write w to any writew’ to the same location hitting the memory af-
ter w. Theread-from mapr—f> links a writew to a readr from the same location that

reads fromw. We derive thefrom-read mapl from ™S and . A readr is in -

with a write w when the writew’ from which r reads hit the memory before did:
fr A ;o , ws

r—w = Jw,w —>rAv = w.

In Fig. 2, the specified outcome corresponds to the execotiaihe right, if each
location and register initially hold8. If r 1=1 in the end, the rea¢u) read its value
from the write(e) on P, hence(e) LA (a). If r 2=0, the read(b) read its value from
the initial state, thus before the wrif¢) on Ps, hence(b) LA (f). Similarly, we have
(f) LA (¢) fromr 3=2, and(d) LA (e) fromr 4=0.

Architecturesin a shared-memory multiprocessor, a write may be commiitstinto
a store buffer, then into a cache, and finally into memory.ddewhile a write transits
in store buffers and caches, a processor may read a past value

We model this by some subrelation & beingnon-global they can be ignored by

some processors. We write (resp.'—“?) for theinternal (resp.externa) read-from map,
i.e. a read-from map between two events from the same (resmatjstirocessor(s).
Hence we model a readby a processoP, reading from a writev in Py’s store buffer

by w LU being non-global. When reads from a writev by a distinct processap;



Code Comment Doc
nfence WR non-cumulative barrier [16, p. 291]
cnp; bne; i sync|this sequence formslaW, RR non-cumulative barrier [1, p. 661]
I wsync RW, RR, WW non-, A- and B-cumulative barrier [1, p. 700]
sync RW, RR, WW, WR non-, A- and B-cumulative barrier [1, p. 700]

Fig. 3. Table of x86 and Power barriers

into a cache shared biyy and P, only (a case ofvrite atomicityrelaxation [2]),w e
is non-global, andv is said to benon-atomic TSO authorises. g. store buffering {.e.

M is non-global) but considers stores to be atonz'u'e.(i% is global). We write?? for

the global subrelation of'. We consider and ™ global, since™ is the order in
which the writes to a certain location hit the memory.

Moreover, some pairs of events in the program order may beleeed. Thus only
a subset of the pairs of events A, gathered in a subrelatid®’ (preserved program
order), is guaranteed to occur in this order. TSO for example aigbgwrite-read pairs
to be reordered, but nothing el$& = 2 \ (W x R).

Finally, architectures provide barrier instructions taler certain pairs of events;
Fig. 3 gives the x86 and Power ones that we use. We gatherdieaeirmgs induced by

barriers in the global relatiof. Following [5], the relation®s® < ®induced by a

barrierf ence is non-cumulativevhen it orders certain pairs of events surrounding the

. f i b . .
barrier: NC(=9 £ (¥°C &). For example, the x86f ence barrler is a non-

cumulative barrier ordering write-read pairs onfy: "<°%r) = (w 22 r). If there is a
dataflow dependengy.g. via a comparisortimp, from a read to a conditional branch
(e.g. bne), Poweri sync forms a non-cumulative barrier when placecﬁﬁﬂafter the

b b
cnp; bne sequence, for read-read and read-write pairs" "~ 'Syncm) = (rBm).
fence.

The relation®*°is cumulativew.r.t. another relation®> C > when it makes the
writes of > atomic (e.g. by flushing the store buffers and caches). Formally, we define

an A-cumulative (resp. B- cumulat|ve) barriera€(% %) 2 (2% ¢ 2 (resp.

BO(®%® 5) 2 (% 5 ¢ 2 For example, Powesync barrier is non- (resp. A-

and B-) cumulative for all pairs: we haver; 5 m,) (resp.(m, o my) and

M 1 my)) implies (my 22 my). Powerl wsync is non- (resp. A- and B-)

cumulative for all pairs except write-read ones; we héawg " m,) (resp.(m; >
MY o) and(my " w b my)) implies (my 22 my) if (my,ma) & (W x R).
A

An architectureA = (ppo, grf, ab) specifies the functioppo (resp.grf, ab)

(ma

returning the relatioR” (resp o ib) when given an execution.

Validity Theuniproc(E, X) £ acyclic(*S U LAY po—>oc) condition (Wheré)o—_koC
is the program order restricted to events with the sameitmtaforces a processor in
a multiprocessor context to respect the memaoierencg13]. The thin(FE, X) £

acyclic(i U ﬂ?) condition prevents executions where values seem to @unef thin
air [21]. We define theglobal happens-befonelation A. ghb(F, X) of an execution
(E, X) on an architecturel as the union of the relations global gn

A ghb(E,X) 2 Wy gy oy



An execution(E, X) is valid on an architecturel, written A. valid(F, X), when
the relationA. ghb(F, X) is acyclic (together with the two checks above):

A. valid(E, X) £ uniproc(E, X) A thin(E, X) A acyclic(A. ghb(E, X))
Finally, we consider an architectu#g to beweakerthan an architecturd,, written
A; < Ay, whenA; authorises at least all the executions valid4on TSO is weaker

than SC, hence all the SC executions of a program are validséh Th the following,
we considerA; to be without barriers.e. .

2 Covering relations

We examine now how to force the executions of a program rgnoima weak architec-
ture A; to be valid on a stronger oné;, which we callstability fromA; to Az, i.e. we
examine when the following property holds for 61, X):

stablea, a,(F, X) = A;. valid(E, X) = Aj. valid(E, X)

The execution ofriw in Fig. 2 is not stable from Power to SC, for it is valid on
Power yet not on SC. We can stabilise it ussygchronisation idiomse.g. barriers
or locks. Synchronisation idionegbitrate conflictsbetween accessese. ensure that
one out of two conflicting accesses occurs before the otherfowhalise this with an
irreflexive conflictrelation— overE, such thatzy, 2z — y = —(y = x) and asyn-
chronisatiorrelation-> overlE. An execution E, X ) is coveredvhen-> arbitrates—:

covered, s(E, X) £ Vay,z Sy=szSyvy Sz
We consider a relatior> to be coveringwhen ordering by the conflicting ac-
cesses of an executidir, X ) valid on A; guarantees its validity od,, i.e. the syn-
chronisation> arbitrates enough conflicts to enforce a strong behaviour:

covering(—>, >) £ VEX, (A;. valid(E, X) A covered, o(E, X)) = Ay. valid(E, X)

Lock-based synchronisatiofor example, thdRF guarantee [3] ensures that if the
competing accessddefined below) of an execution are ordered by locks, then thi
execution is SCj.e. locks are covering.r.t. the competing accesses. Two events are
competingf they are from distinct processors, to the same locatiod, &t least one of
them is a write ¢.¢. in Fig. 2, the reada) from a on Py and the writge) to x on P»):

m1 T my £ proc(my) # proc(msa) Aloc(my) = loc(ma) A (my € WV my € W)

We describe the ordering induced by locks by a relalﬁ%kr(instantiated in Sec. 3.1)

overE, such thahcyclic(lgk uumy i), corresponding in Fig. 2 to placing locks

to a variable/; on the accessds), (d) and(e) relative tox, and locks to a different
variable/, on the accesse@), (¢) and (f) relative toy. Thus we have a cycle in
KU P @) B (0) " ()" () 2 (d) "X () K (a). 1 ¥ U X is acyclic, then
the execution of Fig. 2 is forbidden. Formally, we have:
Lem. 1. acyclic(lgk U E)») = covering(™¥, (ng U E)Jr)

This lemma leads to a mapping which we call L (for locks), vwhstmply places
a lock by the same lock variable on each side of a given comdtige. By Lem. 1, it
ensures stability to a program for any pait; , As).

5



Arch. | Fragile pair Barriers (mapping F)
Powef r 2 r 28 (need A-cumulativity)
rBw r "4 (A-cumulativity OK)
w B w w "™ w (no need for A-cumulativity)
wBr | w2 (need for write-read non-cumulativity)
x86 | w27 |w ™ (need for write-read non-cumulativity)

Fig. 4. Mapping F: barriers

Lock-free synchronisatiohVe give here an example of a covering lock-free synchroni-
sation relation. A program can distinguish between twoitgctures4; < A, for one
of two reasons. First, if the program involves a fairy) maintained in program order
on As (i.e. = "2 y) but not on4; (i.e. =(z =2 y)). In Fig. 2, we havea) 2 (b).
Hence on a strong architectude such as SC whef@* =2 we have(a) 2% (b). On
a weak architecturd; such as Power, where the read-read pairs in program order are
not maintained, we have((a) "% (b)).

Second, if the program reads from a write atomictrbut not onA;. In Fig. 2, we

have(e) e (a). On a strong architecturé, such as SC where the writes are atomic,

i.e. g—>rf:r—f>, we have(e) 9 (a). On a weak architecturd; such as Power, which

relaxes write atomicity, we have((e) o (a)). We call such readagile readsand

define them asr-@1 EONEN \ LEN being the set difference):
fragile(r) £ 3w, w ooy,

We consider such differences between architectures asatenéind formalise this
notion as follows. We consider that two events fortinegile pair (writtenfig) if they
are maintained in the program order dn, and either they are not maintained in the
program order oy, or the first event is a fragile read:

m1 ™9 my 2 my P2y A (=(my P2 ma) v fragile(m,))

An execution is covered if the relatié® arbitrates the fragile pairs. In Fig. 2, this
corresponds to placing a barrier betwéenand(d) on P, i.e. (c) a (d), and another

barrier betweeria) and(b) on Py, i.e. (a) 2 (b). Hence we have a cycle Bul
(d) hi? (a) ay (b) L (¢) ay (d). If 2 is A-cumulativew.r.t. 92, we create a cycle

in ™ which forbids the executiorid) 2 (b) P2 (d). Formally, we have:

Lem. 2. AC(agl,grfﬂl) = covering(fgg,ag)

This lemma leads to a mapping which we call F (for fences)emiin Fig. 4. This

mapping places a barrier between each fragile pair of a progFollowing Lem. 2, it

enforces stability to a program for any pait;, A;). Recall that we give the semantics

of the barriers that we use in the mapping F in Se§.Architectureson p.4 and Fig. 3.
In x86, stores are atomic, and only the write-read pairs og@m order are not

preserved;j.e. the fragile pairs are the paiis P2 r. We do not need cumulativity in
x86, i.e. we only need a non-cumulative write-read barrier —- 7.
In Power, no pair is preserved in program order except thetread and read-write

pairs with a dependency between the accesses [5]. But dores sire not atomic, even



Name Code Comment Doc [1]

load reserve Iwarx r1,0,r2 |loads from the address ir2 intor 1 and reserves the addresg 2| p. 718

store conditiongst wex. r1, 0, r 2| checks if the address in2 is reserved; if so, stores froml into| p. 721
this address and writdsinto registercr ; if not, writes0 into cr

branch not equal bne L checks if registecr holds0, if not branches ta p. 63

compare cnpw r4, r6 |compares values in4 andr 6 p. 102

Fig. 5. Table of Power assembly instructions, excluding barriers

the dependent read-read and read-write pairs are fragitea Fead-read pair 2,
sincer; can read from a non-atomic write, we need a cumulative barrier betwegn
andr,. Butl wsync does not order write to read chains. | wsync between-; and
75 will not orderw andr,. Therefore we needsync: r; 2> r,. For a read-write pair
r 22w, we need a cumulative barrier as well, butsync is sufficient here, for it will
order the write from whichr may read, anab. In the write-write and write-read cases,
there is no need for cumulativity. In the write-write caseé,vesync is enough, for it
orders write-write pairs; but in the write-read case, wednegync.

The mapping F agrees with D. Lea’s JSR-133 Cookbook for Clemyiriters [19]
for write-write and write-read pairs. Our mapping is muchrenoconservative than D.
Lea’s for read-read and read-write pairs: it is unclear WeeD. Lea’s mapping (meant
toimplement Java’s volatiles) intends to restore SC likespor rather a weaker memory
model. The mapping F on write-write and write-read pairsegponds to the optimised
version of P. McKenney and R. Silvera’s Example Power Imgetation for C/C++
Memory Model [22] for "Store Seq Cst”. Their "Load Seq Cst”implemented by
sync; | d; cnp; bc; i sync. The use obync before a load access corresponds to
our mapping on read-read and read-write pairs. The sequamneebc; i sync after
the same load access ensures that the Load Seq Cst has tioratddan SC semantics,
aload acquiresemantics.

3 Synchronisation idioms

To illustrate Sec. 2, we now study the semantics of Powetlsd@andmw [1]. As noted
by S. Adve and H.-J. Boehm in [4pn hardware that relaxes write atomicity [such
as Power] even the fully fenced implementation may not beesg@lly consistent”
Thus it is unclear whether the synchronisation primitivesvgled by the architecture
actually restore SC: it could perfectly be the architeattit .g. | wsync is not
strong enough to restore SC, but is faster thgnc, as we show in Sec. 5), or a bug in
the implementation [5]. Hence we need to define the semawititee synchronisation
primitives given in the documentation, and study whethey thllow us to restore SC,
i.e. that we can use them to build covering relations, as defing¢m 2.

We first defineatomic pairs which are the stepping stone to build locks, studied in
Sec. 3.1 andmw, studied in Sec. 3.2. We show how to use these primitives iid bu
covering relations. Second, because cumulativity mightbbecostly in practice, or its
implementation challenging, we propose in Sec. 3.2 two-lfoek mappings restoring
a strong architecture from Power without using cumulatj\dts an alternative to the
mapping F (see Sec. 2) which uses cumulativity.

Atomicity Fig. 6(a) gives a generic Powenw (see Fig. 5 for the instructions we use).
Thelwarx (a;) loads from its source address in registrandreservest. Any subse-
quent store to the reserved address from another proces$@ng subsequentrarx



Initially r3 = ¢,r4 = 0andr5 = 1
| oop:
| oop: (a1) lwarx r6,0,r3
(@) Iwarx r1,0,r5 (b) cpw 1 4, 16 [0
[ ] (c) bne | oop (f) | wsync
(ag)si\-/v;:x r2,0,r5 (a2) stwex. r5,0,r3 (g)stwr4,0,r3
(b) bne I;)op o (d) bne | oop o
(e) i sync
[...]
(a)rmw (b) Lock (c) Unlock

Fig. 6. Read-modify-write, lock and unlock in Power

from the same processor invalidates the reservation.skthex. (a2) checks if the
reservation is valid; if so, it isuccessfulit stores into the reserved address and the
code exits the loop. Otherwisetwcx. does not store and the code loops. Thus these
instructions ensuratomicityto the code they surround (if this code does not contain
any lwarx nor stwcx.), as no other processor can write to the reserved locatien be
tween thelwarx and the successfgltwex..

We distinguish the reads and writes issued by such instmgfrom the plain ones:
we writeR* (resp.W*) for the subset oR (resp.W) issued by dwarx (resp. a success-
ful stwcx.), and define two eventsandw to form an atomic paiw.r.t. a locationt
if (a) w was issued by a successitlwex. to ¢, (b) » was issued by the lastwar x

from ¢ before (inﬂ) thest wex. thatissuedv, and(c) no other processor wrote to
between- andw:

atom(r,w, ) £ r € R* Aw € W* Aloc(r) = loc(w) = £ A (a)
r = maxpo({m | m € (R* UW*) Am 2 w}) A (b)
—(Fw’ € W, proc(w') # proc(r) Aloc(w’) =LA r oo s w) (c)
3.1 Locks

Atomic pairs are used.g. in lock and unlock primitives [1, App. B]. The idiomatic
Power lock (resp. unlock) is shown in Fig. 6(b) (resp. Fig)B(

Critical sectionsA lock reads the lock variabléto see if it is free; an unlock writes to
{to free it. The instructions between a lock and an unlock fagnitical section Thus,
a critical section consists of a lo&lock(¢, ) and an unlockJnlock(¢, r, w) (we define
these two predicates in the next paragraph) with the sanigbl@f, and the events in
2 between the lock’s read and the unlock’s write:

cs(&, ¢4, r,w) = Lock(4,r) ANE ={e|r Bek w} A Unlock(¢, r, w)

We write loc(cs) for the location of a critical sectioss. Two critical sectionss;
andcs, with the same locatioi are serialisedif cs, reads fromes,, as in Fig. 7: on
the left iscs;, composed of a lockock; (¢), an eventn; and an unlockUnlock; (¢),
which writes into/ via the write(g). The second critical sectiam, is on the right: the
read(aq) of its lock Locks(¢) reads from(g). Thus,cs; andcse are serialised ifs,
Lock’s read (writterR(csz)) reads fronrs; Unlock’s write (writtenW (csy )):

es1 =3 esy 2 loc(esy) = loc(esz) = £ A Wi(esy) LA R(cs2)



Locks(1)
(a1) R*I0
¢p0:1

Fig. 7. Opening lock and unlock

Given a locatior?, two eventsmn; andm2 are in'>%" if they are in tvvo serialised

critical sections (as in Fig. 7), an, is in "% with an event itself in°% with m.

(m € cs ensuresn is betweervs import and export barriers ha»).

lock,

Csg lock, lock,
my =" mg = (Jes; 3 csp,my € €51 Amg € cso) V (Im,my = m 5 ma)

Finally, two eventsn; andm, are in'°% if there exists/ such thatn, locke mo.

Lock and unlockin the Power lock of Fig. 6(b), the lingg+ ) to (a2) form an atomic
pair, as in Fig. 6(a); this sequence loops until it acquineslock. Here, acquiring the
lock means that thewar x read the lock variablé, and that was later written to by a
successfust wex. . Thus, the read of thel war x takes a lock if it forms an atomic
pair with the writew from the successfidt wex. :

taken(¢,r) £ 3w, atom(r, w, £)

The acquisition is followed by a sequerimee; i sync (lines(d) and(e)), forming
animport barrier[1, p. 721]. An import barrier prevents any event to float abavead
issued by d war x: in Fig. 7, the eventns in css is in 9 \vith the reada;) from its
Lock’s 1warx. Hence the read of a lock’sl war x satisfies themport predicate when
no accessn afterr can be speculated before

import(r) £ Vrm, (r € R* Ar L m) = (r 2 m)

Fig. 6(c) shows Power’s unlock, starting (li(g)) with anexport barrier[1, p. 722],
here d wsync. The export barrier forces the accesses before the writtthe unlock
to be committed to memory before the next lock primitive taltee lock: in Fig. 7, the
eventm in cs; is in @2 with the read(a;) of cso’s Lock. Thus we define an export
barrier as B-cumulative, but only.r.¢. reads issued by thiesarx of an atomic pair:

export(w) £ Vrm, (r € R* A (m Pwl r)) = (m 2 T)
Then a store to the lock variable (lirig)), or more precisely the next write event
to £ in program order after a lock acquisition, frees the lock:

free(¢,r,w) = w € W Aloc(w) =L AT B wA taken (¢, r)A

(3w’ € W, loc(w') = L AT 5w B w)

A lock primitive thus consists of @aaken operation (see Fig. 6(b), linds;) to
(a2)) followed by an import barrier. An unlock consists of an estgaarrier (line(f))
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Fig. 8.(a)iriw after mapping P 7.(b) Openingfno on Py

followed by a write freeing the lock (lingy)):
Lock(¢, ) = taken(¢,r) A import(r)

Unlock (¢, r,w) £ free(f, r, w) A export(w)

We show that this semantics ensures the acyclicit)'/o—%fu B2, i.e. following

+ . . .
Lem. 1,('2" U 53) is covering for the competing accesses. Hence locks on time co

peting accesses ensures a SC behaviour to Power programs:
Lem. 3. VEX, A;. valid(E, X) = acyclic(2¥ U )

Our import barrier allows events to be delayed so that theyparformed inside
the critical section. Our export barrier allows the evertsrahe unlock to be specu-
lated before the lock is released. Such relaxed semantieadsl exist for high-level
lock and unlock primitives [8, 26]. In the documentationpl,721], the import barrier
is a sequencbne; i sync (i.e. a read-read, read-write non-cumulative barrier) or a
I wsync, i.e. cumulative [1, p.721]. Lem. 3 shows that the first one is eoémy our
import barrier does not need cumulativity. The export leaig async (i.e. cumulative
for all pairs) or d wsync [1, p. 722]. Lem. 3 shows that we only need a B-cumulative
barrier towards reads issued b¥warx, i.e. async is unnecessarily costly. Moreover,
although d wsync is not B-cumulative towards plain reads, its implementaiap-
pear experimentally to treat the reads issued bylthex of an atomic pair specially.
We tested and confirmed this semanticd esync with our diy tool [5], by running
our automatically generated tests ug 63° times each (see the logs online).

3.2 Read-modify-write primitives
By Lem. 2, we can restore SC in tlew test of Fig. 2 using A-cumulative barriers
between the fragile pairg) and(b) on Py, and(c) and(d) on P;. Yet, cumulativity
may be challenging to implement or too costly in practice Y8 propose a mapping of
certain reads tomw (as in Fig. 6(a)), and show that this restores a strong @&wioite
from a weaker one without using cumulativity.

In Fig. 8(a), we replaced the fragile reads and(c) of iriw by rmw: we say these
fragile reads ar@rotected(a notion defined below). In the example we tisieh and
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no-op(fno) primitives [1, p.719] to implement atomic reads. Yet, oesults hold for
any kind ofrmw. We show that when the fragile reads are protected, we doeed n
cumulative barriers, but just non-cumulative ones. If alrisgorotected by amw, then
thermw compensates the need for cumulativity by enforcing enoudérdo the write
from which the protected read reads.

Protecting the fragile readd\e consider that two eventsandw form armw w.r.t. a
location/ if they form an atomic paitv.r.t. £ (i.e. the code in Fig. 6(a) does not loop),
or there is a read’ afterr in the program order forming an atomic pairr.t. ¢ with
w, such that’ is the last read issued by the loop beforeghewcx. succeedsi(e. the
code in Fig. 6(a) loops). We do not consider the case wheredtpenever terminates:

rmw (r, w, £) £ atom(r,w, €) V (3r',r B ' Aloc(r) = loc(r') A atom(r', w, £))

In Fig. 8(b), we open up thé&no box protecting the reaf) from x on Py. We
suppose that thimo is immediately successful,e. the code in Fig. 6(a) does not loop.
Hence we expand thfao event(a) on P, to ther* (a1) (from thelwarx) in program
order with thew* (az) (from the successfudtwcx.).

We define a read to berotectedwhen it is issued by th@warx of a rmw imme-
diately followed in program order by a non-cumulative barran executiofE, X) is
protected when its fragile reads are:

protected(r) £ 3w, rmw(r, w,loc(r)) A (Ym, w Pm=w® m)
protected(E, X) £ Vr, fragile(r) = protected(r)

In Fig. 8(b), the write(e) from which (a;) reads hits the memory befofe.),

i.e. (€) 5 (ag). Hence there are two paths frofa) to (b): (e) LA (a1) = (b) and

(e) = (ag) Lias (b). Thus we can trade the fragile p&ir;, b) for (a2, b) and compensate

the lack of write atomicity ofe) (i.e. (e) L (a) not global) with the write serialisation

between(e) and(as) (thanks to themw) instead of cumulativity before. Formally, we

prove that a sequencz@agrf—2>1 r P22 m with r protected is globally ordered ofy;

Lem. 4. Ywrm, (protected(r) A w o2y . PPO: m) = w . L,

Thus, if we protect the fragile reads, the only remainingileapairs are the ones in
PP\ In Fig. 8(a), we havée) 3 (az) 5 (b)) 5 (f) and(f) ™2 (c2) &2 (d) 5 (),
hence a cycle iRS U T U . since® and " are global, to invalidate this cycle,
we need to order globallye(g. by a barrier) the accessés,) and(b) on P, and(cz)
and (d) on P;. Indeed, if an execution is protected, non-cumulativeibesrplaced

between the remaining fragile pairsH2\' ensure stability:

Lem. 5. A;. valid(E, X) A protected(E, X) A (P2 € ) = A,. valid(E, X)

This lemma leads to a mapping which we call P (for protectads} given in Fig. 9.
This mapping places o on the first read of the fragile pairs, and a barrier between
thisfno and the second access of the fragile pairs. If the first acdeake fragile pair is
a write, it remains unchanged and we only place a barrierdetvhe two accesses, fol-
lowing the mapping F. For the read-read (resp. read-wrasggsince replacing a read
by afno amounts to replacing the read by a sequence of events eniing write, we

11
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r 8w fno & sta fno "X w
0 0 |
wBw sta 25 sta e
po po sync
w—r sta — fno =r
po po
x86 w—r xchg = r na

Fig. 9. Mappings A and Prtmw

choose a barrier ordering write-read (resp. write-writgy$ :.e. Powersync (resp.
I wsync). Following Lem. 5, it enforces stability to a program foryguair (A, As).

H.-J. Boehm and S. Adve propose in [10] a mapping of all staresrmw (i.e.
xchg) on x86 (which has no fragile reads), to provide a SC sematdiC++ atomics.
We call this mapping A-x86 (for atomics), and give it in Fig Fr models with fragile
reads.e.g. Power, they question in [4] the existence‘ofore efficient mappings (than
the use of locks)”The mapping P could be more efficient, since it removes tleel ne
for cumulativity. Yet, mapping reads tonw introduces additional stores (issued by
stwcx.), which may impair the performance. Moreover, we have to aigaulative
barriers in the mapping P, for Power does not provide nonttative barriers. Yet, we
show in Sec. 5 that the mapping P is more efficient than lockBawer machines.

We propose another mapping, given in Fig. 9, which we callod€r. All reads
and writes are mapped intonw (usingfno for reads and fetch-and-stor&td) [1, p.
719] for writes). The documentation stipulates indeed‘th@rocessor has at most one
reservation at any time[1, p. 663]. Hence twomw on the same processor in program
order may be preserved in this order, because the writesddsutheirstwcx., though
to different locations, would be ordered by a dependencyibereservation. Although
the documentation does not state if this dependency emistshow in Sec. 5 that the
mapping A-Power restores SC experimentally and is mordeitithan locks as well.

4  Stability from a weak architecture to SC

We now want to minimise the synchronisation that we use,we would like to syn-
chronise only the conflicting accesses (either competicgsses or fragile pairs) that
are actually necessary. For example, if inittive test of Fig. 2, we add a writg) to a
fresh variable: after (in program order) the write’) to = on P, (e) and(g) may not
be preserved in program ordere. (e) and(g) may form a fragile pair. Yet, there is no
need to maintain them, since they do not contribute to theeaye want to forbid.

D. Shasha and M. Snir provide in [27] an analysis to placeid@rin a program,
in order to enforce a SC behaviour. They examine in [27, Th®p3297] thecritical
cyclesof an execution, and show that placing a barrier along eaafjram order arrow
of such a cycle (eacHelayarrow) is enough to restore SC. Yet, this work does not
provide any semantics of weak memory models. We show in Caictlieir technique
applies to the models embraced by our framewerk, models with store buffering,
like TSO or relaxing store atomicity, like Power.

cmp cmp

o +
Given an architecturd and event structurg, a cycle— C (< U 53) (where+
is the competing relation of Sec. 2)dstical on A, writtencriticals (£, %), when it is
not a cycle in( X U P’ " and satisfies the two following properti¢§.Per processor,
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there are at most two memory acceséeg) on this processor ande(x) # loc(y).
(i) For a given memory location, there are at most three accesses relative &nd
these accesses are from distinct processofSy w, w “¥ r, r TP w orr ¥ w TP ).
In Fig. 2, the execution dfiw has a critical cycle on Power.

In our framework, we show that the execution witnessesf an event structur&
are stable fromd to SC if and only if £ contains no critical cycle oml, i.e. that an

execution valid o is SC if and only ifEZ contains no critical cycle od:
Thm. 1. VE, (VX, stablea sc(F, X)) & (3 %, critical4 (E, >))

This theorem means that we do not have to synchronise allahi#iats to ensure sta-
bility from a weak architecture to SC, but only those ocaugtiin critical cycles. Hence
to restore SC, we should arbitrate (with a covering relgtitbe conflicting accesses
(competing accesses or fragile pairs) occurring in thécatitycles.

5 offence: a synchronisation tool

We implemented our study in our nevifence tool, illustrating techniques that can
be included in a compiler. Given a program in x86 or Powerrabbg offence places
either lock-based or lock-free synchronisation along tiitecal cycles of its input, fol-
lowing the mapping A, P, L or F, to enforce a SC behaviour.

5.1 Control flow graphs and critical cycles

offence builds one control flow grapte(g) per thread of the input program, containing
static eventgi.e. nodes representing memory accesses), and control flowatistins.

A static memory evenf has a direction, a location, originating instruction anogas-
sor, as events do, but no value component.

Given an event structure and two evetsﬁ e2, Mapping to static eventg;
and f,, we compute thatatic program orde> such thate; = e, entails f; e fa
using a standard forward data flow analysis. If memory locetiaccessed by a given
instruction are constant, we hale:(e;) = loc(f1) andloc(ez) = loc(f2). Hence
static conflicts computed from thefg, written “P® abstract the conflicts of the event
structures. When locations are not constant, we would nigesiaanalysis to compute an
over-approximation of the locations of each static eveosaering for example that
all pairs of memory accesses by distinct processors cariflmte of them is a write.

With F the set of static events, we call the trigle, ™, “%9 static event structure
Following Sec. 4, we enumerate the cyclegathat have propertig$) and(ii), i.c. we
build an over-approximation of the runtime critical cycles

5.2 Placing synchronisation primitives

We then collect the fragile pairg€. the write-read pairs in x86 and all pairs in Power)
occurring in the critical cycles df'. By Thm. 1 it is necessary and sufficient to maintain
these fragile pairs to reach stabilitye. to restore SC.

Barriers Then, offence follows the mapping F on these fragile pairs. Given a pair
(f1, f2), offence issues the barrier request, i2, b) wherei; = ins(f1), i2 = ins(f2)
andb is the required barrier. Every path fromto i, in the cfg should pass through a
barrier instructiorb. We use the global barrier placement of [20], which maximtbe
number of pairs maintained by a given barrier.

13



Power machines x86 machines

—
| -
i
i
i
i
i

million outcomes/sec
(@] = N w N ol
T

i ..I_I |
power 7 abducens vargas chianti saunur
Fig. 10. Productivity observed during soundness experiments.

Alternative to barriersoffence can also follow the mappings A and P. For A-x86, the
xchg instruction has an implicit write-read barrier semantit8][ Thus, we use the
global barrier placement of [20] forchg. For locks,offence follows the mapping L

on the conflict edges of thefg. Sec. 3.1 describes the lock and unlock idioms that we
use for Power. For x86, lock uses thehg instruction to build a compare-and-swap
loop, while unlock uses a single store instruction.

5.3 Experiments

Generating testsWe generated two kinds of tests to exeraiéence, using our pre-
vious diy tool [5], which computes tests in x86 or Power assembly frooyee of
relations. First, we generate tests from critical cycteg, iriw in Fig. 2. Second, using
a new tool, we mix such tests: given two tests built from caiticycles, we randomly
permute processors of one of the given tests, turn its metooagions and registers to
fresh ones, and interleave the codes of the programs. Weipeddwo series of tests,
written X, each series consisting 29 tests for Power anag tests for x86.

Experimental soundness/e run these tests against hardware usindibuus tool [6].
We observed that all tests from the initial X series exhimtations of SC and that the
tests transformed bgffence (following the mappings F, A, P and L) dwoot exhibit
violations of SC, running each test at leaét times. Thus we confirmed experimen-
tally that our mappings enforce SC, which we establishexh&ly for the mappings F
(Lem. 2), P (Lem.5)and L (Lem. 1 and 3).

Cost measure$ig. 10 shows theroductivity, i.e. the number of outcomes per second,
for the initial series of tests X, and for the tests transfedrbyoffence following the
mappings F, A, P and L. We ran our tests on three Power macluoeer 7 (Power7,

8 coresd-ways SMT)abducens (Power64 core2-ways SMT) and/ar gas (Power6,
32 cores2-ways SMT); and on two AMD64 machineshi ant i (Intel Xeon,8 cores,
2-ways HT) andsaumnur (Intel Xeon,4 cores2-ways HT). Our mappings F, P and A
outperform the L onej.e. provide“more efficient mappings (than the use of locks)”
answering the question of [4].

To compare the barriers anchw more precisely, we consider 8 specific tests fiom
to 8 threads, where we add witiffence only one synchronisation primitive per thread,
and insert the code for each thread inside a tight loop. We tfeasure running times
on our two8 core machineqpower 7 andchi ant i , substract the time of the original
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Fig. 11. Time of synchronisation constructs, in microseconds.

test from the time of synchronised tests and divide the tésuloop size. We give the
results in Fig. 11. While fences amohw are fast in isolation1(0—-20 ns on one thread),
their cost raises to hundreds of ns when communication byediraemory occurs.

6 Related Work and Conclusion

Related workThe DRF guarantee [3, 10, 23], the semantics of synchronisati@midi
[9, 8], and the insertion of barriers [27,14, 11, 17] haverbegtensively studied, but
most of these works focus on one kind of synchronisation ahe,tand none of them
addresses Power traits such as cumulativity or the lack ibé @tomicity.

S. Burckhardt and M. Musuvathi examine in [12] whether we sianulate a pro-
gram running on TSO by enumerating only its SC executionsy™istinguish a class
of such executions, tHESO-saf@nes. We believe these executions to be an instance of
our stable ones, e. the stable executions from TSO to SC. Yet, our charactéisat
stability in the general case is a novel contribution.

J. Lee and D. Padua examine in [20] how to restore SC at conigilel: we used
their global fence placement algorithm. Our work improvag20] w.r.t. semantical
fundations: as a result, we use Powewsync when possible and we do not use x86
| f ence andsf ence barriers, irrelevant in user-level code. Our mappings a¢dd
included in their Java compiler [29],e. usingl wsync for Power, andchg for x86.

Conclusion Our formal study of stability in weak memory models allowstaglefine
several mappings of Power or x86 assembly code, which, asowe jin Coq, give a
SC behaviour to a program. Along the way, we give a semartai¢Xtver’sl war x
andst wex. instructions and show how to use the lightweight Power barsync,
which are novel contributions. In addition, we characeetlge executions stable from
a weak architecture to SC, hence generalise the result ptga¥eak memory mod-
els. Finally, we implement our study in oaffence tool, to measure the cost of these
mappings: our lock-free mappings outperform locks on ostrget. Our work could for
example benefit to compiler writers and semanticists isterkin standardisation and
implementability ¢.¢. of Java volatiles or C++ atomics on Power platforms).

Acknowledgement¥Ve thank Susmit Sarkar, Peter Sewell, Michael TautschuigsJ
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