A Tutorial Introduction to Stochastic Differential Equations:
 Continuous-time Gaussian Markov Processes

Chris Williams
Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh, UK
Presented: 9 December, minor revisions 13 December 2006

AR Processes: Discrete-time Gaussian Markov Processes

A discrete-time autoregressive (AR) process of order p :

$$
X_{t}=\sum_{k=1}^{p} a_{k} X_{t-k}+b_{0} Z_{t}
$$

where $Z_{t} \sim \mathcal{N}(0,1)$ and all Z_{t} 's are iid.
$A R(2)$ example:

Linear combinations of Gaussians are Gaussian

From discrete to continuous time

- In continuous time, have not only the function value but also p of its derivatives at time t

$$
a_{p} X^{(p)}(t)+a_{p-1} X^{(p-1)}(t)+\ldots+a_{0} X(t)=b_{0} Z(t)
$$

where $Z(t)$ is a white Gaussian noise process with covariance $\delta\left(t-t^{\prime}\right)$, and $a_{p}=1$.

- This is a stochastic differential equation (SDE)
- Applications in many fields, e.g. chemistry, epidemiology, finance, neural modelling
- We will consider only SDEs driven by Gaussian white noise; this can be relaxed

Vector processes

- An $\operatorname{AR}(p)$ process can be written as a vector $\operatorname{AR}(1)$ process if one stores X_{t} and the previous $p-1$ values in \mathbf{X}_{t}
- Similarly for the p th order SDE

$$
\begin{gathered}
X^{(p)}(t)+a_{p-1} X^{(p-1)}(t)+\ldots+a_{0} X(t)=b_{0} Z(t) \\
X_{1}(t)=X(t) \\
X_{2}(t)=\dot{X}_{1}(t)=\dot{X}(t) \\
\vdots \\
X_{p}(t)=\dot{X}_{p-1}(t)=X^{(p-1)}(t) \\
\dot{X}_{p}(t)+a_{p-1} X_{p}(t)+\ldots+a_{1} X_{2}(t)+a_{0} X_{1}(t)=b_{0} Z(t)
\end{gathered}
$$

or, in matrix form

$$
\dot{\mathbf{X}}(t)=F \mathbf{X}(t)+B \mathbf{Z}(t)
$$

for $\mathbf{Z}(t)$ being a p-dimensional white noise process, with

$$
F=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{p-2} & -a_{p-1}
\end{array}\right)
$$

and

$$
B=\operatorname{diag}(0,0, \ldots, 0,1)
$$

Overview

- Wiener process
- SDEs and simulation
- Stationary processes and covariance functions
- Inference (Gaussian process prediction)
- Fokker-Planck equations
- 3 views: SDE vs covariance function vs Fokker-Planck

The Wiener Process

- $W(t)$ is continuous and $W(0)=0$
- $W(t) \sim N(0, t)$
- Independent increments: $W(t+s)-W(s) \sim N(0, t)$ and is independent of the history of the process up to time t
- $\operatorname{cov}(W(s), W(t))=\min (s, t)$
- Interpret $d W(t)=W(t+d t)-W(t)$

Discretized Wiener Process

8

Gaussian Processes

- For a stochastic process $X(t)$, mean function is

$$
\mu(t)=\mathbb{E}[X(t)]
$$

- Covariance function

$$
k\left(t, t^{\prime}\right)=\mathbb{E}\left[(X(t)-\mu(t))\left(X\left(t^{\prime}\right)-\mu\left(t^{\prime}\right)\right)\right]
$$

- Gaussian processes are stochastic processes defined by their mean and covariance functions

SDEs

- Consider the SDE

$$
\dot{\mathbf{X}}(t)=F \mathbf{X}(t)+B \mathbf{Z}(t)
$$

- This is a Langevin equation
- A problem is that we want to think of $\mathbf{Z}(t)$ as being the derivative of a Wiener process, but the Wiener process is (with probability one) nowhere differentiable ...
- The "kosher" way of writing this SDE is

$$
d \mathbf{X}(t)=F \mathbf{X}(t) d t+B d \mathbf{W}(t)
$$

where $\mathbf{W}(t)$ is a vector of Wiener processes

Simulation of an SDE

Times $t_{0}<t_{1}<t_{2}<\ldots<t_{n}, \Delta t_{i}=t_{i+1}-t_{i}$

$$
\mathbf{X}_{i+1}=\mathbf{X}_{i}+F \mathbf{X}_{i} \Delta t_{i}+B \mathbf{Z}_{i} \sqrt{\Delta t_{i}}
$$

where $\mathbf{Z}_{i} \sim N(0, I)$

This is the Euler-Maruyama method; higher-order methods are also possible (Milstein)

Stochastic Integration

- Riemann sum

$$
\int_{0}^{T} h(t) d t=\lim _{N \rightarrow \infty} \sum_{j=0}^{N-1} h\left(t_{j}\right)\left(t_{j+1}-t_{j}\right)
$$

for $t_{j}=j T / N$

- Itô stochastic integral

$$
\int_{0}^{T} h(t) d W(t)=\text { m.s. } \lim _{N \rightarrow \infty} \sum_{j=0}^{N-1} h\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)
$$

- Example

$$
\int_{0}^{T} W(t) d W(t)=\frac{1}{2} W(T)^{2}-\frac{1}{2} T
$$

- Mnemonically we have $d W(t)^{2}=d t$

General form of a Diffusion process

$$
d \mathbf{X}(t)=\mathbf{a}(\mathbf{X}, t) d t+B(\mathbf{X}, t) d \mathbf{W}(t)
$$

where the functions $\mathbf{a}(\mathbf{X}, t)$ and $B(\mathbf{X}, t)$ must be non-anticipating, corresponding to the integral form

$$
\mathbf{X}(t)-\mathbf{X}(0)=\int_{0}^{t} \mathbf{a}\left(\mathbf{X}\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}+\int_{0}^{t} B\left(\mathbf{X}\left(t^{\prime}\right), t^{\prime}\right) d \mathbf{W}\left(t^{\prime}\right)
$$

- $\mathbf{a}(\mathbf{X}, t)$ is the drift vector, $B(\mathbf{X}, t)$ is the diffusion matrix
- Sample paths of a diffusion process are continuous

$$
d \mathbf{X}(t)=F(t) \mathbf{X}(t) d t+B(t) d \mathbf{W}(t)
$$

is the most general form that is a Gaussian process

Simple Examples

- Wiener process

$$
d X=d W \quad X(t)=X(0)+W(t)
$$

- Wiener process with scaling and drift

$$
d X=a d t+\sigma d W \quad X(t)=X(0)+a t+\sigma W(t)
$$

- Ornstein-Uhlenbeck process

$$
d X=-a X d t+\sigma d W \quad X(t)=X(0) e^{-a t}+\sigma \int_{0}^{t} e^{-a\left(t-t^{\prime}\right)} d W\left(t^{\prime}\right)
$$

Infinitesimal moments

$$
\Delta \mathbf{X}(t)=\mathbf{X}(t+\Delta t)-\mathbf{X}(t)=\mathbf{a}(\mathbf{X}, t) \Delta t+B(\mathbf{X}, t) \mathbf{Z}_{t} \sqrt{\Delta t}
$$

- First moment: drift

$$
\lim _{\Delta t \rightarrow 0} \frac{\mathbb{E}[\Delta \mathbf{X}(t)]}{\Delta t}=\mathbf{a}(X, t)
$$

- Second moment: diffusion

$$
\lim _{\Delta t \rightarrow 0} \frac{\mathbb{E}\left[(\Delta \mathbf{X}(t))(\Delta \mathbf{X}(t))^{T}\right]}{\Delta t}=B(X, t) B^{T}(X, t)
$$

Notice that $\mathbb{E}\left[\left(\sqrt{\Delta t} \mathbf{Z}_{t}\right)\left(\sqrt{\Delta t} \mathbf{Z}_{t}\right)^{T}\right]=(\Delta t) /$

Stationary Processes

- Assume time-invariant coefficients of univariate SDE of order p
- If the coefficients are such that eigenvalues of F are in the left half plane (negative real parts) then the SDE will have a stationary distribution, such that $\mathbb{E}\left[X(t) X\left(t^{\prime}\right)\right]=k\left(t-t^{\prime}\right)$
- Can generalize this to vector-valued processes, when k is a matrix-valued function

Fourier Analysis

Sinusoids are eigenfunctions of LTI systems

$$
\begin{gathered}
\tilde{X}(s)=\int_{-\infty}^{\infty} X(t) e^{-2 \pi i s t} d t, \quad X(t)=\int_{-\infty}^{\infty} \tilde{X}(s) e^{2 \pi i s t} d s, \\
X^{(k)}(t)=\int_{-\infty}^{\infty}(2 \pi i s)^{k} \tilde{X}(s) e^{2 \pi i s t} d s \\
\sum_{k=0}^{p} a_{k} X^{(k)}(t)=b_{0} Z(t), \quad \sum_{k=0}^{p} a_{k}(2 \pi i s)^{k} \tilde{X}(s)=b_{0} \tilde{Z}(s)
\end{gathered}
$$

Power spectrum of SDE

Wiener-Khintchine Theorem

$$
k(\boldsymbol{\tau})=\int S(\mathbf{s}) e^{2 \pi i \mathbf{s} \cdot \boldsymbol{\tau}} d \mathbf{s}, \quad S(\mathbf{s})=\int k(\boldsymbol{\tau}) e^{-2 \pi i \mathbf{s} \cdot \boldsymbol{\tau}} d \boldsymbol{\tau}
$$

so

$$
\left\langle\tilde{X}\left(s_{1}\right) \tilde{X}^{*}\left(s_{2}\right)\right\rangle=S\left(s_{1}\right) \delta\left(s_{1}-s_{2}\right)
$$

and thus

$$
S(s)=\frac{b_{0}^{2}}{|A(2 \pi i s)|^{2}}
$$

where $A(z)=\sum_{k=0}^{p} a_{k} z^{k}$. Require that roots of $A(z)$ lie in left half plane for stationarity

Examples

- First order SDE
$\dot{X}(t)+a_{0} X(t)=b_{0} Z(t), \quad S(s)=\frac{b_{0}^{2}}{(2 \pi s)^{2}+a_{0}^{2}}, \quad k(t)=\frac{b_{0}^{2}}{2 a_{0}} e^{-a_{0}|t|}$
- Damped simple harmonic oscillator (second order SDE)
$\ddot{X}(t)+a_{1} \dot{X}(t)+a_{0} X(t)=b_{0} Z(t), \quad S(s)=\frac{b_{0}^{2}}{\left(a_{0}-(2 \pi s)^{2}\right)^{2}+a_{1}^{2}(2 \pi s)^{2}}$
if $a_{1}^{2}<4 a_{0}$ (weak damping) then

$$
k(t)=\frac{b_{0}^{2}}{2 a_{0} a_{1}} e^{-\alpha|t|}\left(\cos (\beta t)+\frac{\alpha}{\beta} \sin (\beta|t|)\right)
$$

where $\alpha=a_{1} / 2$, and $\alpha^{2}+\beta^{2}=a_{0}$.

OU process $a_{0}=5$

Damped harmonic oscillator $a_{0}=500, a_{1}=5$

Vector OU process

$$
d \mathbf{X}(t)=-A \mathbf{X}(t)+B d \mathbf{W}(t)
$$

solution is

$$
\mathbf{X}(t)=\exp (-A t) \mathbf{X}(0)+\int_{0}^{t} \exp \left(-A\left(t-t^{\prime}\right)\right) B d \mathbf{W}\left(t^{\prime}\right)
$$

For stationary solution remove $\mathbf{X}(0)$ dependence
$\left\langle\mathbf{X}(t) \mathbf{X}^{T}(s)\right\rangle \stackrel{\text { def }}{=} \Sigma(t-s)$

$$
=\int_{-\infty}^{\min (t, s)} \exp \left(-A\left(t-t^{\prime}\right)\right) B B^{T} \exp \left(-A^{T}\left(s-t^{\prime}\right)\right) d t^{\prime}
$$

- Can show that

$$
A \Sigma(0)+\Sigma(0) A^{T}=B B^{T}
$$

and

$$
\begin{aligned}
& \quad \Sigma(t-s)=\exp (-A(t-s)) \Sigma(0) \quad \text { for } t>s \\
& \text { and } \Sigma(t-s)=\Sigma^{T}(s-t)
\end{aligned}
$$

- Can also do spectral analysis of vector OU process
- See Gardiner (1985, §4.4.6) for more details

Mean square differentiability

$$
a_{p} X^{(p)}(t)+a_{p-1} X^{(p-1)}(t)+\ldots+a_{0} X(t)=b_{0} Z(t)
$$

- SDEs of order p are $p-1$ times mean square differentiable
- This is easy to see intuitively from the above equation, as $X^{(p)}(t)$ is like white noise
- Note that a process gets rougher the more times it is differentiated

Relating Discrete-time and Sampled Continuous-time GMPs

- Discrete time $\operatorname{ARMA}(p, q)$ process

$$
X_{t}=\sum_{i=1}^{p} X_{t-i}+\sum_{j=0}^{q} b_{j} Z_{t-j}
$$

- A continuous-time ARMA process has spectral density

$$
S(s)=\frac{|B(2 \pi i s)|^{2}}{|A(2 \pi i s)|^{2}}
$$

- Theorem (e.g. Ihara, 1993): Let X be a continuous-time stationary Gaussian process and X_{h} be the discretization of this process. If X is an ARMA process then X_{h} is also an ARMA process. However, if X is an AR process then X_{h} is not necessarily an AR process
- A discretized continuous-time $\operatorname{AR}(1)$ process is a discrete-time AR(1) process
- However, a discretized continuous-time $\operatorname{AR}(2)$ process is not, in general, a discrete-time $\operatorname{AR}(2)$ process.

Inference

- Given observations of X at times $t_{1}, t_{2}, \ldots, t_{n}$, compute posterior distribution at t_{*}
- Note that for OU process, the Markov property means that we need only condition on t_{P} and t_{F}, the nearest times to the past and future of t_{*}
- Caveat: observations must be noise free, otherwise all observations will count
- This is just Gaussian process prediction:

$$
X\left(t_{*}\right) \mid X\left(t_{1}\right), \ldots X\left(t_{n}\right) \sim \mathcal{N}\left(\mu\left(t_{*}\right), \sigma^{2}\left(t_{*}\right)\right)
$$

with

$$
\begin{aligned}
\mu\left(t_{*}\right) & =\left(k_{* P}, k_{* F}\right)\left(\begin{array}{cc}
k_{P P} & k_{P F} \\
k_{P F} & k_{F F}
\end{array}\right)^{-1}\binom{X_{P}}{X_{F}} \\
\sigma^{2}\left(t_{*}\right) & =k_{* *}-\left(k_{* P}, k_{* F}\right)\left(\begin{array}{ll}
k_{P P} & k_{P F} \\
k_{P F} & k_{F F}
\end{array}\right)^{-1}\binom{k_{* P}}{k_{* F}}
\end{aligned}
$$

where $k_{* P}=k\left(t_{*}, t_{P}\right)$ etc

Vector process works similarly

Fokker-Planck Equations

- Consider the transition pdf $p \stackrel{\text { def }}{=} p\left(\mathbf{x}, t \mid \mathbf{x}_{0}, t_{0}\right)$. This evolves according to the (forward) Fokker-Planck equation

$$
\left.\partial_{t} p=-\sum_{i} \partial_{i}\left(a_{i}(\mathbf{x}, t) p\right)+\frac{1}{2} \partial_{i} \partial_{j}\left[B(\mathbf{x}, t) B^{T}(\mathbf{x}, t)\right]_{i j} p\right]
$$

corresponding to the SDE

$$
d \mathbf{X}(t)=\mathbf{a}(\mathbf{X}, t) d t+B(\mathbf{X}, t) d \mathbf{W}(t)
$$

- This is just the differential form of the Chapman-Kolmogorov equation
- There is also a "backward" equation

Simple example: Wiener process with drift

- Wiener process with scaling and drift

$$
\begin{gathered}
d X=a d t+\sigma d W \quad X(t)=X(0)+a t+\sigma W(t) \\
p\left(x, t \mid x_{0}, 0\right)=\frac{1}{\sqrt{2 \pi \sigma^{2} t}} \exp \left(-\frac{\left(x-x_{0}-a t\right)^{2}}{2 \sigma^{2} t}\right)
\end{gathered}
$$

Fokker-Planck Boundary Conditions

Feller, 1952

- Regular
- Absorbing
- Reflecting
- ...
- Exit
- Entrance
- Natural

Parameter Estimation

- If we have observations $\mathbf{X}=\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)^{T}$ of a Gaussian process at some set of finite times t_{1}, \ldots, t_{n}, then $\log p(\mathbf{X} \mid \theta)=-\frac{1}{2} \log \left|K_{\theta}\right|-\frac{1}{2}\left(\mathbf{X}-\boldsymbol{\mu}_{\theta}\right)^{T} K_{\theta}^{-1}\left(\mathbf{X}-\boldsymbol{\mu}_{\theta}\right)-\frac{n}{2} \log (2 \pi)$
- Can use e.g. numerical methods to optimize parameters θ
- For continuous observations, see e.g. Feigin (1976)

Summary

- Relationship of SDEs driven by Gaussian white noise to Gaussian Markov processes
- Formal mathematical framework of stochastic integration
- As Gaussian processes we can compute their mean and covariance functions, and do inference
- Markov properties are to the fore for Fokker-Planck equations
- Extend to allow observation noise: continuous-time Kalman filter (Kalman and Bucy, 1961)
- Challenges of the workshop: nonlinear dynamics, nonlinear observation

References

- C. W. Gardiner, Handbook of Stochastic Methods (second edition) Springer-Verlag, 1985 [3rd ed, 2004]
- B. Øksendal, Stochastic Differential Equations, Springer-Verlag, 1985
- D. J. Higham, An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations, SIAM Review 43(3) 525-546, 2001
- P. E. Kloeden and E. Platen, The Numerical Solution of Stochastic Differential Equations Springer-Verlag, 1999
- P. D. Feigin, Maximum likelihood estimation for continuous-time stochastic processes, Adv. Appl. Prob. 55, 468-519, 1976
- C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning [see Appendix B], MIT Press, 2006

Stratonovich stochastic integral

- Itô stochastic integral

$$
\int_{0}^{T} h(t) d W(t)=\text { m.s. } \lim _{N \rightarrow \infty} \sum_{j=0}^{N-1} h\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)
$$

- Stratonovich integral

$$
\int_{0}^{T} h(t) d W(t)=\text { m.s. } \lim _{N \rightarrow \infty} \sum_{j=0}^{N-1} h\left(\frac{t_{j}+t_{j+1}}{2}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)
$$

- Some authors use $\frac{1}{2}\left(h\left(t_{j}\right)+h\left(t_{j+1}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)$ instead

Itô's formula

- Let the stochastic process X satisfy

$$
d X=a(X, t) d t+b(X, t) d W
$$

- Then $Y=f(X, t)$ satisfies

$$
\begin{array}{r}
d Y=\left(a(X, t) f_{x}(X, t)+\frac{1}{2} b^{2}(X, t) f_{x x}(X, t)+f_{t}(X, t)\right) d t \\
+\left(b(X, t) f_{x}(X, t)\right) d W
\end{array}
$$

- Example: $Y(t)=X(t)^{2}, d X=d W$ (Wiener process)

$$
d Y=d t+2 \sqrt{Y} d W
$$

$\int_{0}^{T} W(t) d W(t)$

$$
\begin{aligned}
& \sum_{j=0}^{N-1} W\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right) \\
& =\frac{1}{2} \sum_{j=0}^{N-1}\left(W\left(t_{j+1}\right)^{2}-W\left(t_{j}\right)^{2}-\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2}\right) \\
& =\frac{1}{2}\left(W(T)^{2}-W(0)^{2}-\sum_{j=0}^{N-1}\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2}\right)
\end{aligned}
$$

Last term has expected value T and variance $O(\delta t)$, Thus

$$
\int_{0}^{T} W(t) d W(t)=\frac{1}{2} W(T)^{2}-\frac{1}{2} T
$$

for the Itô integral

Geometric Wiener Process

$$
\begin{aligned}
d X & =X(\mu d t+\sigma d W) \\
X(t) & =\exp \left(\sigma W(t)+\left(\mu-\frac{1}{2} \sigma^{2}\right) t\right)
\end{aligned}
$$

An essential part of the Black-Scholes model for option pricing

