
A Tutorial Introduction to
Stochastic Differential Equations:

Continuous-time Gaussian Markov Processes

Chris Williams

Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh, UK

Presented: 9 December, minor revisions 13 December 2006

1



AR Processes: Discrete-time Gaussian Markov Processes

A discrete-time autoregressive (AR) process of order p:

Xt =

p∑
k=1

akXt−k + b0Zt ,

where Zt ∼ N (0, 1) and all Zt ’s are iid.

AR(2) example:

. . . . . .

Linear combinations of Gaussians are Gaussian
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From discrete to continuous time

In continuous time, have not only the function value but also
p of its derivatives at time t

apX
(p)(t) + ap−1X

(p−1)(t) + . . . + a0X (t) = b0Z (t),

where Z (t) is a white Gaussian noise process with covariance
δ(t − t ′), and ap = 1.

This is a stochastic differential equation (SDE)

Applications in many fields, e.g. chemistry, epidemiology,
finance, neural modelling

We will consider only SDEs driven by Gaussian white noise;
this can be relaxed
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Vector processes

An AR(p) process can be written as a vector AR(1) process if
one stores Xt and the previous p − 1 values in Xt

Similarly for the pth order SDE

X (p)(t) + ap−1X
(p−1)(t) + . . . + a0X (t) = b0Z (t),

X1(t) = X (t)

X2(t) = Ẋ1(t) = Ẋ (t)

...

Xp(t) = Ẋp−1(t) = X (p−1)(t)

Ẋp(t) + ap−1Xp(t) + . . . + a1X2(t) + a0X1(t) = b0Z (t)

4



or, in matrix form

Ẋ(t) = FX(t) + BZ(t)

for Z(t) being a p-dimensional white noise process, with

F =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −ap−2 −ap−1


and

B = diag(0, 0, . . . , 0, 1)
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Overview

Wiener process

SDEs and simulation

Stationary processes and covariance functions

Inference (Gaussian process prediction)

Fokker-Planck equations

3 views: SDE vs covariance function vs Fokker-Planck
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The Wiener Process

W (t) is continuous and W (0) = 0

W (t) ∼ N(0, t)

Independent increments: W (t + s)−W (s) ∼ N(0, t) and is
independent of the history of the process up to time t

cov(W (s),W (t)) = min(s, t)

Interpret dW (t) = W (t + dt)−W (t)
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Discretized Wiener Process
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Gaussian Processes

For a stochastic process X (t), mean function is

µ(t) = E[X (t)]

Covariance function

k(t, t ′) = E[(X (t)− µ(t))(X (t ′)− µ(t ′))]

Gaussian processes are stochastic processes defined by their
mean and covariance functions
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SDEs

Consider the SDE

Ẋ(t) = FX(t) + BZ(t)

This is a Langevin equation

A problem is that we want to think of Z(t) as being the
derivative of a Wiener process, but the Wiener process is
(with probability one) nowhere differentiable ...

The “kosher” way of writing this SDE is

dX(t) = FX(t)dt + B dW(t)

where W(t) is a vector of Wiener processes
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Simulation of an SDE

Times t0 < t1 < t2 < . . . < tn, ∆ti = ti+1 − ti

Xi+1 = Xi + FXi∆ti + BZi

√
∆ti

where Zi ∼ N(0, I )

This is the Euler-Maruyama method; higher-order methods are also
possible (Milstein)
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Stochastic Integration

Riemann sum∫ T

0
h(t)dt = lim

N→∞

N−1∑
j=0

h(tj)(tj+1 − tj)

for tj = jT/N
Itô stochastic integral∫ T

0
h(t)dW (t) = m.s. limN→∞

N−1∑
j=0

h(tj)(W (tj+1)−W (tj))

Example ∫ T

0
W (t)dW (t) =

1

2
W (T )2 − 1

2
T

Mnemonically we have dW (t)2 = dt
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General form of a Diffusion process

dX(t) = a(X, t)dt + B(X, t) dW(t)

where the functions a(X, t) and B(X, t) must be non-anticipating,
corresponding to the integral form

X(t)− X(0) =

∫ t

0
a(X(t ′), t ′)dt ′ +

∫ t

0
B(X(t ′), t ′) dW(t ′)

a(X, t) is the drift vector, B(X, t) is the diffusion matrix

Sample paths of a diffusion process are continuous

dX(t) = F (t)X(t)dt + B(t) dW(t)

is the most general form that is a Gaussian process
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Simple Examples

Wiener process

dX = dW X (t) = X (0) + W (t)

Wiener process with scaling and drift

dX = adt + σdW X (t) = X (0) + at + σW (t)

Ornstein-Uhlenbeck process

dX = −aXdt+σdW X (t) = X (0)e−at+σ

∫ t

0
e−a(t−t′)dW (t ′)
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Infinitesimal moments

∆X(t) = X(t + ∆t)− X(t) = a(X, t)∆t + B(X, t)Zt

√
∆t

First moment: drift

lim
∆t→0

E[∆X(t)]

∆t
= a(X , t)

Second moment: diffusion

lim
∆t→0

E[(∆X(t))(∆X(t))T ]

∆t
= B(X , t)BT (X , t)

Notice that E[(
√

∆tZt)(
√

∆tZt)
T ] = (∆t)I
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Stationary Processes

Assume time-invariant coefficients of univariate SDE of order
p

If the coefficients are such that eigenvalues of F are in the left
half plane (negative real parts) then the SDE will have a
stationary distribution, such that E[X (t)X (t ′)] = k(t − t ′)

Can generalize this to vector-valued processes, when k is a
matrix-valued function
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Fourier Analysis

Sinusoids are eigenfunctions of LTI systems

X̃ (s) =

∫ ∞

−∞
X (t)e−2πist dt, X (t) =

∫ ∞

−∞
X̃ (s)e2πist ds,

X (k)(t) =

∫ ∞

−∞
(2πis)k X̃ (s)e2πist ds.

p∑
k=0

akX (k)(t) = b0Z (t),

p∑
k=0

ak(2πis)k X̃ (s) = b0Z̃ (s)
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Power spectrum of SDE

Wiener-Khintchine Theorem

k(τ ) =

∫
S(s)e2πis·τ ds, S(s) =

∫
k(τ )e−2πis·τ dτ .

so
〈X̃ (s1)X̃

∗(s2)〉 = S(s1)δ(s1 − s2)

and thus

S(s) =
b2
0

|A(2πis)|2

where A(z) =
∑p

k=0 akzk . Require that roots of A(z) lie in left
half plane for stationarity
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Examples

First order SDE

Ẋ (t) + a0X (t) = b0Z (t), S(s) =
b2
0

(2πs)2 + a2
0

, k(t) =
b2
0

2a0
e−a0|t|

Damped simple harmonic oscillator (second order SDE)

Ẍ (t)+a1Ẋ (t)+a0X (t) = b0Z (t), S(s) =
b2
0

(a0 − (2πs)2)2 + a2
1(2πs)2

if a2
1 < 4a0 (weak damping) then

k(t) =
b2
0

2a0a1
e−α|t|(cos(βt) +

α

β
sin(β|t|))

where α = a1/2, and α2 + β2 = a0.
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Vector OU process

dX(t) = −AX(t) + BdW(t)

solution is

X(t) = exp(−At)X(0) +

∫ t

0
exp(−A(t − t ′))B dW(t ′)

For stationary solution remove X(0) dependence

〈X(t)XT (s)〉def
= Σ(t − s)

=

∫ min(t,s)

−∞
exp(−A(t − t ′))BBT exp(−AT (s − t ′)) dt ′
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Can show that

AΣ(0) + Σ(0)AT = BBT

and

Σ(t − s) = exp(−A(t − s))Σ(0) for t > s

and Σ(t − s) = ΣT (s − t)

Can also do spectral analysis of vector OU process

See Gardiner (1985, §4.4.6) for more details
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Mean square differentiability

apX
(p)(t) + ap−1X

(p−1)(t) + . . . + a0X (t) = b0Z (t),

SDEs of order p are p − 1 times mean square differentiable

This is easy to see intuitively from the above equation, as
X (p)(t) is like white noise

Note that a process gets rougher the more times it is
differentiated
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Relating Discrete-time and Sampled Continuous-time
GMPs

Discrete time ARMA(p, q) process

Xt =

p∑
i=1

Xt−i +

q∑
j=0

bjZt−j

A continuous-time ARMA process has spectral density

S(s) =
|B(2πis)|2

|A(2πis)|2
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Theorem (e.g. Ihara, 1993): Let X be a continuous-time
stationary Gaussian process and Xh be the discretization of
this process. If X is an ARMA process then Xh is also an
ARMA process. However, if X is an AR process then Xh is
not necessarily an AR process

A discretized continuous-time AR(1) process is a discrete-time
AR(1) process

However, a discretized continuous-time AR(2) process is not,
in general, a discrete-time AR(2) process.
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Inference

Given observations of X at times t1, t2, . . . , tn, compute
posterior distribution at t∗

Note that for OU process, the Markov property means that we
need only condition on tP and tF , the nearest times to the
past and future of t∗

Caveat: observations must be noise free, otherwise all
observations will count

This is just Gaussian process prediction:
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X (t∗)|X (t1), . . . X (tn) ∼ N (µ(t∗), σ
2(t∗))

with

µ(t∗) = (k∗P , k∗F )

(
kPP kPF

kPF kFF

)−1 (
XP

XF

)
σ2(t∗) = k∗∗ − (k∗P , k∗F )

(
kPP kPF

kPF kFF

)−1 (
k∗P
k∗F

)
where k∗P = k(t∗, tP) etc

Vector process works similarly
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Fokker-Planck Equations

Consider the transition pdf p
def
= p(x, t|x0, t0). This evolves

according to the (forward) Fokker-Planck equation

∂tp = −
∑

i

∂i (ai (x, t)p) +
1

2
∂i∂j [B(x, t)BT (x, t)]ijp]

corresponding to the SDE

dX(t) = a(X, t)dt + B(X, t) dW(t)

This is just the differential form of the Chapman-Kolmogorov
equation

There is also a “backward” equation
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Simple example: Wiener process with drift

Wiener process with scaling and drift

dX = adt + σdW X (t) = X (0) + at + σW (t)

p(x , t|x0, 0) =
1√

2πσ2t
exp

(
−(x − x0 − at)2

2σ2t

)

29



Fokker-Planck Boundary Conditions

Feller, 1952
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Parameter Estimation

If we have observations X = (X (t1), . . . ,X (tn))
T of a

Gaussian process at some set of finite times t1, . . . , tn, then

log p(X|θ) = −1

2
log |Kθ|−

1

2
(X−µθ)

TK−1
θ (X−µθ)−

n

2
log(2π)

Can use e.g. numerical methods to optimize parameters θ

For continuous observations, see e.g. Feigin (1976)
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Summary

Relationship of SDEs driven by Gaussian white noise to
Gaussian Markov processes

Formal mathematical framework of stochastic integration

As Gaussian processes we can compute their mean and
covariance functions, and do inference

Markov properties are to the fore for Fokker-Planck equations

Extend to allow observation noise: continuous-time Kalman
filter (Kalman and Bucy, 1961)

Challenges of the workshop: nonlinear dynamics, nonlinear
observation
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Stratonovich stochastic integral

Itô stochastic integral∫ T

0
h(t)dW (t) = m.s. limN→∞

N−1∑
j=0

h(tj)(W (tj+1)−W (tj))

Stratonovich integral∫ T

0
h(t)dW (t) = m.s. limN→∞

N−1∑
j=0

h(
tj + tj+1

2
)(W (tj+1)−W (tj))

Some authors use 1
2(h(tj) + h(tj+1))(W (tj+1)−W (tj))

instead
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Itô’s formula

Let the stochastic process X satisfy

dX = a(X , t)dt + b(X , t)dW

Then Y = f (X , t) satisfies

dY =

(
a(X , t)fx(X , t) +

1

2
b2(X , t)fxx(X , t) + ft(X , t)

)
dt

+ (b(X , t)fx(X , t))dW

Example: Y (t) = X (t)2, dX = dW (Wiener process)

dY = dt + 2
√

Y dW
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∫ T

0 W (t)dW (t)

N−1∑
j=0

W (tj)(W (tj+1)−W (tj))

=
1

2

N−1∑
j=0

(
W (tj+1)

2 −W (tj)
2 − (W (tj+1)−W (tj))

2
)

=
1

2

W (T )2 −W (0)2 −
N−1∑
j=0

(W (tj+1)−W (tj))
2


Last term has expected value T and variance O(δt), Thus∫ T

0
W (t)dW (t) =

1

2
W (T )2 − 1

2
T

for the Itô integral
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Geometric Wiener Process

dX = X (µdt + σdW )

X (t) = exp(σW (t) + (µ− 1

2
σ2)t)

An essential part of the Black-Scholes model for option pricing
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