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AR Processes: Discrete-time Gaussian Markov Processes

A discrete-time autoregressive (AR) process of order p:

P
Xe = > aXe«+ boZs,
k=1

where Z; ~ N(0,1) and all Z;'s are iid.

AR(2) example:
N

o N N

Linear combinations of Gaussians are Gaussian




From discrete to continuous time

@ In continuous time, have not only the function value but also
p of its derivatives at time t

apXP)(t) + a, 1 XPU(t) + ...+ apX(t) = boZ(2),

where Z(t) is a white Gaussian noise process with covariance
§(t—t'), and ap = 1.

e This is a stochastic differential equation (SDE)

@ Applications in many fields, e.g. chemistry, epidemiology,
finance, neural modelling

@ We will consider only SDEs driven by Gaussian white noise;
this can be relaxed



Vector processes

@ An AR(p) process can be written as a vector AR(1) process if
one stores X; and the previous p — 1 values in X;

@ Similarly for the pth order SDE
XP)(t) 4+ a, 1 XPV(t) + ...+ agX(t) = boZ(t),

Xi(t) = X(t)
Xo(t) = X1(t) = X(¢)

Xp() = Xpa(£) = XPD(1)

Xp(t) + ap,lXp(t) + ...+ 31X2(t) + aoXl(t) = boZ(t)



or, in matrix form

X(t) = FX(t) + BZ(t)

for Z(t) being a p-dimensional white noise process, with

0 1 0 0 0
0 0 1 0 0
F= :
0 0 0 0 1
—dap —ai —az —dp-2 —dp-1

and
B = diag(0, 0,...,0, 1)



@ Wiener process

@ SDEs and simulation

@ Stationary processes and covariance functions
Inference (Gaussian process prediction)

Fokker-Planck equations

3 views: SDE vs covariance function vs Fokker-Planck



The Wiener Process

W(t) is continuous and W(0) =0

W(t) ~ N(O,t)

Independent increments: W(t +s) — W(s) ~ N(0,t) and is
independent of the history of the process up to time t
cov(W(s), W(t)) = min(s, t)

Interpret dW(t) = W(t + dt) — W(t)



Discretized Wiener Process
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Gaussian Processes

o For a stochastic process X(t), mean function is
p(t) = E[X(t)]
o Covariance function
k(t,t') = E[(X(t) — u(£))(X(t') = pu(t'))]

@ Gaussian processes are stochastic processes defined by their
mean and covariance functions



@ Consider the SDE

X(t) = FX(t) + BZ(t)

@ This is a Langevin equation

@ A problem is that we want to think of Z(t) as being the
derivative of a Wiener process, but the Wiener process is
(with probability one) nowhere differentiable ...

@ The "kosher” way of writing this SDE is
dX(t) = FX(t)dt + B dW(t)

where W(t) is a vector of Wiener processes
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Simulation of an SDE

Times tg < t; < tr <...<t, Atj=ti 1 —t

Xit1 = X; + FXjAt; + BZ;\/ At
where Z; ~ N(0, /)

This is the Euler-Maruyama method; higher-order methods are also
possible (Milstein)
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Stochastic Integration

@ Riemann sum
T N-1
| pteyae = im. 3 ) =)

for tj=jT/N
@ |ts stochastic integral

2
—

-
/O h(£)dW(E) = mus. limyoo S A(E)(W(51) — W(E)

-,
I
o

@ Example
T 1 , 1
W(t)dW(t) = W(T)*— =T
0 2 2

e Mnemonically we have dW(t)? = dt
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General form of a Diffusion process

dX(t) = a(X, t)dt + B(X, t) dW(t)

where the functions a(X, t) and B(X, t) must be non-anticipating,
corresponding to the integral form

X(t) — X(0) = /0 Ca(X (1), £)dt’ + /0 CBX(¢), ') dW(E)

e a(X, t) is the drift vector, B(X, t) is the diffusion matrix
@ Sample paths of a diffusion process are continuous

dX(t) = F(t)X(t)dt + B(t) dW(t)
is the most general form that is a Gaussian process
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Simple Examples

@ Wiener process
dX = dW X(t) = X(0) + W(t)
@ Wiener process with scaling and drift
dX = adt+odW  X(t) = X(0) + at + cW(t)

@ Ornstein-Uhlenbeck process

t
dX = —aXdt+odW  X(t) = X(0)e **+o / e (=) g (t')
0
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Infinitesimal moments

AX(t) = X(t + At) — X(t) = a(X, t)At + B(X, t)Z,VAt

@ First moment: drift

jim SAXOD _ o ox g
At—0 At
@ Second moment: diffusion
- E[(AX(t))(AX()T]
dmy e B 0BT

Notice that E[(vVAtZ,)(VAtZ,)T] = (At)!
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Stationary Processes

@ Assume time-invariant coefficients of univariate SDE of order
p

o If the coefficients are such that eigenvalues of F are in the left
half plane (negative real parts) then the SDE will have a
stationary distribution, such that E[X(t)X(t')] = k(t — t')

@ Can generalize this to vector-valued processes, when k is a
matrix-valued function
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Fourier Analysis

Sinusoids are eigenfunctions of LTI systems

- / X(t)e 2™t . X(t) = / K (s)e?it ds,

XW(t) = / (2mis)k X (s)e® st ds.

—00

ZakX () = bZ(t), > a(2mis) X(s) = boZ(s)
k=0
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Power spectrum of SDE

Wiener-Khintchine Theorem

K(r) = / S(s)e™ T ds,  S(s) = / K(r)e=27sT dr.

so
(X(s1)X*(2)) = S(s1)8(s1 — %2)
and thus e
S(s) = TAGrs)E
where A(z) = >_F_, axz*. Require that roots of A(z) lie in left

half plane for stationarity
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@ First order SDE

X(t) +aoX(t) = boZ(t), S(s)= bk k(t) =

(27s)2 + a3’

230

—ao|t|

@ Damped simple harmonic oscillator (second order SDE)

. - 2
X(t)+a1X(t)+aoX(t) = boZ(t), S(s)= (a0 — (27rs)2b)02 + af(27s)?

if a2 < 4ap (weak damping) then

k(t) = Lge‘““'(cos(ﬂt) + & sin(5t]))
N 23031 B

where o = a1 /2, and a? + 3% = ap.
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OU process Damped harmonic oscillator
ap =5 ap =500, a; =5
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Vector OU process

dX(t) = —AX(t) + BdW(t)

solution is
X(t) = exp(—At)X(0) + /Otexp(—A(t —t'))B dW(t)

For stationary solution remove X(0) dependence

def

(X(OXT(sH EL(t ~s)

min(t,s)
— / exp(—A(t — t'))BBT exp(—AT (s — t)) dt’

— 00
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e Can show that
AY(0) + X(0)AT = BBT
and
Y(t—s) =exp(—A(t —s))X(0) fort >s

and L(t —s) =X (s —t)
@ Can also do spectral analysis of vector OU process
@ See Gardiner (1985, §4.4.6) for more details
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Mean square differentiability

apXP) (1) + a, 1 XPU(1) + ... 4+ apX(t) = boZ(2),

@ SDEs of order p are p — 1 times mean square differentiable

@ This is easy to see intuitively from the above equation, as
X(P)(t) is like white noise

@ Note that a process gets rougher the more times it is
differentiated
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Relating Discrete-time and Sampled Continuous-time

GMPs

@ Discrete time ARMA(p, q) process

p q
Xe = Zthi + Z bjZ:_;
i=1 j=0
@ A continuous-time ARMA process has spectral density

_|B(2mis)[?
) = Ta@ris)2
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@ Theorem (e.g. Ihara, 1993): Let X be a continuous-time
stationary Gaussian process and X}, be the discretization of
this process. If X is an ARMA process then X}, is also an
ARMA process. However, if X is an AR process then X} is
not necessarily an AR process

@ A discretized continuous-time AR(1) process is a discrete-time
AR(1) process

@ However, a discretized continuous-time AR(2) process is not,
in general, a discrete-time AR(2) process.
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Inference

@ Given observations of X at times t1, t,...,t,, compute
posterior distribution at t,

@ Note that for OU process, the Markov property means that we
need only condition on tp and tr, the nearest times to the
past and future of t,

@ Caveat: observations must be noise free, otherwise all
observations will count

@ This is just Gaussian process prediction:
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X(t)X(t1), -+ X(tn) ~ N (pu(t), 0%(t))
with

-1
k k X
(e = k) (0 1) (50

-1
k k ks
0'2(1‘*) = k** — (/(*p7 k*F) ( k':l: k,F_-),,: ) ( P

where k.p = k(t., tp) etc

Vector process works similarly
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Fokker-Planck Equations

o Consider the transition pdf pdgp(x, t|xo, to). This evolves
according to the (forward) Fokker-Planck equation

Oep = — Za )+ aa i[B(x, t)BT (x, t)];p]
corresponding to the SDE

dX(t) = a(X, t)dt + B(X, t) dW(t)

@ This is just the differential form of the Chapman-Kolmogorov
equation

@ There is also a “backward” equation
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Simple example: Wiener process with drift

@ Wiener process with scaling and drift

dX = adt + cdW  X(t) = X(0) + at + o W(t)

1 (x — xo — at)?
p(X7t|X070) = mexp <_20'2t
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Fokker-Planck Boundary Conditions

Feller, 1952
@ Regular

e Absorbing
o Reflecting
o ...

o Exit

@ Entrance

o Natural N
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Parameter Estimation

o If we have observations X = (X(t1),...,X(tn))" of a
Gaussian process at some set of finite times ty,..., t,, then

1 1 _ n
log p(X[6) = — log [ Kyl — (X—6) T K (X—115)— log(2)

@ Can use e.g. numerical methods to optimize parameters 6

@ For continuous observations, see e.g. Feigin (1976)
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@ Relationship of SDEs driven by Gaussian white noise to
Gaussian Markov processes

@ Formal mathematical framework of stochastic integration

@ As Gaussian processes we can compute their mean and
covariance functions, and do inference

@ Markov properties are to the fore for Fokker-Planck equations

@ Extend to allow observation noise: continuous-time Kalman
filter (Kalman and Bucy, 1961)

@ Challenges of the workshop: nonlinear dynamics, nonlinear
observation
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Stratonovich stochastic integral

@ [t stochastic integral

T N—-1
/O h(t)dW(t) = m.s. limpy oo Y h(£))(W(tj11) — W(t))
j=0
@ Stratonovich integral
T . = ti+tjip
A h(t)dW(t) = m.s. limpy_oe » h(Z—F2) (W (1) - W(8)
j=0

@ Some authors use 2(h(tJ) + h(tji1))(W(tj41) — W(t;))
instead
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[to's formula

@ Let the stochastic process X satisfy
dX = a(X, t)dt + b(X, t)dW

e Then Y = f(X, t) satisfies

dy = (a(X, t) (X, t) + %b2(X, t) (X, t) 4 (X, t)> dt
+ (b(X, t)&(X, t))dW
e Example: Y(t) = X(t)?, dX = dW (Wiener process)

dY = dt +2VY dW

35



N—-1
W(t;)(W(tj+1) — W(t;))
j=0
1 N—-1
= 5> (W(tia)* = W) = (W(tp) - W(5)))
j=0

Last term has expected value T and variance O(dt), Thus

/T W(t)dW(t) = 1W(T)2 iy
0 2 2

for the It0 integral
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Geometric Wiener Process

dX = X(udt + odW)

X(t) = exp(a (1) + (1 — 5071

An essential part of the Black-Scholes model for option pricing
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