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Stochastic optimal control problem

Consider a system with controlled stochastic dynamics

dx = (b(x, t) + u)dt + dξ dξ ∼ N(0, νdt)

with control u.

Find the control u(.) that minimizes the
expected cost to end-time tf

C(x0, t0, u(.)) =
〈 ∫ tf

t0

1
2
u(x(t), t)2 + V (x(t), t) dt

〉

u2 control costs
V : path costs

small u?

High cost V

Low cost V

High cost V
*  start

x

t0 tftime

big u?
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Hamilton-Jacobi-Bellman equation

Optimal (expected) cost-to-go

J(x, t) = min
u(.)

C(x, t, u(.)).

J satisfies the HJB eqn.,

−∂tJ = min
u

(
1
2
u2 + (b + u)∂xJ +

1
2
ν∂2

xJ + V

)

with end-condition J(x, tf ) = 0.
The minimization with respect to u yields

u = −∂xJ,

−∂tJ = −1
2
(∂xJ)2 + b∂xJ +

1
2
ν∂2

xJ + V
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Log transformation and optimal control

The non-linear PDE of J can transformed into a linear one by the log transform
(W. Flemming, 1978, Kappen 2005). Set

J(x, t) = −ν log Z(x, t)

then the “partition function” Z can be written as

Z(x, t) = dyρ(y, tf |x, t)

in which ρ satisfies the linear pde

∂t′ρ(x′, t′|x, t) = −∂x′(b(x′, t′)ρ(x′, t′|x, t)) +
1
2
ν∂2

x′ρ(x′, t′|x, t)

− V (x′, t′)
ν

ρ(x′, t′|x, t).

with begin condition ρ(x′, t|x, t) = δ(x′ − x)
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Fokker-Planck with decay

Goal: compute ρ(x, tf |x0, t0), where
ρ(x′, t0|x, t0) = δ(x′ − x)

Evolution according to

∂tρ(x, t|x0, t0) = −∂x(b(x, t)ρ(x, t|x0, t0)) +
1
2
ν∂2

xρ(x, t|x0, t0)

− V (x, t)ρ(x, t|x0, t0).

V = 0 → reduces to the Fokker-Planck equation, modeling a process
of drift and diffusion, due to the terms with b(x, t) and ν respectively.
The extra term with the potential V makes that “probability” is not
conserved.
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A stochastic dynamical process with annihi-
lation

FP with decay describes the following stochastic proces with annihilation:
particles start at x = x0 and evolve according

dx = b(x, t)dt + dξ dξ ∼ N(0, νdt)

x = x + dx, with probability 1 − V (x, t)dt

x = annihilated with probability V (x, t)dt

Example:
b = 0, V = 1

2x2
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Black: survived until tf
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Relation with discrete time Kalman smooth-
ing

Dynamical system equations

xt+1 = xt + b(xt, t) + ε ε ∼ N(0, ν) System dynamics

yt = g(xt) + η Observations

Smoothing

p(x1:T |y1:T ) ∼
∏

t

p(xt+1|xt)p(yt|xt) =
∏

t

p(xt+1|xt) exp(−V (xt, t))

1

x

xx x t 2x 1  t+1

y t+1yty2y V

x

xx x t 2x 1  t+1

V t+1VtV21

Rejection sampling: sample from dynamics p(xt+1|xt), reject samples at
time t with probability 1 − exp(−V (x, t))
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The transition density

The transition density state x to y over an infinitesimal
time step ∆t

ρ(y, t + ∆t|x, t) ∝

exp
(
−

[
(y − x − b(x, t)∆t)2

2ν∆t
+ V (x, t)∆t

])

Over n infinitesimal time steps ∆t

ρ(xn, tn|x0, t0) ∝
∫ n−1∏

i=1

dxi exp

(
−∆t

n−1∑

i=0

[
1
2ν

(
xi+1 − xi

∆t
− b(xi, ti)

)2

+ V (xi+1, ti+1)
])

x

t
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Path integral formulation

In the limit: ∆t
∑n−1

i=0 →
∫ tf

t dτ , and
∫ ∏n−1

i=1 dxi becomes an integral over paths
that start at x and end at y, denoted as

∫
[dx].

ρ(y, tf |x0, t0) =
∫

[dx]yx exp (−S[x])

S[x] =
∫ tf

t0

(
(ẋ(τ) − b(x(τ), τ))2

2ν
+ V (x(τ), τ)

)
dτ

=
∫ tf

t0

L(x(τ), ẋ(τ), τ)dτ

S is called the action, and L the Lagrangian.
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Euler-Lagrange equations

The mode of the process. is the path x(t0 → tf ), starting at given x0 and ending
at arbitrary y, that minimizes the action S. We do this by applying variational
calculus.
Defining “momentum” as

p(t) ≡ ∂ẋL(t, x, ẋ)

the optimal path satisfies the well-known Euler-Lagrange equations

d/dt x = ẋ

d/dt p = ∂xL

with begin condition for x (from the problem formulation) and an end-condition
an end condition for p (which followed from the variational computation),

x(t0) = x0

p(tf ) = 0 .
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Euler-Lagrange equations

In our problem, the Lagrangian is

L(x, ẋ, t) =
(ẋ − b(x, t))2

2ν
+ V (x, t)

The “momentum” p(t) ≡ ∂ẋL(t, x, ẋ) = ν−1(ẋ − b(x, t)), then the E-L eqns

ẋ(t) = b(x, t) + νp(t)

ṗ(t) = ∂xV

Contribution of momentum proportional to noise: Thanks to the
fluctuations the surviving particles avoided from running into regions of
high annihilation rate and escaped to regions with lower annihilation rate.
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A formal forward-backward algorithm

Solution formally found by forward-backward algorithm:

1: // ** Forward pass ** //
2: for all initial momenta p0 do
3: prepare the system in (x(t0) = x0, p(t0) = p0)
4: integrate forwards in time t0 → tf
5: if p(tf ) = 0 then
6: keep xf = x(tf )
7: end if
8: end for
9: // ** Backward pass ** //

10: for all kept end states do
11: prepare the system in (x(tf ) = xf ; p(tf ) = 0)
12: propagate backwards in time t0 ← tf
13: return xopt(t) = x(t)
14: end for
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Numerical example

We consider a system with V (x) = 1
2αx2 and b(x, t) = 0. The optimal path can

be computed, x(t) = cosh((αν)1/2(tf−t))
cosh((αν)1/2(tf ))
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optimal paths starting at different initial points x0 with αν = 1 (left) and αν = 5
(right).
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Relation with classical mechanics (b = 0)

Stochastic system Classical mechanics

p = ν−1ẋ p = mẋ

L =
νp2

2
+ V L =

p2

2m
− V

d/dt p = ∂xV d/dt p = −∂xV

x(t0) = x0; p(tf ) = 0 x(t0) = x0; p(t0) = p0 (e.g.0)

H =
νp2

2
− V H =

p2

2m
+ V

Typically, start with large V and
large p in direction of minV .
End with small V and zero p.

Typically, particles start with large
V and zero p.
They end with smaller V and larger
p, or large V and small p

W. Wiegerinck, B. Kappen - NIPS 2006 Workshop on Dynamical Systems, Stochastic Processes and Bayesian Inference, 9 December, 2006 – p. 1



Size of fluctuations: linear noise approxima-
tion

Fluctuations dominate in short time scale (dξ ∝
√

dt)
Drift and annihilation dominate in long time scale (∝ dt)
Drift + state dependent annihilation → effective drift described by optimal
path + state independent annihilation

dx = (b + νp)dt + νdξ ≡ β(x, t)dt + dξ (1)

Dynamics of fluctuations σ2(t) around
mode follows from (1)

∂tσ
2(t) = 2 ∂xβ(x, t)σ2(t) + ν
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Numerical example
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b = 0, V (x) = 1
2αx2. Optimal paths starting at different initial points x0 with

αν = 1 (left) and αν = 5 (right). Bottom: optimal paths (fat lines) starting at
x0 = 3, plus indications of esitmated noise σ(t) (fat dashed) and some random
paths, with ν = 1 (left) and ν = 5 (right). α = 1 in both cases. Note: The
simulations with ν = 1 started with 500 particles. The one with ν = 5 started with
200 particles.
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Partition function

Normalization constant = fraction of particles that survive the process
Approximation

effective decay rate: fraction of particles that fluctuate towards path ×
fraction of particles that survive decay along optimal path

V path(x, t) =
(β(x, t) − b(x, t))2

2ν
+ V (x, t) ,

Correction for fluctuations around optimal path

V path, corrected(x, t) =
〈

(β(x, t) − b(x, t))2

2ν
+ V (x, t)

〉

[xopt,σ2]
.
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Partition function: numerical result
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Estimate of the partition function (i.e. fraction of surviving particles) Z based on
the mode (dashed) and with Gaussian corrections (drawn) as function of the noise
ν. All processes started at x = 3. Estimates are compared with results of
stochastic simulations, each starting with 100000 particles (stars).
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Summary

Stochastic diffusion with annihilation
Relevant for:

Stochastic optimal control
Continuous-time Kalman smoothing (?)

Path integral formalism
Gaussian approximation,
mode: optimal path, Euler Lagrange equations
fluctuations
partition function

Numerical result for zero drift and quadratic potential
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Discussion

Methods to solve the Euler Lagrange eqns
Performance on more interesting potentials
More general stochastic dynamical systems
Applications of continuous time smoothing
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