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Nonlinear dynamical systems

• Model data x(t) with temporal dependencies

• Differential equation model for a continuous-time process:

d

dt
x(t) = g(x(t))

• Linear g implies very restricted exponentially decaying dynamics,

nonlinearity needed for interesting systems

• Sampling regularly at t = 1, . . . , T and integrating yields

x(t + 1) = φ1(x(t)),

a discrete-time difference equation



Nonlinear state-space models (NSSMs)

• Instead of modelling the dynamics of the data x, use a latent

state-space s

• Discrete-time NSSM (Valpola & Karhunen, 2002):

s(t + 1) = gdt(s(t), θg) + m(t)

x(t) = f(s(t), θf ) + n(t)

• MLP networks used to model f and g

• Variational inference as an extension to nonlinear factor analysis

(Lappalainen (Valpola) & Honkela, 2000)
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Variational inference for the NSSM

s(t + 1) = s(t) + gdt(s(t), θg) + m(t)

x(t) = f(s(t), θf ) + n(t)

• Linearise the nonlinearities (Honkela & Valpola, NIPS 2004)

– Like Taylor approximation, but use quadratures instead of

derivatives to estimate global behaviour

• Gradient-based minimisation of the free energy with respect to the

variational parameters of the Gaussian posterior approximation



Discrete-time models: pros and cons

+ Relatively simple and efficient methods for learning and inference

− What happens between the samples?

− Uneven sampling, missing time points?

− Processes with different time scales very challenging



Continuous-time NSSM

• Instead of a discrete-time map, use a differential equation to model

state evolution

• Introducing the noise makes this a stochastic differential equation

(SDE)

ds(t) = g(s(t)) dt +
√

Σ dW (t),

where dW is the differential of a Wiener process (Brownian motion)



Stochastic Differential Equations

ds(t) = g(s(t)) dt +
√

Σ dW (t)

• Intuitively: deterministic drift + stochastic part

• The solution is a continuous-time stochastic process with Markov

property

• Sampling methods similar to numerical solution methods of ODEs



Continuous-time NSSM

• Assume data X = {x(ti)|i = 1, . . . , N}, introduce latent variables

for the states S = {s(ti)|i = 1, . . . , N}

• Continuous-time NSSM equations:

ds(t) = g(s(t), θg) dt +
√

Σ dW (t)

x(ti) = f(s(ti), θf ) + n(ti)

• Because of the Markov property of s(t), need the dynamics only to

evaluate p(s(ti+1)|s(ti))



Approximations

• How to evalute p(s(ti+1)|s(ti))?

• Derive differential equations for the mean and covariance of a

Gaussian process satisfying the same SDE by linearising g about the

current mean:

d

dt
µ(t) = 〈g(µ(t))〉

d

dt
P(t) = 〈G(µ(t))〉PT(t) + P(t)

〈

GT(µ(t))
〉

+ Σ

• Solve these numerically using an Euler method

• Expected statistics of g and its Jacobian G evaluated using the

global linearisation (Honkela & Valpola, NIPS 2004)



Variational continuous-time NSSM

• The resulting learning method for continuous-time NSSM is mainly

rather similar to discrete-time variant

• Main conceptual difference: process noise (m(t)) is generated by

the SDE, not just i.i.d. Gaussian



State inference

• How to estimate the sequence of dependent state values S?

• Traditional solution: extended/unscented (variational) Kalman filter

– Potentially unstable with long sequences

– Not an exact minimum of the free energy

• Solution of Valpola & Karhunen (2002): minimise the free energy

ignoring dependencies

– Provably stable and convergent but slow algorithm



Faster state inference

• General principle: take into account relevant dependencies to

minimise free energy more efficiently

• One heuristic: instead of partial derivatives, use total derivatives of

the free energy

dC
ds(t)

=

T
∑

τ=1

∂C
∂s(τ)

∂s(τ)

∂s(t)
.

• Solve the optimal mean assuming the linearisation and evaluate

∂s(τ)

∂s(t)
≈ ∂sopt(τ)

∂sopt(t)
, τ ∈ {t − 1, t + 1}

• Total derivatives can now be evaluated using chain rule and dynamic

programming



Experiment: Continuous-time NSSM

• Proof-of-concept experiment: learning a Lorenz process

dz1

dt
= σ(z1 − z2)

dz2

dt
= ρz1 − z2 − z1z3

dz3

dt
= z1z2 − βz3

• Two observations, relatively high observation noise level

• No process noise

• 201 unevenly sampled data points



Experiment: Continuous-time NSSM
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Left: The original data set without noise.

Middle: The noisy data set used in the experiment.

Right: The reconstruction of the data set by the model.



Experiment: Continuous-time NSSM
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Left: The original three-dimensional Lorenz process without noise.

Right: The three-dimensional latent state-space of the model.



Experiment: Continuous-time NSSM
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Top: The latent state values. Bottom: The values predicted from the

previous time step.



Experiment: State inference

• Data: 21-dimensional spectrograms of continuous human speech

• 10 000 samples to learn the dynamics, 1 200 for testing

• Learn a discrete-time NSSM with 7 hidden states

• Task: reconstruct gaps of 3 or 30 samples in observations

• Compare state inference between proposed method, iterated

extended Kalman smoother (IEKS) and iterated unscented Kalman

smoother (IUKS)



Experiment: State inference
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Conclusion

• Nonlinearities are clearly needed to model dynamical systems

• Continuous time opens new possibilities

– Maybe help with different time scales?

• Proof-of-concept continuous-time nonlinear state-space model

• State inference in nonlinear models (for learning)


