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Abstract

We investigate a Bayesian method for systematically capturing the underlying fir-
ing rate of a neuron. Any method of rate estimation requires a prior assumption
about the flatness of the underlying rate, which can be represented by a Gaussian
process prior. This Bayesian framework enables us to adjust the very assump-
tion by taking into account the distribution of raw data: A hyperparameter of the
Gaussian process prior is selected so that the marginal likelihood is maximized. It
takes place that this hyperparameter diverges for spike sequences derived from a
moderately fluctuating rate. By utilizing the path integral method, we demonstrate
two cases that exhibit the divergence continuously and discontinuously.

1 Introduction

Bayesian methods based on Gaussian process priors have recently become quite popular, and provide
flexible non-parametric methods to machine learning tasks such as regression and classification
problems [1, 2, 3]. The important advantage of Gaussian process models is the explicit probabilistic
formulation, which not only provides probabilistic predictions but also gives the ability to infer
hyperparameters of models [4].

One of the interesting applications of the Gaussian process is the analysis of neuronal spike se-
quences. In the field of neuroscience, we often wish to determine the underlying firing rate from
observed spike sequences [5, 6, 7, 8, 9]. The firing rate may be a complex fluctuating function that
sensitively reflects the detailed density of data points, or simple function that represents the gross
features of the data points. The posterior distribution function representing the data is influenced
by such prior assumption about the jaggedness of the underlying rate. In terms of the Bayesian
framework, the prior assumption for the underlying rate can be represented by a Gaussian process
representing the tendency of the rate to be relatively flat. According to the empirical Bayes method,



a hyperparameter of the prior distribution is selected so that the marginal likelihood function is
maximized [4, 10, 11, 12, 13].

The characteristic specific to the rate estimation is that a sequence of events (spikes) is described
by a point process that is clearly a typical continuous time non-Gaussian process [14, 15, 16]. This
means that the exact derivation of the marginal likelihood function is no longer possible.

In this manuscript, we show that in some limiting conditions the marginal likelihood function can
be obtained analytically using the path integral method which is the standard technique in quantum
physics [17, 18, 19, 20]. By utilizing the path integral method, we demonstrate an interesting phe-
nomenon, i.e., the optimal time scale for the rate estimation exhibits the divergence continuously
and discontinuously for two examples.

2 Methods

2.1 Time dependent Poisson process

We consider the time-dependent Poisson process in which point events (spikes) are derived inde-
pendently from a given time-dependent rate A(¢). In this process, the probability density for spikes
to occur at {¢;} = {t1,t2, -, t,} within the interval (0, 7] for a given time-dependent rate A(¢) is

given by
T
p({t:} | {A(¢) [H/\ ‘|exp (/0 /\(t)dt>, (1)

where the exponential term is the survivor function that represents the probability that no spikes
occur in the inter-spike intervals [14, 15, 16]. Eq. (1) satisfies the normalization condition:
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2.2 The empirical Bayes method

For a sequence of point events derived from a time-dependent Poisson process, we apply the Bayes
method to the inference of the time-dependent rate A(¢). We introduce here a Gaussian process prior
of A(t), which can be written in the general form:
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where A is a linear operator, and Z denotes a normalization constant. Here the inner product of two

functions is defined by a(t)7b(t) = [ dta(t)b(t) [24]. In this paper, we consider A = [A-L]T[A L],

where the hyperparameter A is proportional to the time scale of the estimation of the instantaneous
rate. This represents the tendency of the of the estimated rate to be relatively flat. Then, the prior

distribution is obtained as
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The posterior distribution of A(¢), given the data {¢,}, can be calculated with the Bayes formula:
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where pa ({t;}) is the “marginal likelihood function” or the “evidence” for the hyperparameter A,
with the given data {¢,}, defined as

pa({ti}) = ./p({tiH{)‘(t)})PA({)‘<t)})d{/\(t)}~ (6)
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The integration above is functional integration over possible paths of A(¢). According to the em-
pirical Bayes theory, the hyperparameter can be adjusted so that the marginal likelihood function is
maximized [4, 10, 11, 12, 13].

The maximum a posteriori (MAP) estimate 5\(15) for a given hyperparameter A can be obtained by
applying the variational method to the posterior distribution:
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2.3 The path integral method

The marginal likelihood function pa ({t;}) defined by Eq.(6) can be represented in the form of the

path integral
1 .
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where L(\, A, t) is the “Lagrangian” of the form:
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The MAP estimate X(t) corresponds to the “classical path” obtained from the Euler-Lagrange equa-
tion,
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The marginal likelihood pa ({t;}) for a given hyperparameter A can be computed by performing
the integration, Eq.(7), over all paths A(¢) around the above mentioned “classical path.” The path
integral can be obtained analytically for a Lagrangian in the quadratic form. By approximating the
“action integral” to a range quadratic in the deviation from the classical path, the path integral is

obtained as [18, 19, 20],
T A A
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where R represents the “quantum” contribution of the quadratic deviation to the path integral, ob-
tained as

Rexp (11)
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The path integral method presented here can be regarded as a functional version of the Laplace
approximation used in the field of machine learning [22, 23, 24]



2.4 Evaluation of the marginal likelihood

We formulate a method for computing the marginal likelihood function using the path integral
method for a Poisson process with underlying rate

Ao(t) = p+af(t), (16)

where 4 is the mean rate and o f (¢) represents a fluctuation from the mean. The occurrence of spikes
fluctuates around this underlying rate. Under the condition that the rate fluctuation is small compared
to the mean, i.e., o/ < 1, the fluctuating rate can be approximated as a stochastic process [25],

n
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where the fluctuation £(t) is a Gaussian white noise characterized by the ensemble averages (£(t)) =
0 and (E(HE(H)) = (¢ — ).

By expressing the deviation of the estimated rate from the mean as z(¢) = A(t) — u and expanding
the Lagrangian, Eq.(9), up to the quadratic order in x, we obtain
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We will hereafter ignore the constant x(1—log p), which is irrelevant to the dynamics. The “equation
of motion” of the “classical path” is obtained with the Euler-Lagrange equation (10) as
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The solution of this Euler-Lagrange equation is given as
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Using the solution, the classical action is represented as
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The contributions of the noises representing the sample fluctuation can be evaluated analytically in
the limit 7' > 1. Applying the Wiener-Khinchine theorem to Eq. (24) and using the fact that the
value of the power spectrum of the Gaussian white noise is constant, we obtain
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The “free energy” that represents the negative marginal likelihood function is given by

1 1 r .
F(A) = —7 logpa({ti}iey) = —7 <logR —/0 L(ﬁc,:ﬁ,t)dt) . (26)



The contribution of the “quantum” part is computed as

() o)
= | — exp | —
TR 28/
As a result, the free energy is given as
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The hyperparameter is selected so that the free energy F'(A) is minimized,

A= arg mAin F(A). (29)

3 Results

3.1 Sinusoidally regulated Poisson process

First, we apply the formula (28) developed above to the case in which the rate is modulated sinu-
soidally in time, or

t
f(t) =sin—. (30)
T
In this case, the free energy is explicitly
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A = oo implies that a sequence is interpreted as a constant rate. For a small amplitude of rate
fluctuation, o, this free energy has a local minimum at A = oo, or

dF(A)
d(1/A)

> 0. (32)

1/A=0

By increasing the amplitude of rate fluctuation o, there appears another local minimum at a finite A
in the free energy. There is the local minimum at a finite A if
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By increasing the rate fluctuation o further, the local minimum of F at a finite A becomes smaller

than zero, implying that the sequence should be interpreted as derived from a fluctuating rate, A <
o0, provided that

z> 2. (34)

In the limit of a large fluctuation z >> 1, the optimized time scale A\/ﬁ obeys the scaling relation,

AV~ o 3755, (35)
This is consistent with the result found by Bialek et al., [17].

3.2 Doubly stochastic Poisson process

Next, we consider the doubly stochastic Poisson process in which the rate fluctuation f(¢) obeys the

Ornstein-Uhlenbeck process,
d f \/5
2 =7 ZE(t). 36
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In this case, the free energy is
1 o 1
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In this case the free energy has a single minimum. The condition for this free energy function to
have a minimum at finite A is

F(A) (37)
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In the limit of a large fluctuation z > 1, the optimized time scale A\/ﬁ obeys the scaling relation

Ay ~otrzps. (39)
4 Summary

We applied the empirical Bayes method based on the Gaussian process prior to the rate estimation
of point events or spikes. A hyperparameter representing the time scale of the rate estimation kernel
is selected so that the marginal likelihood function is maximized. We then obtained the marginal
likelihood function analytically using the path integral method.

The time scale of the rate estimation kernel diverges in the case that the rate fluctuation of the
underlying rate is small. This implies that under some conditions, it is likely that trying to say
something about the rate fluctuation is misleading: Speech is silver, silence is golden. By means of
the path integral method, we found two cases that exhibit continuous and discontinuous transitions.

Note that the incapability of rate-estimation is not necessarily due to the Bayesian method applied
to the kernel estimation. In selecting a bin size for the time histogram method so that the mean
integrated square error (MISE) from the underlying rate is minimized, the optimal bin size diverges
when the spikes are derived from moderately fluctuating rates [26]. The bin size of the time his-
togram plays a similar role to the time scale of the rate-estimation kernel in determining the smooth-
ness of the rate. The parametric condition for the divergence of the optimal bin size and that of the
time scale of the rate-estimation kernel studied here are very similar. The asymptotic characteristics
Egs. (35) and (39) are respectively the same as those for the optimal bin size determined with the
MISE criteria. It would be interesting to investigate the relationship of these apparently independent
principles.

In the present study we consider the first order derivative of A(¢) in the prior distribution (4). A
higher order derivative of A(t) would be preferable in the case that a more smooth estimate of the
rate is required. Further investigation is necessary for the case in which a higher order derivative, or
another covariance function is taken into consideration.

The results here are obtained under the limiting conditions of o/p < 1 and T' > 1. We also applied
the second order (Laplace) approximation to the evaluation of the marginal likelihood function. It
remains for a future work to examine the extent to which these results are relevant for realistic
parameter choices by simulation studies.
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